
Enterprise Chat and Email Chat and
Callback Javascript SDK Developer’s
Guide, Release 11.6(1)
For Unified Contact Center Enterprise

August 2017
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in
illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to
http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide: For Unified Contact Center Enterprise. July 14, 2017

© 2017 Cisco Systems, Inc. All rights reserved.

Contents

Preface ...6

About This Guide . 7

Obtaining Documentation and Submitting a Service Request . 7

Documentation Feedback . 7

Field Alerts and Field Notices . 7

Document Conventions. 8

Other Learning Resources. 8

Chapter 1: Library Basics..9

Key Concepts . 10

Getting Started . 11

Library References . 11

Library Objects . 11

Methods. 12

Library Methods . 12

Chat Methods. 12

Callback Methods . 12

EventHandlers . 13

Chat EventHandlers. 13

Callback EventHandlers . 14

Chapter 2: Library Objects ..15

eGainLibrarySettings . 16

eGainLibrarySettings Properties . 16

eGainLibrarySettings Methods . 16

Sample Code . 16

eGainLibrary . 17

eGainLibrary Properties . 17

eGainLibrary Methods . 17

Chat (egainChatLibrary.Chat). 17

 Chat Properties . 17
3

Chat Methods . 17

Sample Code . 17

Callback (egainChatLibrary.Callback) . 18

Callback Properties . 18

Callback Methods . 18

Sample Code . 18

CustomerObject (egainChatLibrary.Datatype.CustomerObject) 18

CustomerObject Properties . 18

CustomerObject Methods . 19

Sample Code . 19

ResultObject . 19

ResultObject Properties . 19

ResultObject Methods . 19

CustomerParameter . 19

CustomerParameter Properties . 20

CustomerParameter Methods . 20

Chapter 3: Library Methods ..21

Chat and Callback Constructors . 22

Chat Setup . 22

Text Chat. 23

Chat Attachments . 24

Callback . 26

Chapter 4: Library Event Handlers...27

Text Chat. 28

Chat Attachments . 29

Callback . 29

Chapter 5: Return Parameters From Event Handlers..31

Text Chat. 32

Chat Attachments . 33

Callback . 34
4 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Chapter 6: Chat Code Snippets...35

Adding a Reference. 36

Simple Startup Example . 36

Adding Customer Parameters and Setting Primary Key. 38

Starting the Chat Session . 39

Sending Customer Messages to Agent . 39

Handling Messages Received from an Agent . 39

Handling System Messages . 40

Chat Completion . 40

Masking Sensitive Information & Off-Record . 40

Chapter 7: Callback Code Snippets...41

Adding a Reference. 42

Simple Startup Example . 42

Adding Customer Parameters and Setting Primary Key. 44

Starting the Callback Session . 46

Handling System Messages . 47

Appendix: Reference Information ...48

Enabling CORS on ECE server . 49
5

Preface
 About This Guide

 Obtaining Documentation and Submitting a Service Request

 Documentation Feedback

 Field Alerts and Field Notices

 Document Conventions

 Other Learning Resources

Welcome to the Enterprise Chat and Email (ECE) feature, which provides multichannel interaction software
used by businesses all over the world as a core component to the Unified Contact Center Enterprise product line.
ECE offers a unified suite of the industry’s best applications for chat and email interaction management to
enable a blended agent for handling of web chat, email and voice interactions.

About This Guide

Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide provides development
resources capable of leveraging the JavaScript Library to build custom chat and callback user experiences
leveraging the power of the ECE platform.

Obtaining Documentation and Submitting a Service
Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, see What's New in Cisco Product Documentation, at:
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Subscribe to What's New in Cisco Product Documentation, which lists all new and revised Cisco technical
documentation as an RSS feed and delivers content directly to your desktop using a reader application. The RSS
feeds are a free service.

Documentation Feedback

To provide comments about this document, send an email message to the following address:
contactcenterproducts_docfeedback@cisco.com

We appreciate your comments.

Field Alerts and Field Notices

Cisco products may be modified or key processes may be determined to be important. These are announced
through use of the Cisco Field Alerts and Cisco Field Notices. You can register to receive Field Alerts and Field
Notices through the Product Alert Tool on Cisco.com. This tool enables you to create a profile to receive
announcements by selecting all products of interest.

Log into www.cisco.com and then access the tool at http://www.cisco.com/cisco/support/notifications.html
Preface 7

Document Conventions

This guide uses the following typographical conventions.
.

Document conventions

Other Learning Resources

Various learning tools are available within the product, as well as on the product CD and our web site. You can
also request formal end-user or technical training.

Convention Indicates

Italic Emphasis.

Or the title of a published document.

Bold Labels of items on the user interface, such as buttons, boxes, and lists.

Or text that must be typed by the user.

Monospace The name of a file or folder, a database table column or value, or a command.

Variable User-specific text; varies from one user or installation to another.
8 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Library
Basics
 Key Concepts

 Getting Started

 Library References

Key Concepts

The JavaScript Library is designed with a core set of objects that developers interact with. The library primarily
has the following modules:

 Chat

 Callback

These modules serve as interfaces for Chat functionality and Callback functionality respectively.

When getting started with the modules of the JavaScript library, it is important to understand some basic key
concepts associated with the user experience:

 Managing multiple languages should be considered while designing the user experience.

 CORS is required to be enabled on the egain server when deploying the user experience outside of the eGain
Infrastructure. For more details see “Enabling CORS on ECE server” on page 49.

 The following interfaces are typically used during a user’s chat experience:

 Pre-Chat Form: Used to collect information from the user that will help provide context when the chat
is routed to an agent.

 Interaction UI: This is the core UI where the customer will type messages to send to the agent and
receive messages sent by the Agent.

 Post-Chat Form: This is a page displayed after the chat has been completed. This is ideal for collecting
feedback or presenting surveys.

 The following interfaces are typically used during a user’s callback experience.

 Pre-Callback Form: Used to collect information from the user that will help provide context when the
callback is routed to an agent.

 Post-Callback Form: This is a page displayed after the callback has been completed. This page
displays the status messages such as “Callback successful”/”Callback unsuccessful” etc.
10 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Getting Started

To begin working with the JavaScript SDK, it is recommended to start with the working examples provided with
this SDK. They are distributed as a quick start. The library itself is located in the Examples/libs/egain
folder contained within the distribution.

Once extracted locate the web folder inside the location where the files were extracted to. This folder contains
the source code for all of the samples provided.

Library References

Library Objects
For more information about library objects, see “Library Objects” on page 15.

 eGainLibrarySettings

 eGainLibrary

 Chat

 Callback

 CustomerObject

 CustomerParameter

 EventHandlers

 ResultObject

 CustomerParameter

Folder Name Contains

libs The libraries used throughout the examples, which includes:

 jQuery

 jQuery Mobile

Chat JavaScript

Callback JavaScript

Both minified and development versions of the Chat JavaScript Library have been included.

 samples Various examples demonstrated in an HTML page with a corresponding JavaScript source file
containing the code.

samples/simple-anonymous-
chat

Examples with the easiest of scenarios where a simple anonymous chat is desired without any
specific customer information.

samples/with-input-
parameters

An example where chat is initiated with customer information passed at the time of starting chat.

samples/ chat-attachments An example demonstrating sample code for sending and receiving attachments in chat.
Library Basics 11

Methods

Library Methods
These are the methods of the eGainLibrary object

 AddConnectionParameter

 SetCustomer

 SetSamlResponse

 SetEscalationData

 SetXEgainSession

 SetVisitorHistoryInformation

 GetQueueCurrentStatus

Chat Methods
These are the methods of the Chat object

 Initialize

 Start

 GetEventHandlers

 SendMessageToAgent

 SendSystemMessage

 SendCustomerStartTypingStatus

 SendCustomerStopTypingStatus

 End

 Attach

 UploadAttachment

 GetAttachment

 GetArticleAttachment

 GetAttachmentImage

 SendCustomerAttachmentNotification

 SendAcceptChatAttachmentNotification

 SendRejectChatAttachmentNotification

 GetTranscript

Callback Methods
These are the methods of Callback object
12 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

 Initialize

 Start

 GetEventHandlers

EventHandlers

Chat EventHandlers
 OnConnectionInitialized

 OnConnectSuccess

 OnConnectionComplete

 OnConnectionFailure

 OnConnectionAttached

 OnConnectionAttachedFailure

 OnDuplicateSession

 OnAgentsNotAvailable

 OnSystemMessageReceived

 OnGetQueueCurrentStatus

 OnMessagePropertyLoad

 OnErrorOccurred

 OnAgentMessageReceived

 OnAgentJoined

 OnChatTransfer

 OnAgentStartTyping

 OnAgentStopTyping

 OnTranscriptFetched

 OnCobrowseInviteReceived

 OnCustomerAttachmentNotificationSent

 OnGetAttachment

 OnAttachmentAcceptedByCustomer

 OnAttachmentUploadedByCustomer

 OnAttachmentRejectedByCustomer

 OnAttachmentAcceptedByAgent

 OnAttachmentRejectedByAgent

 OnAttachmentInviteReceived
Library Basics 13

 OnGetAttachmentImageThumbnail

Callback EventHandlers
 OnCallbackInitialized

 OnCallbackMessagePropertyLoad

 OnCallbackConnectionFailure

 OnDuplicateSession

 OnCallBackCompletion

 OnSystemMessageReceived

 OnAgentsNotAvailable

 OnCallbackConnectSuccess

 OnCallbackSucceeded
14 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Library
Objects
 eGainLibrarySettings

 eGainLibrary

 Chat (egainChatLibrary.Chat)

 Callback (egainChatLibrary.Callback)

 CustomerObject (egainChatLibrary.Datatype.CustomerObject)

eGainLibrarySettings

Initializing the eGainLibrarySettings object would be the first step to use the chat library. The
eGainLibrarySettings object is used to set specific configurations to be used by the JavaScript Library.

eGainLibrarySettings Properties

eGainLibrarySettings Methods
There are no methods to be called on the eGainLibrarySettings object.

Sample Code
var librarySettings = new eGainLibrarySettings();

librarySettings.CORSHost = Context root of my egain server;

librarySettings.IsDevelopmentModeOn = false;

librarySettings.eGainContextPath = "";

librarySettings.ChatPauseInSec = “30";

ibrarySettings.IsDebugOn = false;

Property Name Type Description

IsDevelopmentModeOn Boolean This property sets an increased timeout for the chat to ensure empty
sessions are less likely to occur during development. It is expected that,
during development, breakpoints may hold up the execution, so enabling
this mode assists with the development activities.

CORSHost String If chat UI built using the SDK is not from an ECE install, CORSHost is the
identifier for the ECE server. It should have the ECE URL uptill the context
path.

ChatPauseInSec Integer Time in seconds to specify for how long chat needs to be paused. This
would be used when pausing the connection. This time should be less than
the MAX PAUSE TIME set in server.

eGainContextPath String Signifies context path where ECE templates are deployed. This is the path
from which l10 properties files (namely messaging_en_US.properties, etc)
required for the library will be referenced.

IsDebugOn Boolean Defines whether or not debugging is on for chat. This can be used to
record Strophe requests sent to server. Strophe is the underlying
Javascript XMPP library used by the chat functionality of ECE.
16 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

eGainLibrary

The eGainLibrary object is the primary object used to interact with chat and callback. It holds the Chat and
Callback objects. In addition, it contains methods and properties which are common to both chat and callback.

eGainLibrary Properties
The eGainLibrary itself does not contain any properties that need to be set.

eGainLibrary Methods
Core methods required for Chat and Callback are invoked from the respective objects. eGainLibrary has some
additional methods primarily required for chat like setting customer details, setting visitor history information
etc. For details on eGainLibrary methods, see “Library Methods” on page 21.

Sample Code:

var egainChatLibrary = new eGainLibrary(librarySettings());

Chat (egainChatLibrary.Chat)

The Chat object is the interface for chat functionality: sending and receiving text messages.

 Chat Properties
The Chat object itself does not contain any properties that need to be set. It has an initialize method, which takes
the parameters of the properties that need to be set for starting a chat.

Chat Methods
The Chat object has a host of methods related to:

 Initializing and starting chats

 Sending and receiving messages

 Connecting to an existing chat

 Exchanging files during chat

For more details about chat methods, see “Library Methods” on page 21.

Sample Code
var egainChat = new egainChatLibrary.Chat();

var chatEventHandlers = egainChat.GetEventHandlers();
Library Objects 17

egainChat.Initialize(Entry Point ID, Language, Country, chatEventHandlers);

Callback (egainChatLibrary.Callback)

The Callback object is the interface for callback functionality.

Callback Properties
The Callback object doesn’t contain any properties that need to be set. It has an initialize method, which takes
the parameters of the properties that need to be set for initiating a callback.

Callback Methods
The Callback object primarily has two related methods: initializing callback and starting a callback session.

For more details about callback methods, see “Library Methods” on page 21.

Sample Code
var egainCallback = new egainChatLibrary.Callback();

var eventHandlers = egainCallback.GetEventHandlers();

egainCallback.Initialize(<Entry Point ID>, <Language>, <Country>,
eventHandlers);

CustomerObject
(egainChatLibrary.Datatype.CustomerObject)

CustomerObject is used to populate specific attributes of the customer who is initiating the chat. The
following are a list of the methods and properties associated with the CustomerObject.

CustomerObject Properties

Property Name Type Description

Locale Object Locale Object containing the language code and country
code.

PrimaryKey Object Object containing name,value pair. Name can be either
"Email" or "Phone"

CustomerParameters Array Array of customer parameters. Details of customer
parameters are under CustomerParameter.
18 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

CustomerObject Methods

Sample Code
var customer = new egainChatLibrary.Datatype.CustomerObject();

customer.Locale.Language = ‘en’

customer.Locale.Country = ‘US’

ResultObject
Returns a status whether or not the event was successful.

ResultObject Properties

ResultObject Methods
There are no methods to be called on the ResultObject object.

CustomerParameter
The CustomerParameter object is used to create contextual parameters for the CustomerObject. That
object is then passed into the Chat constructor.

Property Name Description

AddCustomerParameter Method used to add details regarding the customer. This can include things like
the customer’s first name, last name, or other details that are relevant. These
values then get mapped to the business objects.

SetPrimaryKey Used to set whether the email address or phone number will be used to identify
the customer.

Property Name Type Description

StatusCode String String indicating status code of chat event. This code can be
used for identifying the event.

StatusMessage String String indicating detailed status message of chat event.

IsSuccess Boolean String indicating status success or failure of chat event.
Library Objects 19

CustomerParameter Properties

CustomerParameter Methods
There are no methods to be called on the ChatParameter object.

Property Name Type Description

eGainParentObject String Represents the Business Object within the ECE application
that will be used to map the value to. An example of a
ParentObject value would be “casemgmt”

eGainChildObject String Represents the Child Business Object within the ECE
application that will be used to map the value to. An example
of a ChildObject value would be “individual_customer_data”.

eGainParamName String Name of parameter which will be mapped to an ECE attribute.

eGainAttribute String The attribute name for the given Business Object within the
ECE application that will be used to map the value to. An
example of an Attribute value would be “first_name”.

eGainValue String The value that will be used to populate the Business Object
within the ECE application. An example data value would be
“John”.

eGainPrimaryKey String Whether chat parameter is primary key. Can have values “1”
or “0”.

eGainMinLength String Minimum length of customer parameter.

eGainMaxLength String Maximum length of customer parameter.

eGainFieldType String Type of field in login form. Can be of values 1,2,3,4. 1-Text, 2-
TextArea, 3-Dropdown, 4-Multiselect Dropdown

eGainRequired String If the parameter is required. Can have values “1” or “0”.

eGainValidationString String Validation pattern for the chat parameter. Can be left blank if
not required.
20 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Library
Methods
 Chat and Callback Constructors

 Chat Setup

 Text Chat

 Chat Attachments

 Callback

Chat and Callback Constructors

Chat Setup

Method Name Description Return Value

Chat Used to create a new instance of the eGainLibrary Chat
object that will be used to invoke methods for chat
functionality.

New instance of eGainLibrary.Chat object

Callback Used to create a new instance of the eGainLibrary Callback
object that will be used to invoke methods for egain callback
functionality.

New instance of eGainLibrary.Callback object

Method Name Description Return Value

AddConnectionParameter Used to add parameters to the chat connection url. None

SetCustomer Used to set customer object for chat. Customer object is
created by creating instance of CustomerObject and setting
attributes on it.

None

SetSamlResponse This method is used for secure chat to set the SAML token
which will be used to establish chat connection.

None

SetXEgainSession This method is used to set context of deflection data to chat. None

SetVisitorHistoryInformation Used to set visitor history information for chat. None

GetQueueCurrentStatus Gets details of about the current queue load and estimated
wait time.

None. Passes information retrieved to callback
handler.
22 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Text Chat

Method Name Description Return Value

Initialize (EntryPointId,
Language, Country,
EventHandlers,
TemplateName, Version)

Used to create initialize a chat connection. This does not start a chat but
sets up all the parameters required to start a chat.

None

Input Parameters
EntryPointId: Chat Entry Point ID

Language: This determines the locale (language+country) to start chat.

Country: This determines the locale (language+country) to start chat.

ChatCallbacks: This is the object which would have all the callback
handlers for chat events.

TemplateName: This is the chat template name. This is required by chat
server to determine formatting of mailed transcripts.

Version: This is the chat template version number. Set this to v11.

Start Used to start the chat after the settings have been configured and the
instance of the eGainLibary.Chat object has been created.

None

Input Parameters
None

End Used to end a chat connection. None

Input Parameters
None

GetEventHandlers Used to get all the event handlers associated with chat. Event handlers are
required to define functionality for each event.

Object containing reference
to all event handlers.

Input Parameters
None

SendMessageToAgent
(MessageToSend,
IsMessageOffRecord)

This is the primary method used to send the customer messages to the
agent.

String value representing
the message that was sent
to the agent. If message
was masked, it will return
masked message

Input Parameters
MessageToSend: HTML message sent by customer to agent.

 IsMessageOffRecord: The optional boolean parameter indicates
whether or not the current message should be sent, but not stored in
the transcript. Also, if masking is turned on, any messages sent with a
true value for isMessageOffRecord will send the clear text to the agent
NOT the masked version of the message.
Library Methods 23

Chat Attachments

SendSystemMessage
(HtmlMessage, Command)

Used to send "System Messages" that the client needs to communicate to
the server. A common use case where this method is used is to display an
information message that sensitive data has been masked

None

Input Parameters
HtmlMessage: HTML message sent as a system message

Command: Command is used to specify egain commands like offRecord.
No need to pass for normal system messages

For Example:

egainChatLibrary.SendSystemMessage(data,’offrecord’) is used to notify
server of off-record message

egainChatLibrary.SendSystemMessage(data,’onrecord’) is used after an
‘offrecord’ message to notify server that forthcoming messages would
again be on-record.

SendCustomerStartTypingStat
us

Used to send a notification to the chat agent that the customer is typing or
has started typing. Can be called multiple times.

None

Input Parameters
None

SendCustomerStopTypingStat
us

Used to send a notification to the chat agent that the customer has
stopped typing.

None

Input Parameters
None

Attach (SessionID, RequestID) API to attach to an existing chat. This needs to be called when user
navigates from one page to another and on load of second page; this is
needed to attach chat to existing chat on previous page.

None

Input Parameters
None

Method Name Description Return Value

Method Name Description Return Value

UploadAttachment API to upload a file to chat server. None

Input parameters
File: Javascript File object which has information about file selected by

customer for upload.

AgentName: Name of chat agent.

GetAttachment API to download file sent by agent. None

Input parameters
FileId: File ID of file. This is received when agent sends the

attachment/file invite.
24 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

GetArticleAttachment (FileId) API to download an article attachment. None

Input Parameters
FileID: ID of attachment to be downloaded. This ID is found in the chat

message when agent sends an article with the attachment.

GetAttachmentImage
(attachmentId, uniqueFileId)

API to fetch attachment thumbnail. None

Input Parameters
AttachmentD: ID of attachment to be downloaded. This ID is found in

the chat message when agent sends an article with the attachment.

UniqueFileId: This is a unique file name to be provided for the file for
chat server to uniquely identify the file.

SendCustomerAttachmentNot
ification (files,
customerName)

Used to send notification to agent when attachment is sent by customer. None

Input Parameters
Files: Array of File objects selected by customer to send to chat agent.

CustomerName: Name of customer

SendAcceptChatAttachmentN
otification (fileId, fileName,
customerName)

Used to send notification to agent when attachment sent by agent is
accepted by customer.

None

Input Parameters
FileId: ID of file received in the attachment invite

FileName: Name of file

CustomerName: Name of customer

SendRejectChatAttachmentN
otification (fileId, fileName,
customerName)

Used to send notification to agent when attachment sent by agent is
rejected by customer.

None

Input Parameters
FileId: ID of file received in the attachment invite

FileName: Name of file

CustomerName: Name of customer

Method Name Description Return Value
Library Methods 25

Callback

Method Name Description Return Value

Initialize (EntryPointId,
Language, Country,
EventHandlers,
TemplateName, Version,
SubActivity)

Used to create initialize a callback connection. This does not start a
callback but sets up all the parameters required to start a chat.

None

Input Parameters
EntryPointId: Chat Entry Point ID

Language: This determines the locale (language+country) to start chat

Country: This determines the locale (language+country) to start chat

ChatCallbacks: This is the object which would have all the callback
handlers for chat events.

TemplateName: This is the chat template name. This is required by chat
server to determine formatting of mailed transcripts

Version: This is the chat template version number. Please set this to
v11.

SubActivity: This is the type of callback. Values can be “Callback” or
“Delayedcallback”

Start Used to start the callback after the settings have been configured and the
instance of the eGainLibary.Callback object has been created.

None

Input Parameters
None

GetEventHandlers Used to get all the event handlers associated with callback. Event handlers
are required to define functionality for each event.

None

Input Parameters
None
26 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Library Event
Handlers
 Text Chat

 Chat Attachments

 Callback

Text Chat

Callback Name Description Event Arguments Returned Mandatory

OnConnectionInitialized Event raised when chat connection is
successfully initialized. This event handler would
return all the chat settings-masking data, if
attachments are enabled, etc.

Initialization data retuned by server No

OnConnectSuccess Event raised when customer chat client is
connected successfully. Does NOT indicate the
user is connected to an agent.

ChatConnectEventArgs Yes

OnConnectionComplete Event raised when chat connection is
successfully ended.

None Returned Yes

OnConnectionFailure Event raised when the chat fails to connect or if
a disruption to the chat occurs.

ChatConnectionFailureEventArgs Yes

OnDuplicateSession Event raised if chat session is attempted to start
when there is already another chat session
established.

DuplicateSessionEventArgs No

OnAgentsNotAvailable Event raised if there are no agents available for
the entry point.

AgentsNotAvailableEventArgs Yes

OnSystemMessageReceived Event raised each time a system message is
received.

SystemMessageReceivedEventArgs No

OnGetQueueCurrentStatus Event raised when queue status details are
received from server.

GetQueueLiveStatusArgs No

OnMessagePropertyLoad Event raised after messaging property file is
loaded.

ChatMessagePropertyLoadEventArgs No

OnErrorOccurred Event raised when any network error occurs
during an ongoing chat.

ErrorOccurredEventArgs Yes

OnAgentMessageReceived Event raised when chat agent message is
received by client.

AgentMessageReceivedEventArgs No

OnAgentJoined Event raised every time agent joins a chat
session.

AgentJoinedEventArgs No

OnChatTransfer Event raised when chat is transferred to another
agent/queue.

ChatTransferEventArgs No

OnAgentStartTyping Event raised when chat agent starts typing. AgentStartTypingEventArgs No

OnAgentStopTyping Event raised when chat agent stops typing. AgentStopTypingEventArgs No

OnTranscriptFetched Event raised when chat transcript is fetched. GetTranscriptArgs No

OnCobrowseInviteReceived Event raised when agent invites customer to join
cobrowse session.

CobrowseInviteReceivedEventArgs No

OnConnectionAttached Event raised when new chat is attached to an
existing chat connection.

None Returned No

OnConnectionAttachedFailure Event raised if there is a failure in attaching to
existing chat.

None Returned No
28 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Chat Attachments

Callback

Callback Name Description Event Arguments Returned Mandatory

OnGetAttachment Event raised when attachment file is
downloaded.

AgentAttachmentArgs No

OnCustomerAttachmentNotification
Sent

Event raised when attachment invite sent by
customer is received by server.

CustomerAttachmentNotificationSent
EventArgs

No

OnAttachmentAcceptedByCustomer Event raised when attachment invite sent by
agent is accepted by customer.

AttachmentAcceptedByCustomerEven
tArgs

No

OnAttachmentUploadedByCustomer Event raised when attachment upload by
customer is complete.

AttachmentUploadedByCustomerEven
tArgs

No

OnAttachmentRejectedByCustomer Event raised when attachment invite sent by
agent is rejected by customer.

AttachmentRejectedByCustomerEvent
Args

No

OnAttachmentAcceptedByAgent Event raised when attachment invite sent by
customer is accepted by agent.

AttachmentAcceptedByAgentEventAr
gs

No

OnAttachmentRejectedByAgent Event raised when attachment invite sent by
customer is rejected by agent.

AttachmentRejectedByAgentEventArg
s

No

OnAttachmentInviteReceived Event raised when attachment invite sent by
agent is received on client.

AttachmentInvitedAgentEventArgs No

OnGetAttachmentImageThumbnail Event raised when attachment thumbnails are
received on client.

AttachmentThumbnailArgs No

Callback Name Description Event Arguments Returned Mandatory

OnCallbackInitialized Event raised after Callback is initialized, i.e
egainLibrary.Callback method is completed.

Initialization data retuned by server No

OnCallbackMessagePropert
yLoad

Event raised after messaging properties file is
loaded.

CallbackMessagePropertyLoadEventA
rgs

No

OnCallbackMessagePropert
yLoad

Event raised when the Callback fails to connect
or if a disruption to the Callback occurs.

CallbackConnectionFailureEventArgs Yes

OnDuplicateSession Event raised when Callback session on same
browser already exists.

DuplicateSessionEventArgs No

OnCallBackCompletion Event raised when Callback connection is
successfully ended.

None Returned Yes

OnSystemMessageReceived Event raised each time a system message is
received.

SystemMessageReceivedEventArgs No

OnAgentsNotAvailable Event raised if there are no agents available for
the entry point.

AgentsNotAvailableEventArgs Yes
Library Event Handlers 29

OnCallbackConnectSuccess Event raised when customer Callback client is
connected successfully. Does NOT indicate the
user is connected to an agent.

CallbackConnectSuccessEventArgs Yes

OnCallbackSucceeded Event raised when Call is successfully placed. CallbackSuccessEventArgs Yes

Callback Name Description Event Arguments Returned Mandatory
30 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Return Parameters
From Event Handlers
 Text Chat

 Chat Attachments

 Callback

Text Chat

Event Arguments Property Name

 ChatConnectEventArgs ChatID: Unique identifier of the activity that was created when the chat was initiated

SessionID: Chat session ID

Name: Customer name

Subject: Subject entered when starting chat

ChatConnectionFailureEventArgs Used to create a new instance of the eGainLibrary Callback object that is used to invoke
methods for egain callback functionality.

DuplicateSessionEventArgs IsSuccess: False

StatusCode: DUPLICATE_SESSION

StatusMessage: DUPLICATE SESSION

AgentsNotAvailableEventArgs IsSuccess: False

StatusCode: AGENTS_UNAVAILABLE

StatusMessage: AGENTS UNAVAILABLE

SystemMessageReceivedEventArgs Message: HTML version of the message sent by the system

AgentJoinedMessage: True if it is the system message when an agent joins a chat,
‘undefined’ otherwise

ChatTransferMessage: True if it is the system message when a chat is transferred,
‘undefined’ otherwise

ArticleAttachmentMessage: True if it is the system message about an agent sending an
article attachment, ‘undefined’ otherwise

GetQueueLiveStatusArgs QueueDepth: Position of chat in queue

WaitTime: Wait Time for chat

AltEngmtTime: Time after which alternate engagement options need to be shown

ChatMessagePropertyLoadEventArgs String containing l10n strings from the messaging property file

ErrorOccurredEventArgs Status: Status of error. Values can be – error(fatal error) and log(not a fatal error, should
only be logged)

Message: Details of error

AgentMessageReceivedEventArgs Message: HTML version of the message sent by the agent

AgentScreenName: Screen name of the agent who is typing the message

PagePushMessage: True if it is the message about a page push event, false otherwise

AgentJoinedEventArgs AgentName: Name of the agent

ChatTransferEventArgs TransferType: Method of activity transfer. Can be of values 1,2,3: 1-If chat is transferred to
Department; 2-If chat is transferred to Queue; 3-If chat is transferred to Agent

TransferEntityName: Name of the user/queue/department

ChatAttachmentEnabled: True if attachments are enabled in the transferred queue, false
otherwise

AgentStartTypingEventArgs AgentScreenName: Name of the agent

AgentStopTypingEventArgs AgentScreenName: Name of the agent
32 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Chat Attachments

GetTranscriptArgs CustomerName: Name of the customer

Subject: Subject entered when starting chat

Assignee: Name of the agent if chat is assigned

StartTime: Time when chat started in XSD format

Messages: Array of chat messages

CobrowseInviteReceivedEventArgs Action: Cobrowse action

Session: Cobrowse session id

CustomerName: Customer name

Event Arguments Property Name

Event Arguments Property Name

CustomerAttachmentNotificationSentE
ventArgs

Status: ‘success’ if attachments are enabled

File

Message

AgentAttachmentArgs FileId

UniqueFileId

Data

AttachmentAcceptedByCustomerEvent
Args

FileId

FileName

CustomerName

AttachmentUploadedByCustomerEvent
Args

Status

AttachmentId

AttachmentName

AttachmentInternalName

AttachmentRejectedByCustomerEvent
Args

FileId

FileName

AttachmentAcceptedByAgentEventArg
s

AgentName

UniqueFileId

FileName

AttachmentInvitedAgentEventArgs Attachment:

 Id

Name

AgentName

Type

AttachmentSize

AttachmentThumbnailArgs FileId

UniqueFileId

Data
Return Parameters From Event Handlers 33

Callback

Event Arguments Property Name

DuplicateSessionEventArgs IsSuccess: False

StatusCode: DUPLICATE_SESSION

StatusMessage: DUPLICATE SESSION

AgentsNotAvailableEventArgs IsSuccess: False

StatusCode: AGENTS_UNAVAILABLE

StatusMessage: AGENTS UNAVAILABLE

SystemMessageReceivedEventArgs Message: HTML version of the message sent by the system

AgentJoinedMessage: True if it is the system message when agent joins chat, ‘undefined’
otherwise

ChatTransferMessage: True if it is the system message when chat is transferred,
‘undefined’ otherwise

ArticleAttachmentMessage: True if it is the system message about agent sending an article
attachment, ‘undefined’ otherwise

CallbackMessagePropertyLoadEventA
rgs

String containing l10n strings from the messaging property file

CallbackConnectionFailureEventArgs IsSuccess: False

StatusCode: Status code to help identify error condition

StatusMessage: Details of error condition

CallbackConnectSuccessEventArgs CallBackID: Unique identifier of the activity that was created when the callback was
initiated

SessionID: Callback session ID

Name: Name of the customer

Subject: Subject entered when starting callback

CallbackSuccessEventArgs IsSuccess: True

StatusCode: CALLBACK_SUCCESS

StatusMessage: CALLBACK_SUCCESS
34 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Chat Code
Snippets
 Adding a Reference

 Simple Startup Example

 Adding Customer Parameters and Setting Primary Key

 Starting the Chat Session

 Sending Customer Messages to Agent

 Handling Messages Received from an Agent

 Handling System Messages

 Chat Completion

 Masking Sensitive Information & Off-Record

The following are a series of code snippets demonstrating specific aspects of the Chat JavaScript Library.

Adding a Reference

In order to leverage the library you must first add a reference to the JavaScript in your HTML page. The snippet
below demonstrates a reference to the minified version of the JavaScript library for production use.

<!-- SAMPLE CHAT CLIENT -->

<!DOCTYPE html>

<html>

<head>

<title>Sample Chat Client</title>

<script src="egain-client-library-X.X.X.min.js"
type="text/javascript"></script>

</head>

</html>

Simple Startup Example

This example demonstrates the very basics of how to get a new instance of the library created and call the
StartChat() method. The result of this code would be an anonymous chat with an agent for entry point id
1000.

/* Create a new instance of the eGainLibrarySettings Object */

var librarySettings = new eGainLibrarySettings();

librarySettings.CORSHost =”http://myegainserver.com/system”;

librarySettings.IsDevelopmentModeOn = false;

ibrarySettings.eGainContextPath = "";

librarySettings.ChatPauseInSec = “30";

librarySettings.IsDebugOn = false;

/* Next create a new instance of the eGainLibrary */

/* passing in the settings you have just created. */

var myLibrary = new eGainLibrary(librarySettings);

/* Now create an instance of the Chat Object */

var myChat = new myLibrary.Chat();
36 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

/* Next get the event handlers for chat. It is mandatory to provide definition
for the mandatory event handlers before initializing chat */

var myEventHandlers = myChat.GetEventHandlers();

/* Example browser alert when chat is connected */

 myEventHandlers.OnConnectSuccess = function () {

 alert('Chat Started!');

 };

 /* Example browser alert when there is a connection failure */

 myEventHandlers.OnConnectionFailure = function () {

 alert('Oops! Something went wrong');

 };

/* Example browser alert when there is an error during chat */

 myEventHandlers.OnErrorOccurred = function () {

 alert('Oops! Something went wrong');

 };

 /* Example output of agent messages to a DIV named TransScript with
jQuery */

 myEventHandlers.OnAgentMessageReceived = function
(agentMessageReceivedEventArgs) {

 $('#TransScript').append("
Agent: " +
agentMessageReceivedEventArgs.Message);

 };

 /* Example output of system messages to the same DIV */

 myEventHandlers.OnSystemMessageReceived = function
(systemMessageReceivedEventArgs) {

 $('#TransScript').append("
" +
systemMessageReceivedEventArgs.Message);

 };

 /* Example browser alert when agents are not available */

 myEventHandlers.OnAgentsNotAvailable = function
(agentsNotAvailableEventArgs) {

 alert('Sorry no agents available');

 };

 /* Example browser alert when the chat is completed */

 myEventHandlers.OnConnectionComplete = function () {

 $.mobile.changePage("#SimpleAnonymousChatPostChatScreen")

 };
Chat Code Snippets 37

/* Now call the Chat initialization method with your entry point and callbacks
*/

myChat.Initialize($('#ChatEntryPointId').val(),'en', 'US', myEventHandlers,
'aqua', 'v11');

/* Start chat */

myChat.Start();

Adding Customer Parameters and Setting Primary
Key

In this example specific context is added to the customer object before it is passed into the StartChat()
method.

/* Create the customer object */

var myCustomer = new myLibrary.Datatype.CustomerObject();

/* Set the primary key as email and specify the email address */

myCustomer.SetPrimaryKey(myCustomer.PrimaryKeyParams.PRIMARY_KEY_EMAIL,"jdoe@no
mail.com");

/* Next we'll demonstrate adding the customer first name as a parameter */

var customerFirstName = new myLibrary.Datatype.CustomerParameter();

customerFirstName.eGainParamName = ” full_name”;

customerFirstName.eGainParentObject = ” casemgmt”;

customerFirstName.eGainChildObject = ” individual_customer_data”;

customerFirstName.eGainAttribute = “full_name”;

customerLastName.eGainValue = $("#FirstName").val

customerFirstName.eGainMinLength = “1”;

customerFirstName.eGainMaxLength = ”50”;

customerFirstName.eGainRequired = “1”;

customerFirstName.eGainFieldType = '1';

customerFirstName.eGainValidationString =””;

myCustomer.AddCustomerParameter(customerFirstName);

/* Next we'll demonstrate adding the customer last name as a parameter */

var customerLastName = new myLibrary.Datatype.CustomerParameter ();

customerFirstName.eGainParamName = ”last_name”;

customerLastName.eGainParentObject = "casemgmt";
38 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

customerLastName.eGainChildObject = "individual_customer_data";

customerLastName.eGainAttribute = "last_name";

customerLastName.eGainValue = $("#LastName").val();

customerLastName.eGainMinLength = “1”;

customerLastName.eGainMaxLength = ”50”;

customerLastName.eGainRequired = “1”;
customerLastName.eGainFieldType = '1';

customerLastName.eGainValidationString =””;

myCustomer.AddCustomerParameter(customerLastName);

Starting the Chat Session

In this example, the settings for the library have already been specified, set the callbacks, and set the customer
object.

/* Now call the Chat initialization method with your entry point and callbacks
*/

myChat.Initialize($('#ChatEntryPointId').val(),'en', 'US', myEventHandlers,
'aqua', 'v11'); /* Then call the StartChat to create a chat */

myLibrary.SetCustomer(myCustomer);

/* Then call the StartChat to create a chat */

myChat.Start();

Sending Customer Messages to Agent

To send a message to the agent from the customer simply call the SendMessageToAgent() method.

/* Simply place a call with the message you want to send */

myChat.SendMessageToAgent ("Hello agent");

Handling Messages Received from an Agent

To handle the messages sent by a contact center agent, simply output the
OnAgentMessageRecivedEventArgs.Message property.

/* Example output of agent messages to a DIV named TransScript with jQuery */

myCallbacks.OnAgentMessageReceived = function (agentMessageReceivedEventArgs) {

$('#TransScript').append("
Agent: " +
agentMessageReceivedEventArgs.Message);

};
Chat Code Snippets 39

Handling System Messages

System messages are items sent by the chat application. These include messages like the “Agent has joined”,
“Agent has ended the session” or other system related items. To process these messages simply output the
OnSystemMessageReceivedEventArgs.Message property.

/* Example output of system messages to the Transcript DIV */

myCallbacks.OnSystemMessageReceived = function(systemMessageReceivedEventArgs)
{

$('#TransScript').append(systemMessageReceivedEventArgs.Message);

};

Chat Completion

It is common to transition to a post-chat UI when the chat is completed. To accomplish this, simply place the
page navigation along with any additional calls inside the OnChatCompletion callback.

/* Example navigation when the chat is completed */

myCallbacks.OnConnectionComplete = function () {

window.location = "http://yourdomain.com/post-chat.html";

};

Masking Sensitive Information & Off-Record

The chat application supports the configuration of masking sensitive information during a chat session. If this
option is configured in the console you can leverage the capability with the following example. Note that by
setting the On/Off record flag to “true” or “false”, you can determine whether or not the information is masked
for a specific message. To display the result in the transcript section, simply append the result of this call to the
transcript object.

/* Send sensitive information to agent On Record */

var sentSensitiveInfo = myChat.SendMessageToAgent("My SSN is 333-22-
4444",false);

/* Send sensitive information to agent Off Record */

var sentSensitiveInfo = myChat.SendMessageToAgent("My SSN is 333-22-
4444",true);

/* Now you can append the result of this call to the transcript */

$('#TransScript').append(sentSensitiveInfo);
40 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Callback
Code

Snippets
 Adding a Reference

 Simple Startup Example

 Adding Customer Parameters and Setting Primary Key

 Starting the Callback Session

 Handling System Messages

The following are a series of code snippets demonstrating specific aspects of the Callback JavaScript Library.

Adding a Reference

In order to leverage the library, you must first add a reference to the JavaScript in your HTML page. The snippet
below demonstrates a reference to the minified version of the JavaScript library for production use.

<!-- SAMPLE CHAT CLIENT -->

<!DOCTYPE html>

<html>

<head>

<title>Sample Callback Client</title>

<script src="egain-client-library-X.X.X.min.js"
type="text/javascript"></script>

</head>

</html>

Simple Startup Example

This example demonstrates the very basics of how to get a new instance of the library created and call the
Start() method. The result of this code would be an anonymous chat with an agent for entry point id 1000.

/* Create a new instance of the eGainLibrarySettings Object */

var librarySettings = new eGainLibrarySettings();

librarySettings.CORSHost =”http://myegainserver.com/system”;

librarySettings.IsDevelopmentModeOn = false;

ibrarySettings.eGainContextPath = "";

librarySettings.ChatPauseInSec = “30";

librarySettings.IsDebugOn = false;

/* Next create a new instance of the eGainLibrary */

/* passing in the settings you have just created. */

var myLibrary = new eGainLibrary(librarySettings);

/* Now create an instance of the Callback Object */

var myCallback = new myLibrary.Callback();

/* get an instance of event handlers object */

var myCallbacks = myCallback.GetEventHandlers();
42 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

/* and provide the function calls you want to happen on each event type */

/* Example browser alert when Callback is connected */

myCallbacks.OnCallBackConnectSuccess = function (args) {

console.log('OnCallBackConnectSuccess..');

$('#TransScript').append("
 CallBack Initiated!");

};

/* Example browser alert when Call is placed */

myCallbacks.OnCallBackSucceeded = function () {

console.log('OnCallBackSucceeded');

$('#TransScript').append("
 Call Placed!");

};

/* Example browser alert when there is a connection failure */

myCallbacks.OnCallBackConnectionFailure = function (args) {

console.log('OnCallBackConnectionFailure');

$('#TransScript').append("
 Oops! Something went
wrong..Status="+args.StatusCode);

};

/* Example output of system messages to the same DIV */

myCallbacks.OnSystemMessageReceived = function (systemMessageReceivedEventArgs)
{

console.log('OnSystemMessageReceived');

$('#TransScript').append("
" + systemMessageReceivedEventArgs.Message);

};

/* Example browser alert when agents are not available */

myCallbacks.OnAgentsNotAvailable = function (agentsNotAvailableEventArgs) {

console.log('OnAgentsNotAvailable')

$('#TransScript').append("
 Sorry no agents available");;

};

/* Example browser alert when the chat is completed */

myCallbacks.OnCallBackCompletion = function () {
Callback Code Snippets 43

console.log('OnCallBackCompletion');

$.mobile.changePage("#WithParametersPostCallbackScreen")

};

Adding Customer Parameters and Setting Primary
Key

In this example specific context is added to the customer object before it is passed into the StartChat()
method.

/* Create the customer object */

var myCustomer = new myLibrary.Datatype.CustomerObject();

/* Set the primary key as email and specify the email address */

myCustomer.SetPrimaryKey(myCustomer.PrimaryKeyParams.PRIMARY_KEY_EMAIL,"jdoe@no
mail.com");

/* Next we'll demonstrate adding the customer full name as a parameter */

var myCustomer = new myLibrary.Datatype.CustomerObject();

var customerFirstName = new myLibrary.Datatype.CustomerParameter();

customerFirstName.eGainParentObject = "casemgmt";

customerFirstName.eGainChildObject = "individual_customer_data";

customerFirstName.eGainAttribute = "full_name";

customerFirstName.eGainValue = “Joe Brown”;

customerFirstName.eGainParamName = "full_name";

customerFirstName.eGainMinLength = "1";

customerFirstName.eGainMaxLength = "120";

customerFirstName.eGainRequired = "1";

customerFirstName.eGainFieldType = "1";

customerFirstName.eGainPrimaryKey = "0";

customerFirstName.eGainValidationString = "";

myCustomer.AddCustomerParameter(customerFirstName);

/* Next we'll demonstrate adding the customer email address as a parameter */

var customerEmail = new myLibrary.Datatype.CustomerParameter();

customerEmail.eGainParentObject = "casemgmt";

customerEmail.eGainChildObject = "email_address_contact_point_data";
44 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

customerEmail.eGainAttribute = "email_address";

customerEmail.eGainValue = "jdoe@nomail.com";

customerEmail.eGainParamName = "email_address";

customerEmail.eGainMinLength = "1";

customerEmail.eGainMaxLength = "50";

customerEmail.eGainRequired = "1";

customerEmail.eGainFieldType = "1";

customerEmail.eGainPrimaryKey = "1";

customerEmail.eGainValidationString = "";

myCustomer.AddCustomerParameter(customerEmail);

/* Next we'll demonstrate adding the customer phone number as a parameter */

var customerPhone = new myLibrary.Datatype.CustomerParameter();

customerPhone.eGainParentObject = "casemgmt";

customerPhone.eGainChildObject = "phone_number_data";

customerPhone.eGainAttribute = "phone_number";

customerPhone.eGainValue = “1112223333”;

customerPhone.eGainParamName = "phone_number";

customerPhone.eGainMinLength = "1";

customerPhone.eGainMaxLength = "18";

customerPhone.eGainRequired = "1";

customerPhone.eGainFieldType = "1";

customerPhone.eGainPrimaryKey = "1";

customerPhone.eGainValidationString = "";

myCustomer.AddCustomerParameter(customerPhone);

/* Next we'll demonstrate adding the Delay Time (in minutes) as a parameter */

var delayTimeInMin = new myLibrary.Datatype.CustomerParameter();

delayTimeInMin.eGainParentObject = "casemgmt";

delayTimeInMin.eGainChildObject = "activity_data";

delayTimeInMin.eGainAttribute = "delay_time_in_min";

delayTimeInMin.eGainValue = “15”; // Note, this value will be 0 for CallBack.
It will be 0 or higher for Delayed Callback

delayTimeInMin.eGainParamName = "delay_time_in_min";

delayTimeInMin.eGainMinLength = "1";

delayTimeInMin.eGainMaxLength = "120";
Callback Code Snippets 45

delayTimeInMin.eGainRequired = "0";

delayTimeInMin.eGainFieldType = "1";

delayTimeInMin.eGainPrimaryKey = "0";

delayTimeInMin.eGainValidationString = "";

myCustomer.AddCustomerParameter(delayTimeInMin);

/* Next we'll demonstrate adding the Subject as a parameter */

var questionPrompt = new myLibrary.Datatype.CustomerParameter();

questionPrompt.eGainParentObject = "casemgmt";

questionPrompt.eGainChildObject = "activity_data";

questionPrompt.eGainAttribute = "subject";

questionPrompt.eGainValue = "0";

questionPrompt.eGainParamName = "subject";

questionPrompt.eGainMinLength = "1";

questionPrompt.eGainMaxLength = "120";

questionPrompt.eGainRequired = "0";

questionPrompt.eGainFieldType = "2";

questionPrompt.eGainPrimaryKey = "0";

questionPrompt.eGainValidationString = "";

myCustomer.AddCustomerParameter(questionPrompt);

Starting the Callback Session

In this example, the settings for the library have already been specified, set the callbacks, and set the customer
object.

/* Now call the Callback initiliaztion method with your entry point and
callbacks. Also specify the subActivity as ‘Callback’ or ‘DelayedCallback’ */

myCallback.Initialize(‘1000’,'en', 'US', myCallbacks, 'rainbow', 'v11',
‘Callback’);

/* Start the callback */

myCallback.Start();
46 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Handling System Messages

System messages are items sent by the callback application. They will include things like the “Agent has joined”,
“Agent has ended the session” or other system related items. To process these messages simply output the
OnSystemMessageReceivedEventArgs.Message property.

/* Example output of system messages to the Transcript DIV */

myCallbacks.OnSystemMessageReceived = function(systemMessageReceivedEventArgs)
{

$('#TransScript').append(systemMessageReceivedEventArgs.Message);

};
Callback Code Snippets 47

Appendix: Reference
Information
 Enabling CORS on ECE server

Enabling CORS on ECE server

If the chat application is deployed on the ECE server, then egainLibrary. CORSHost should be set to the
server context root. However, if chat application is deployed outside the application then the API requests made
from client to server require CORS to be enabled on the server. egainLibrary. CORSHost in this case should
be set to the server context root with FQDN eg.

egainLibrary. CORSHost = http://myserver.com/system

For details on how to enable CORS in the application, see Enterprise Chat and Email Administrator’s Guide to
Administration Console.
Appendix: Reference Information 49

	Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide, Release 11.6(1)
	Contents
	Preface
	About This Guide
	Obtaining Documentation and Submitting a Service Request
	Documentation Feedback
	Field Alerts and Field Notices
	Document Conventions
	Other Learning Resources

	Library Basics
	Key Concepts
	Getting Started
	Library References
	Library Objects
	Methods
	Library Methods
	Chat Methods
	Callback Methods

	EventHandlers
	Chat EventHandlers
	Callback EventHandlers

	Library Objects
	eGainLibrarySettings
	eGainLibrarySettings Properties
	eGainLibrarySettings Methods
	Sample Code

	eGainLibrary
	eGainLibrary Properties
	eGainLibrary Methods

	Chat (egainChatLibrary.Chat)
	Chat Properties
	Chat Methods
	Sample Code

	Callback (egainChatLibrary.Callback)
	Callback Properties
	Callback Methods
	Sample Code

	CustomerObject (egainChatLibrary.Datatype.CustomerObject)
	CustomerObject Properties
	CustomerObject Methods
	Sample Code

	ResultObject
	ResultObject Properties
	ResultObject Methods

	CustomerParameter
	CustomerParameter Properties
	CustomerParameter Methods

	Library Methods
	Chat and Callback Constructors
	Chat Setup
	Text Chat
	Chat Attachments
	Callback

	Library Event Handlers
	Text Chat
	Chat Attachments
	Callback

	Return Parameters From Event Handlers
	Text Chat
	Chat Attachments
	Callback

	Chat Code Snippets
	Adding a Reference
	Simple Startup Example
	Adding Customer Parameters and Setting Primary Key
	Starting the Chat Session
	Sending Customer Messages to Agent
	Handling Messages Received from an Agent
	Handling System Messages
	Chat Completion
	Masking Sensitive Information & Off-Record

	Callback Code Snippets
	Adding a Reference
	Simple Startup Example
	Adding Customer Parameters and Setting Primary Key
	Starting the Callback Session
	Handling System Messages

	Appendix: Reference Information
	Enabling CORS on ECE server

