T
CISCO.

(]
z
z

L=

i

H
™ .
[+
r:‘

i

Enterprise Chat and Email Chat and
Callback Javascript SDK Developer’s
Guide, Release 11.6(1)

For Unified Contact Center Enterprise

August 2017

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in
illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to
http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide: For Unified Contact Center Enterprise. July 14, 2017

© 2017 Cisco Systems, Inc. All rights reserved.

Contents

Preface ... s
About This GUIde o 7
Obtaining Documentation and Submitting a Service Request 7
Documentation Feedback 7
Field Alerts and Field NOtCESottt e 7
Document CONVENtIONS.ttt ettt e ettt et e e et 8
Other Learning ReSOUICES.ttt e 8

Chapter 1: Library BasiCs.........coonnnssss s ssss s sssssssssens
Key Conceptst e 10
Getting Started 11
Library References e 11
Library Objectsottt e 11
Methods.ot 12
Library Methods e 12
Chat Methods. 12
Callback Methodso 12
EventHandlers. 13
Chat EventHandlers. 13
Callback EventHandlers 14

Chapter 2: LiDrary ObJECtSccoecreeceresrncsesesessesssessssssssssssssssssssssssssssssssssssessssssssssssssssassens 15

eGainLibrarySettingso 16
eGainLibrarySettings Properties. 16
eGainLibrarySettings Methods 16
Sample Codeo v 16
eGainLibrary 17
eGainLibrary Properties i e 17
eGainLibrary Methods 17
Chat (egainChatLibrary.Chat). e 17

Chat Propertiesottt e 17

Chat Methods e 17

Sample Code 17

Callback (egainChatLibrary.Callback) i 18

Callback Propertiesot 18

Callback Methodsot 18

Sample Code 18

CustomerObject (egainChatLibrary.Datatype.CustomerObject) 18
CustomerObject Properties i 18

CustomerObject Methods 19

Sample Code 19

ResultObJect oot 19

ResultObject Properties. e 19

ResultObject Methods 19

CustomerParameter. 19
CustomerParameter Properties i 20

CustomerParameter Methods i 20
Chapter 3: Library Methods ... sss s sessssssesssssssassssenss
Chat and Callback CONStruCtorsttt e e 22

Chat Setup. . . .ot 22

Text Chat. e 23

Chat Attachmentst e e 24

Callback 26
Chapter 4: Library Event Handlers.............oninncsssssssssnssssssesssssssssssssssssssssssssssenns
Text Chat. e 28

Chat Attachmentst e e e 29

Callback 29

Chapter 5: Return Parameters From Event Handlers...........ccoconrnnssncsnsncsesescsienns
Text Chat. e 32

Chat Attachmentst e e 33

Callback 34

4 Enterprise Chat and Email Chat and Callback Javascript SDK Developer's Guide

Chapter 6: Chat Code Snippets...........cccoummmnnmmssssssssss
Adding aReference. 36
Simple Startup Example 36
Adding Customer Parameters and Setting Primary Key. 38
Starting the Chat Session 39
Sending Customer Messages to Agentttt 39
Handling Messages Received froman Agent., 39
Handling System MesSagesttt e 40
Chat Completion. e 40
Masking Sensitive Information & Off-Record 40
Chapter 7: Callback Code Snippets.............cooninnninnninsssssss s
Adding aReference. 42
Simple Startup Example 42
Adding Customer Parameters and Setting Primary Key. 44
Starting the Callback Session i 46
Handling System MesSagesttt 47
Appendix: Reference Information ... ————

Enabling CORS on ECE Serverttt 49

Preface

» About This Guide

» Obtaining Documentation and Submitting a Service Request
» Documentation Feedback

» Field Alerts and Field Notices

» Document Conventions

» Other Learning Resources

Welcome to the Enterprise Chat and Email (ECE) feature, which provides multichannel interaction software
used by businesses all over the world as a core component to the Unified Contact Center Enterprise product line.
ECE offers a unified suite of the industry’s best applications for chat and email interaction management to
enable a blended agent for handling of web chat, email and voice interactions.

About This Guide

Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide provides development
resources capable of leveraging the JavaScript Library to build custom chat and callback user experiences
leveraging the power of the ECE platform.

Obtaining Documentation and Submitting a Service
Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, see What's New in Cisco Product Documentation, at:
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Subscribe to What's New in Cisco Product Documentation, which lists all new and revised Cisco technical
documentation as an RSS feed and delivers content directly to your desktop using a reader application. The RSS
feeds are a free service.

Documentation Feedback

To provide comments about this document, send an email message to the following address:
contactcenterproducts_docfeedback @cisco.com

We appreciate your comments.

Field Alerts and Field Notices

Cisco products may be modified or key processes may be determined to be important. These are announced
through use of the Cisco Field Alerts and Cisco Field Notices. You can register to receive Field Alerts and Field
Notices through the Product Alert Tool on Cisco.com. This tool enables you to create a profile to receive
announcements by selecting all products of interest.

Log into www.cisco.com and then access the tool at http://www.cisco.com/cisco/support/notifications.html

Preface 7

Document Conventions

This guide uses the following typographical conventions.

Convention Indicates

Italic Emphasis.

Or the title of a published document.

Bold Labels of items on the user interface, such as buttons, boxes, and lists.
Or text that must be typed by the user.

Monospace The name of a file or folder, a database table column or value, or a command.

Variable User-specific text; varies from one user or installation to another.

Document conventions

Other Learning Resources

Various learning tools are available within the product, as well as on the product CD and our web site. You can
also request formal end-user or technical training.

8 Enterprise Chat and Email Chat and Callback Javascript SDK Developer's Guide

Library
Basics

» Key Concepts
» Getting Started

» Library References

Key Concepts

The JavaScript Library is designed with a core set of objects that developers interact with. The library primarily
has the following modules:

» Chat
» Callback
These modules serve as interfaces for Chat functionality and Callback functionality respectively.

When getting started with the modules of the JavaScript library, it is important to understand some basic key
concepts associated with the user experience:

» Managing multiple languages should be considered while designing the user experience.

» CORS is required to be enabled on the egain server when deploying the user experience outside of the eGain
Infrastructure. For more details see “Enabling CORS on ECE server” on page 49.

» The following interfaces are typically used during a user’s chat experience:

O Pre-Chat Form: Used to collect information from the user that will help provide context when the chat
is routed to an agent.

O Interaction UI: This is the core Ul where the customer will type messages to send to the agent and
receive messages sent by the Agent.

O Post-Chat Form: This is a page displayed after the chat has been completed. This is ideal for collecting
feedback or presenting surveys.

» The following interfaces are typically used during a user’s callback experience.

O Pre-Callback Form: Used to collect information from the user that will help provide context when the
callback is routed to an agent.

O Post-Callback Form: This is a page displayed after the callback has been completed. This page
displays the status messages such as “Callback successful”’/”’Callback unsuccessful” etc.

10 Enterprise Chat and Email Chat and Callback Javascript SDK Developer's Guide

Getting Started

To begin working with the JavaScript SDK, it is recommended to start with the working examples provided with

this SDK. They are distributed as a quick start. The library itself is located in the Examples/Llibs/egain

folder contained within the distribution.

Once extracted locate the web folder inside the location where the files were extracted to. This folder contains

the source code for all of the samples provided.

Folder Name

libs

Contains

The libraries used throughout the examples, which includes:
> jQuery
» jQuery Mobile
» Chat JavaScript
» Callback JavaScript
Both minified and development versions of the Chat JavaScript Library have been included.

samples

Various examples demonstrated in an HTML page with a corresponding JavaScript source file
containing the code.

samples/simple-anonymous-
chat

Examples with the easiest of scenarios where a simple anonymous chat is desired without any
specific customer information.

samples/with-input-
parameters

An example where chat is initiated with customer information passed at the time of starting chat.

samples/ chat-attachments

An example demonstrating sample code for sending and receiving attachments in chat.

Library References

Library Objects

For more information about library objects, see “Library Objects” on page 15.

» eGainLibrarySettings

» eGainLibrary

» Chat

» Callback

» CustomerObject

» CustomerParameter
» EventHandlers

» ResultObject

» CustomerParameter

Library Basics

"

Methods

Library Methods

These are the methods of the eGainLibrary object
» AddConnectionParameter

» SetCustomer

» SetSamlResponse

» SetEscalationData

» SetXEgainSession

» SetVisitorHistoryInformation

» GetQueueCurrentStatus

Chat Methods

These are the methods of the Chat object

» Initialize

» Start

» GetEventHandlers

» SendMessageToAgent

» SendSystemMessage

» SendCustomerStartTypingStatus

» SendCustomerStopTypingStatus

» End

» Attach

» UploadAttachment

» GetAttachment

» GetArticleAttachment

» GetAttachmentImage

» SendCustomerAttachmentNotification
» SendAcceptChatAttachmentNotification
» SendRejectChatAttachmentNotification

» GetTranscript

Callback Methods

These are the methods of Callback object

12 Enterprise Chat and Email Chat and Callback Javascript SDK Developer's Guide

4

»

»

Initialize
Start

GetEventHandlers

EventHandlers

Chat EventHandlers

4

4

OnConnectionlnitialized
OnConnectSuccess
OnConnectionComplete
OnConnectionFailure
OnConnectionAttached
OnConnectionAttachedFailure
OnDuplicateSession
OnAgentsNotAvailable
OnSystemMessageReceived
OnGetQueueCurrentStatus
OnMessagePropertyLoad
OnErrorOccurred
OnAgentMessageReceived
OnAgentJoined

OnChatTransfer
OnAgentStartTyping
OnAgentStopTyping
OnTranscriptFetched
OnCobrowselnviteReceived
OnCustomerAttachmentNotificationSent
OnGetAttachment
OnAttachmentAcceptedByCustomer
OnAttachmentUploadedByCustomer
OnAttachmentRejectedByCustomer
OnAttachmentAcceptedByAgent
OnAttachmentRejectedByAgent

OnAttachmentInviteReceived

Library Basics

13

» OnGetAttachmentImageThumbnail

Callback EventHandlers
» OnCallbacklInitialized
» OnCallbackMessagePropertyLoad
» OnCallbackConnectionFailure
» OnDuplicateSession
» OnCallBackCompletion
» OnSystemMessageReceived
» OnAgentsNotAvailable
» OnCallbackConnectSuccess

» OnCallbackSucceeded

14 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Library
Objects

eGainLibrarySettings

eGainLibrary

Chat (egainChatLibrary.Chat)
Callback (egainChatLibrary.Callback)

CustomerObject (egainChatLibrary.Datatype.CustomerQbject)

eGainLibrarySettings

Initializing the eGainLibrarySettings object would be the first step to use the chat library. The
eGainLibrarySettings object is used to set specific configurations to be used by the JavaScript Library.

eGainLibrarySettings Properties

Property Name Type

Description

IsDevelopmentModeOn Boolean

This property sets an increased timeout for the chat to ensure empty
sessions are less likely to occur during development. It is expected that,
during development, breakpoints may hold up the execution, so enabling
this mode assists with the development activities.

CORSHost String

If chat Ul built using the SDK is not from an ECE install, CORSHost is the
identifier for the ECE server. It should have the ECE URL uptill the context
path.

ChatPauselnSec Integer

eGainContextPath String

Time in seconds to specify for how long chat needs to be paused. This
would be used when pausing the connection. This time should be less than
the MAX PAUSE TIME set in server.

Signifies context path where ECE templates are deployed. This is the path
from which 110 properties files (namely messaging_en_US.properties, etc)
required for the library will be referenced.

IsDebugOn Boolean

Defines whether or not debugging is on for chat. This can be used to
record Strophe requests sent to server. Strophe is the underlying
Javascript XMPP library used by the chat functionality of ECE.

eGainLibrarySettings Methods

There are no methods to be called on the eGainLibrarySettings object.

Sample Code

var LlibrarySettings = new eGainLibrarySettings();

LibrarySettings.CORSHost = Context root of my egain server;

librarySettings.IsDevelopmentModeOn = false;

librarySettings.eGainContextPath =

nn o,
4

librarySettings.ChatPauseInSec = "30";

ibrarySettings.IsDebugOn = false;

16 Enterprise Chat and Email Chat and Callback Javascript SDK Developer's Guide

eGainLibrary

The eGainLibrary object is the primary object used to interact with chat and callback. It holds the Chat and
Callback objects. In addition, it contains methods and properties which are common to both chat and callback.

eGainLibrary Properties

The eGainLibrary itself does not contain any properties that need to be set.

eGainLibrary Methods

Core methods required for Chat and Callback are invoked from the respective objects. eGainLibrary has some
additional methods primarily required for chat like setting customer details, setting visitor history information
etc. For details on eGainLibrary methods, see “Library Methods” on page 21.

Sample Code:

var egainChatLibrary = new eGainLibrary(librarySettings());

Chat (egainChatLibrary.Chat)

The Chat object is the interface for chat functionality: sending and receiving text messages.

Chat Properties

The Chat object itself does not contain any properties that need to be set. It has an initialize method, which takes
the parameters of the properties that need to be set for starting a chat.

Chat Methods

The Chat object has a host of methods related to:
» Initializing and starting chats
» Sending and receiving messages
» Connecting to an existing chat
» Exchanging files during chat

For more details about chat methods, see “Library Methods” on page 21.

Sample Code

var egainChat = new egainChatLibrary.Chat();

var chatEventHandlers = egainChat.GetEventHandlers();

Library Objects 17

ega‘inChat.In'it‘iaL'ize(EntV}/PoW[D, Language, Country, chatEventHandlers);

Callback (egainChatLibrary.Callback)

The Cal lback object is the interface for callback functionality.

Callback Properties

The Cal lback object doesn’t contain any properties that need to be set. It has an initialize method, which takes
the parameters of the properties that need to be set for initiating a callback.

Callback Methods

The Cal lback object primarily has two related methods: initializing callback and starting a callback session.

For more details about callback methods, see “Library Methods” on page 21.

Sample Code

var egainCallback = new egainChatLibrary.Callback();
var eventHandlers = egainCallback.GetEventHandlers();

egainCallback.Initialize(<Entry Point ID>, <Language>, <Country>,
eventHandlers);

CustomerObject
(egainChatLibrary.Datatype.CustomerObject)

CustomerObject is used to populate specific attributes of the customer who is initiating the chat. The
following are a list of the methods and properties associated with the CustomerObject.

CustomerQbject Properties

Property Name Type Description

Locale Object Locale Object containing the language code and country
code.

PrimaryKey Object Object containing name,value pair. Name can be either

"Email" or "Phone"

CustomerParameters Array Array of customer parameters. Details of customer
parameters are under CustomerParameter.

18 Enterprise Chat and Email Chat and Callback Javascript SDK Developer's Guide

CustomerObject Methods

Property Name Description

AddCustomerParameter Method used to add details regarding the customer. This can include things like
the customer’s first name, last name, or other details that are relevant. These
values then get mapped to the business objects.

SetPrimaryKey Used to set whether the email address or phone number will be used to identify
the customer.

Sample Code
var customer = new egainChatLibrary.Datatype.CustomerObject();
customer.Locale.Language = 'en'

customer.Locale.Country = 'US’

ResultObject

Returns a status whether or not the event was successful.

ResultObject Properties

Property Name Type Description

StatusCode String String indicating status code of chat event. This code can be
used for identifying the event.

StatusMessage String String indicating detailed status message of chat event.
IsSuccess Boolean String indicating status success or failure of chat event.
ResultObject Methods

There are no methods to be called on the ResultObject object.

CustomerParameter

The CustomerParameter object is used to create contextual parameters for the CustomerObject. That
object is then passed into the Chat constructor.

Library Objects

CustomerParameter Properties

Property Name Type Description

eGainParentObject String Represents the Business Object within the ECE application
that will be used to map the value to. An example of a
ParentObject value would be “casemgmt”

eGainChildObject String Represents the Child Business Object within the ECE
application that will be used to map the value to. An example
of a ChildObject value would be “individual_customer_data”.

eGainParamName String Name of parameter which will be mapped to an ECE attribute.

eGainAttribute String The attribute name for the given Business Object within the
ECE application that will be used to map the value to. An
example of an Attribute value would be “first_name”.

eGainValue String The value that will be used to populate the Business Object
within the ECE application. An example data value would be
“John".

eGainPrimaryKey String Whether chat parameter is primary key. Can have values “1”
or “0".

eGainMinLength String Minimum length of customer parameter.

eGainMaxLength String Maximum length of customer parameter.

eGainFieldType String Type of field in login form. Can be of values 1,2,3,4. 1-Text, 2-

TextArea, 3-Dropdown, 4-Multiselect Dropdown

eGainRequired String If the parameter is required. Can have values “1” or “0".

eGainValidationString String Validation pattern for the chat parameter. Can be left blank if
not required.

CustomerParameter Methods

There are no methods to be called on the ChatParameter object.

20 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Library
Methods

Chat and Callback Constructors
Chat Setup

Text Chat

Chat Attachments

Callback

Chat and Callback Constructors

Method Name

Description

Return Value

Chat

Callback

Used to create a new instance of the eGainLibrary Chat
object that will be used to invoke methods for chat
functionality.

Used to create a new instance of the eGainLibrary Callback
object that will be used to invoke methods for egain callback
functionality.

New instance of eGainLibrary.Chat object

New instance of eGainLibrary.Callback object

Chat Setup

Method Name Description Return Value
AddConnectionParameter Used to add parameters to the chat connection url. None
SetCustomer Used to set customer object for chat. Customer object is None

created by creating instance of CustomerObject and setting

attributes on it.
SetSamlResponse This method is used for secure chat to set the SAML token None

which will be used to establish chat connection.
SetXEgainSession This method is used to set context of deflection data to chat. | None
SetVisitorHistorylnformation Used to set visitor history information for chat. None

GetQueueCurrentStatus

Gets details of about the current queue load and estimated
wait time.

None. Passes information retrieved to callback
handler.

22 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Text Chat

Method Name Description Return Value
Initialize (EntryPointld, Used to create initialize a chat connection. This does not start a chat but None
Language, Country, sets up all the parameters required to start a chat.
EventHandlers,
TemplateName, Version) Input Parameters
» EntryPointld: Chat Entry Point ID
» Language: This determines the locale (language+country) to start chat.
» Country: This determines the locale (language+country) to start chat.
» ChatCallbacks: This is the object which would have all the callback
handlers for chat events.
» TemplateName: This is the chat template name. This is required by chat
server to determine formatting of mailed transcripts.
» Version: This is the chat template version number. Set this to v11.
Start Used to start the chat after the settings have been configured and the None
instance of the eGainLibary.Chat object has been created.
Input Parameters
None
End Used to end a chat connection. None

Input Parameters

None

GetEventHandlers

Used to get all the event handlers associated with chat. Event handlers are
required to define functionality for each event.

Input Parameters

None

Object containing reference
to all event handlers.

SendMessageToAgent
(MessageToSend,
IsMessageOffRecord)

This is the primary method used to send the customer messages to the
agent.

Input Parameters
» MessageToSend: HTML message sent by customer to agent.

» IsMessageOffRecord: The optional boolean parameter indicates
whether or not the current message should be sent, but not stored in
the transcript. Also, if masking is turned on, any messages sent with a
true value for isMessageOffRecord will send the clear text to the agent
NOT the masked version of the message.

String value representing
the message that was sent
to the agent. If message
was masked, it will return
masked message

Library Methods 23

Method Name

SendSystemMessage
(HtmIMessage, Command)

Description

Used to send "System Messages" that the client needs to communicate to
the server. A common use case where this method is used is to display an
information message that sensitive data has been masked

Input Parameters
» HtmlMessage: HTML message sent as a system message

» Command: Command is used to specify egain commands like offRecord.
No need to pass for normal system messages

For Example:
egainChatLibrary.SendSystemMessage(data, offrecord’) is used to notify
server of off-record message
egainChatLibrary.SendSystemMessage(data,'onrecord’) is used after an
‘offrecord” message to notify server that forthcoming messages would
again be on-record.

Return Value

None

SendCustomerStartTypingStat
us

Used to send a notification to the chat agent that the customer is typing or
has started typing. Can be called multiple times.

Input Parameters

None

None

SendCustomerStopTypingStat
us

Used to send a notification to the chat agent that the customer has
stopped typing.

Input Parameters

None

None

Attach (SessionlD, RequestID)

API to attach to an existing chat. This needs to be called when user
navigates from one page to another and on load of second page; this is
needed to attach chat to existing chat on previous page.

Input Parameters

None

None
Chat Attachments
Method Name Description Return Value
UploadAttachment API to upload a file to chat server. None
Input parameters
» File: Javascript File object which has information about file selected by
customer for upload.
» AgentName: Name of chat agent.
GetAttachment API to download file sent by agent. None

24

Input parameters

» Fileld: File ID of file. This is received when agent sends the
attachment/file invite.

Enterprise Chat and Email Chat and Callback Javascript SDK Developer's Guide

Method Name Description Return Value
GetArticleAttachment (Fileld) | APl to download an article attachment. None
Input Parameters
» FilelD: ID of attachment to be downloaded. This ID is found in the chat
message when agent sends an article with the attachment.
GetAttachmentimage API to fetch attachment thumbnail. None
(attachmentld, uniqueFileld)
Input Parameters
» AttachmentD: ID of attachment to be downloaded. This ID is found in
the chat message when agent sends an article with the attachment.
» UniqueFileld: This is a unique file name to be provided for the file for
chat server to uniquely identify the file.
SendCustomerAttachmentNot | Used to send notification to agent when attachment is sent by customer. None
ification (files,
customerName) Input Parameters
» Files: Array of File objects selected by customer to send to chat agent.
» CustomerName: Name of customer
SendAcceptChatAttachmentN | Used to send notification to agent when attachment sent by agent is None
otification (fileld, fileName, accepted by customer.
customerName)
Input Parameters
» Fileld: ID of file received in the attachment invite
» FileName: Name of file
» CustomerName: Name of customer
SendRejectChatAttachmentN Used to send notification to agent when attachment sent by agent is None

otification (fileld, fileName,
customerName)

rejected by customer.

Input Parameters
» Fileld: ID of file received in the attachment invite
» FileName: Name of file

» CustomerName: Name of customer

Library Methods

25

Callback

Method Name Description Return Value
Initialize (EntryPointld, Used to create initialize a callback connection. This does not start a None
Language, Country, callback but sets up all the parameters required to start a chat.
EventHandlers,
TemplateName, Version, Input Parameters
SubActivity) » EntryPointld: Chat Entry Paint ID
» Language: This determines the locale (language+country) to start chat
» Country: This determines the locale (language+country) to start chat
» ChatCallbacks: This is the object which would have all the callback
handlers for chat events.
» TemplateName: This is the chat template name. This is required by chat
server to determine formatting of mailed transcripts
» Version: This is the chat template version number. Please set this to
v11.
» SubActivity: This is the type of callback. Values can be “Callback” or
“Delayedcallback”
Start Used to start the callback after the settings have been configured and the | None
instance of the eGainLibary.Callback object has been created.
Input Parameters
None
GetEventHandlers Used to get all the event handlers associated with callback. Event handlers | None

are required to define functionality for each event.

Input Parameters

None

26 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Library Event
Handlers

» Text Chat
» Chat Attachments

» Callback

Text Chat

existing chat.

28 Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide

Callback Name Description Event Arguments Returned Mandatory

OnConnectionlnitialized Event raised when chat connection is Initialization data retuned by server No
successfully initialized. This event handler would
return all the chat settings-masking data, if
attachments are enabled, etc.

OnConnectSuccess Event raised when customer chat client is ChatConnectEventArgs Yes
connected successfully. Does NOT indicate the
user is connected to an agent.

OnConnectionComplete Event raised when chat connection is None Returned Yes
successfully ended.

OnConnectionFailure Event raised when the chat fails to connect or if | ChatConnectionFailureEventArgs Yes
a disruption to the chat occurs.

OnDuplicateSession Event raised if chat session is attempted to start | DuplicateSessionEventArgs No
when there is already another chat session
established.

OnAgentsNotAvailable Event raised if there are no agents available for | AgentsNotAvailableEventArgs Yes
the entry point.

OnSystemMessageReceived Event raised each time a system message is SystemMessageReceivedEventArgs No
received.

OnGetQueueCurrentStatus Event raised when queue status details are GetQueueliveStatusArgs No
received from server.

OnMessagePropertyLoad Event raised after messaging property file is ChatMessagePropertyLoadEventArgs | No
loaded.

OnErrorOccurred Event raised when any network error occurs ErrorOccurredEventArgs Yes
during an ongoing chat.

OnAgentMessageReceived Event raised when chat agent message is AgentMessageReceivedEventArgs No
received by client.

OnAgentJoined Event raised every time agent joins a chat AgentJoinedEventArgs No
session.

OnChatTransfer Event raised when chat is transferred to another | ChatTransferEventArgs No
agent/queue.

OnAgentStartTyping Event raised when chat agent starts typing. AgentStartTypingEventArgs No

OnAgentStopTyping Event raised when chat agent stops typing. AgentStopTypingEventArgs No

OnTranscriptFetched Event raised when chat transcript is fetched. GetTranscriptArgs No

OnCobrowselnviteReceived Event raised when agent invites customer to join | CobrowselnviteReceivedEventArgs No
cobrowse session.

OnConnectionAttached Event raised when new chat is attached to an None Returned No
existing chat connection.

OnConnectionAttachedFailure Event raised if there is a failure in attaching to None Returned No

Chat Attachments

Callback Name Description Event Arguments Returned Mandatory
OnGetAttachment Event raised when attachment file is AgentAttachmentArgs No
downloaded.
OnCustomerAttachmentNotification | Event raised when attachment invite sent by CustomerAttachmentNotificationSent | No
Sent customer is received by server. EventArgs
OnAttachmentAcceptedByCustomer | Event raised when attachment invite sent by AttachmentAcceptedByCustomerEven | No
agent is accepted by customer. tArgs
OnAttachmentUploadedByCustomer | Event raised when attachment upload by AttachmentUploadedByCustomerEven | No
customer is complete. tArgs
OnAttachmentRejectedByCustomer | Event raised when attachment invite sent by AttachmentRejectedByCustomerEvent | No
agent is rejected by customer. Args
OnAttachmentAcceptedByAgent Event raised when attachment invite sent by AttachmentAcceptedByAgentEventAr | No
customer is accepted by agent. gs
OnAttachmentRejectedByAgent Event raised when attachment invite sent by AttachmentRejectedByAgentEventArg | No
customer is rejected by agent. s
OnAttachmentinviteReceived Event raised when attachment invite sent by AttachmentInvitedAgentEventArgs No
agent is received on client.
OnGetAttachmentimageThumbnail Event raised when attachment thumbnails are AttachmentThumbnailArgs No
received on client.
Callback
Callback Name Description Event Arguments Returned Mandatory
OnCallbacklnitialized Event raised after Callback is initialized, i.e Initialization data retuned by server No
egainLibrary.Callback method is completed.
OnCallbackMessagePropert | Event raised after messaging properties file is CallbackMessagePropertyLoadEventA | No
yLoad loaded. rgs
OnCallbackMessagePropert | Event raised when the Callback fails to connect | CallbackConnectionFailureEventArgs Yes
yLoad or if a disruption to the Callback occurs.
OnDuplicateSession Event raised when Callback session on same DuplicateSessionEventArgs No
browser already exists.
OnCallBackCompletion Event raised when Callback connection is None Returned Yes
successfully ended.
OnSystemMessageReceived | Event raised each time a system message is SystemMessageReceivedEventArgs No
received.
OnAgentsNotAvailable Event raised if there are no agents available for | AgentsNotAvailableEventArgs Yes
the entry point.

Library EventHandlers 29

Callback Name Description Event Arguments Returned Mandatory
OnCallbackConnectSuccess | Event raised when customer Callback client is CallbackConnectSuccessEventArgs Yes
connected successfully. Does NOT indicate the
user is connected to an agent.
OnCallbackSucceeded Event raised when Call is successfully placed. CallbackSuccessEventArgs Yes

30 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

Return Parameters
From Event Handlers

» Text Chat
» Chat Attachments

» Callback

Text Chat

Event Arguments

Property Name

ChatConnectEventArgs

ChatConnectionFailureEventArgs

DuplicateSessionEventArgs

AgentsNotAvailableEventArgs

» ChatlD: Unique identifier of the activity that was created when the chat was initiated
» SessionlD: Chat session ID

» Name: Customer name

4

Subject: Subject entered when starting chat

v

Used to create a new instance of the eGainLibrary Callback object that is used to invoke
methods for egain callback functionality.

v

IsSuccess: False
StatusCode: DUPLICATE_SESSION
StatusMessage: DUPLICATE SESSION

v v

v

IsSuccess: False
StatusCode: AGENTS_UNAVAILABLE
StatusMessage: AGENTS UNAVAILABLE

v v

SystemMessageReceivedEventArgs

v

Message: HTML version of the message sent by the system

v

AgentJoinedMessage: True if it is the system message when an agent joins a chat,
‘undefined’ otherwise

v

ChatTransferMessage: True if it is the system message when a chat is transferred,
‘undefined’ otherwise

» ArticleAttachmentMessage: True if it is the system message about an agent sending an
article attachment, ‘undefined’ otherwise

GetQueueliveStatusArgs

ChatMessagePropertyLoadEventArgs

v

QueueDepth: Position of chat in queue
WaitTime: Wait Time for chat
AltEngmtTime: Time after which alternate engagement options need to be shown

v v

v

String containing 110n strings from the messaging property file

ErrorOccurredEventArgs

v

Status: Status of error. Values can be — error(fatal error) and log(not a fatal error, should
only be logged)

v

Message: Details of error

AgentMessageReceivedEventArgs

v

Message: HTML version of the message sent by the agent

v

AgentScreenName: Screen name of the agent who is typing the message

v

PagePushMessage: True if it is the message about a page push event, false otherwise

AgentJoinedEventArgs

» AgentName: Name of the agent

ChatTransferEventArgs

v

TransferType: Method of activity transfer. Can be of values 1,2,3: 1-If chat is transferred to
Department; 2-If chat is transferred to Queue; 3-If chat is transferred to Agent

v

TransferEntityName: Name of the user/queue/department

v

ChatAttachmentEnabled: True if attachments are enabled in the transferred queue, false
otherwise

AgentStartTypingEventArgs

AgentStopTypingEventArgs

> AgentScreenName: Name of the agent

» AgentScreenName: Name of the agent

32 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

Event Arguments

GetTranscriptArgs

CobrowselnviteReceivedEventArgs

Chat Attachments

Property Name

» CustomerName: Name of the customer

» Subject: Subject entered when starting chat

> Assignee: Name of the agent if chat is assigned
» StartTime: Time when chat started in XSD format
» Messages: Array of chat messages

» Action: Cobrowse action
» Session: Cobrowse session id

» CustomerName: Customer name

Event Arguments

Property Name

CustomerAttachmentNotificationSentE) Status: ‘success’ if attachments are enabled
ventArgs > File

» Message
AgentAttachmentArgs » Fileld

» UniqueFileld

» Data
AttachmentAcceptedByCustomerEvent | » Fileld
Args b FileName

» CustomerName
AttachmentUploadedByCustomerEvent | » Status
Args » Attachmentld

» AttachmentName

» AttachmentinternalName
AttachmentRejectedByCustomerEvent » Fileld
Args » FileName

AttachmentAcceptedByAgentEventArg

» AgentName

s » UniqueFileld
» FileName
AttachmentinvitedAgentEventArgs Attachment:
> Id
» Name

» AgentName
> Type
» AttachmentSize

AttachmentThumbnailArgs

» Fileld
» UniqueFileld
» Data

Return Parameters From Event Handlers

33

Callback

Event Arguments

Property Name

DuplicateSessionEventArgs

AgentsNotAvailableEventArgs

v

IsSuccess: False
StatusCode: DUPLICATE_SESSION
StatusMessage: DUPLICATE SESSION

v v

v

IsSuccess: False
StatusCode: AGENTS_UNAVAILABLE
StatusMessage: AGENTS UNAVAILABLE

v v

SystemMessageReceivedEventArgs

v

Message: HTML version of the message sent by the system

v

AgentJoinedMessage: True if it is the system message when agent joins chat, ‘undefined’
otherwise

v

ChatTransferMessage: True if it is the system message when chat is transferred,
‘undefined’ otherwise

v

ArticleAttachmentMessage: True if it is the system message about agent sending an article
attachment, ‘undefined’ otherwise

CallbackMessagePropertyLoadEventA
rgs

» String containing [10n strings from the messaging property file

CallbackConnectionFailureEventArgs

CallbackConnectSuccessEventArgs

v

IsSuccess: False

v

StatusCode: Status code to help identify error condition

v

StatusMessage: Details of error condition

» CallBackID: Unique identifier of the activity that was created when the callback was
initiated

v

SessionlD: Callback session ID

v

Name: Name of the customer

v

Subject: Subject entered when starting callback

CallbackSuccessEventArgs

v

IsSuccess: True
» StatusCode: CALLBACK_SUCCESS
) StatusMessage: CALLBACK_SUCCESS

34 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

Chat Code
Snippets

Adding a Reference

Simple Startup Example

Adding Customer Parameters and Setting Primary Key
Starting the Chat Session

Sending Customer Messages to Agent

Handling Messages Received from an Agent

Handling System Messages

Chat Completion

Masking Sensitive Information & Off-Record

The following are a series of code snippets demonstrating specific aspects of the Chat JavaScript Library.

Adding a Reference

In order to leverage the library you must first add a reference to the JavaScript in your HTML page. The snippet
below demonstrates a reference to the minified version of the JavaScript library for production use.

<!-- SAMPLE CHAT CLIENT -->
<IDOCTYPE html>

<html>

<head>

<title>Sample Chat Client</title>

<script src="egain-client-Llibrary-X.X.X.min.js"
type="text/javascript"></script>

</head>
</html>

Simple Startup Example

This example demonstrates the very basics of how to get a new instance of the library created and call the
StartChat () method. The result of this code would be an anonymous chat with an agent for entry point id
1000.

/* Create a new instance of the eGainLibrarySettings Object */
var librarySettings = new eGainLibrarySettings();
librarySettings.CORSHost ="http://myegainserver.com/system";
LibrarySettings.IsDevelopmentModeOn = false;
ibrarySettings.eGainContextPath = "";
librarySettings.ChatPauseInSec = "30";
librarySettings.IsDebugOn = false;

/* Next create a new instance of the eGainLibrary =*/
/% passing in the settings you have just created. */

var myLibrary = new eGainLibrary(librarySettings);

/* Now create an instance of the Chat Object */

var myChat = new myLibrary.Chat();

36 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

/* Next get the event handlers for chat. It is mandatory to provide definition
for the mandatory event handlers before initializing chat x/

var myEventHandlers = myChat.GetEventHandlers();

/% Example browser alert when chat is connected */
myEventHandlers.OnConnectSuccess = function () {
alert('Chat Started!');
};

/% Example browser alert when there is a connection failure %/
myEventHandlers.OnConnectionFailure = function () {
alert('Oops! Something went wrong');

};

/% Example browser alert when there is an error during chat */
myEventHandlers.OnErrorOccurred = function () {
alert('Oops! Something went wrong');

};

/% Example output of agent messages to a DIV named TransScript with
jQuery */

myEventHandlers.OnAgentMessageReceived = function
(agentMessageReceivedEventArgs) {

$('#TransScript').append("
Agent: " +
agentMessageReceivedEventArgs.Message);

¥;
/% Example output of system messages to the same DIV */

myEventHandlers.OnSystemMessageReceived = function
(systemMessageReceivedEventArgs) {

$('#TransScript').append("
" +
systemMessageReceivedEventArgs.Message);

¥
/% Example browser alert when agents are not available */

myEventHandlers.OnAgentsNotAvailable = function
(agentsNotAvailableEventArgs) {

alert('Sorry no agents available');
¥;
/* Example browser alert when the chat is completed */
myEventHandlers.OnConnectionComplete = function () {
$.mobile.changePage("#SimpleAnonymousChatPostChatScreen")
};

Chat Code Snippets

37

/* Now call the Chat initialization method with your entry point and callbacks
*/

myChat.Initialize($('#ChatEntryPointId').val(),'en', 'US', myEventHandlers,
'aqua', 'v11');

/% Start chat =/
myChat.Start();

Adding Customer Parameters and Setting Primary
Key

In this example specific context is added to the customer object before it is passed into the StartChat ()
method.

/* Create the customer object */

var myCustomer = new myLibrary.Datatype.CustomerObject();

/* Set the primary key as email and specify the email address */

myCustomer.SetPrimaryKey(myCustomer.PrimaryKeyParams.PRIMARY_KEY_EMAIL,"jdoeano
mail.com");

/% Next we'll demonstrate adding the customer first name as a parameter */

var customerFirstName = new myLibrary.Datatype.CustomerParameter();

customerFirstName.eGainParamName = " full_name";
customerFirstName.eGainParentObject = " casemgmt";
customerFirstName.eGainChildObject = " individual_customer_data";
customerFirstName.eGainAttribute = "full_name";

customerLastName.eGainValue = $("#FirstName").val

customerFirstName.eGainMinLength = "1";
customerFirstName.eGainMaxLength = "50";
customerFirstName.eGainRequired = "1";
customerFirstName.eGainFieldType = '1';
customerFirstName.eGainValidationString ="";

myCustomer.AddCustomerParameter(customerFirstName);

/* Next we'll demonstrate adding the customer last name as a parameter */
var customerLastName = new myLibrary.Datatype.CustomerParameter ();
customerFirstName.eGainParamName = "last_name";

customerLastName.eGainParentObject = "casemgmt";

38 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

customerLastName.eGainChildObject = "individual_customer_data";
customerLastName.eGainAttribute = "last_name";

customerLastName.eGainValue = $("#LastName").val();

customerLastName.eGainMinLength = "1";
customerLastName.eGainMaxLength = "50";
customerLastName.eGainRequired = "1";
customerLastName.eGainFieldType = '1';
customerLastName.eGainValidationString ="";

myCustomer.AddCustomerParameter(customerLastName);

Starting the Chat Session

In this example, the settings for the library have already been specified, set the callbacks, and set the customer
object.

/* Now call the Chat initialization method with your entry point and callbacks
*/

myChat.Initialize($('#ChatEntryPointId').val(),'en', 'US', myEventHandlers,
'aqua', 'v11'); /x Then call the StartChat to create a chat */

myLibrary.SetCustomer(myCustomer);
/* Then call the StartChat to create a chat */
myChat.Start();

Sending Customer Messages to Agent

To send a message to the agent from the customer simply call the SendMessageToAgent () method.

/% Simply place a call with the message you want to send */

myChat.SendMessageToAgent ("Hello agent");

Handling Messages Received from an Agent

To handle the messages sent by a contact center agent, simply output the
OnAgentMessageRecivedEventArgs.Message property.

/% Example output of agent messages to a DIV named TransScript with jQuery %/
myCallbacks.OnAgentMessageReceived = function (agentMessageReceivedEventArgs) {

$('#TransScript').append("
Agent: " +
agentMessageReceivedEventArgs.Message);

¥;

ChatCode Snippets 39

Handling System Messages

System messages are items sent by the chat application. These include messages like the “Agent has joined”,
“Agent has ended the session” or other system related items. To process these messages simply output the

OnSystemMessageReceivedEventArgs.Message property.

/% Example output of system messages to the Transcript DIV */

myCallbacks.OnSystemMessageReceived = function(systemMessageReceivedEventArgs)

{
$('#TransScript').append(systemMessageReceivedEventArgs.Message);

¥;

Chat Completion

It is common to transition to a post-chat UI when the chat is completed. To accomplish this, simply place the

page navigation along with any additional calls inside the OnChatCompletion callback.
/% Example navigation when the chat is completed */
myCallbacks.OnConnectionComplete = function () {
window.location = "http://yourdomain.com/post-chat.html";

};

Masking Sensitive Information & Off-Record

The chat application supports the configuration of masking sensitive information during a chat session. If this
option is configured in the console you can leverage the capability with the following example. Note that by
setting the On/Off record flag to “true” or “false”, you can determine whether or not the information is masked
for a specific message. To display the result in the transcript section, simply append the result of this call to the

transcript object.
/* Send sensitive information to agent On Record */

var sentSensitiveInfo = myChat.SendMessageToAgent("My SSN is 333-22-
4444" ,false);

/% Send sensitive information to agent 0ff Record */

var sentSensitivelnfo = myChat.SendMessageToAgent("My SSN is 333-22-
L444" true);

/* Now you can append the result of this call to the transcript */

$('#TransScript').append(sentSensitivelnfo);

40 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

Callback
Code
Snippets

Adding a Reference

Simple Startup Example

Adding Customer Parameters and Setting Primary Key
Starting the Callback Session

Handling System Messages

The following are a series of code snippets demonstrating specific aspects of the Callback JavaScript Library.

Adding a Reference

In order to leverage the library, you must first add a reference to the JavaScript in your HTML page. The snippet
below demonstrates a reference to the minified version of the JavaScript library for production use.

<!-- SAMPLE CHAT CLIENT -->

<IDOCTYPE html>

<html>

<head>

<title>Sample Callback Client</title>

<script src="egain-client-Llibrary-X.X.X.min.js"
type="text/javascript"></script>

</head>
</html>

Simple Startup Example

This example demonstrates the very basics of how to get a new instance of the library created and call the
Start () method. The result of this code would be an anonymous chat with an agent for entry point id 1000.

/* Create a new instance of the eGainLibrarySettings Object */
var librarySettings = new eGainLibrarySettings();
LibrarySettings.CORSHost ="http://myegainserver.com/system";
LibrarySettings.IsDevelopmentModeOn = false;
ibrarySettings.eGainContextPath = "";
librarySettings.ChatPauseInSec = "30";

librarySettings.IsDebugOn = false;

/% Next create a new instance of the eGainLibrary =*/
/% passing in the settings you have just created. */

var myLibrary = new eGainLibrary(librarySettings);

/* Now create an instance of the Callback Object */

var myCallback = new myLibrary.Callback();

/* get an instance of event handlers object */

var myCallbacks = myCallback.GetEventHandlers();

42 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

/* and provide the function calls you want to happen on each event type */

/% Example browser alert when Callback is connected */
myCallbacks.OnCallBackConnectSuccess = function (args) {
console.log('OnCallBackConnectSuccess.."');

$('"#TransScript').append("
 CallBack Initiated!");

};

/% Example browser alert when Call is placed =*/
myCallbacks.OnCallBackSucceeded = function () {
console.log('OnCallBackSucceeded');

$('#TransScript').append("
 Call Placed!");

};

/% Example browser alert when there is a connection failure */
myCallbacks.OnCallBackConnectionFailure = function (args) {
console.log('OnCallBackConnectionFailure');

$('#TransScript').append("
 Oops! Something went
wrong..Status="+args.StatusCode);

};

/* Example output of system messages to the same DIV */

myCallbacks.OnSystemMessageReceived = function (systemMessageReceivedEventArgs)
{

console.log('OnSystemMessageReceived');
$('#TransScript').append("
" + systemMessageReceivedEventArgs.Message);

};

/% Example browser alert when agents are not available */
myCallbacks.OnAgentsNotAvailable = function (agentsNotAvailableEventArgs) {
console.log('OnAgentsNotAvailable')

$('#TransScript').append("
 Sorry no agents available");;

¥;

/* Example browser alert when the chat is completed */

myCallbacks.OnCallBackCompletion = function () {

Callback Code Snippets 43

console.log('OnCallBackCompletion');
$.mobile.changePage("#WithParametersPostCallbackScreen")
¥

Adding Customer Parameters and Setting Primary
Key

In this example specific context is added to the customer object before it is passed into the StartChat ()
method.

/% Create the customer object =/

var myCustomer = new myLibrary.Datatype.CustomerObject();

/* Set the primary key as email and specify the email address */

myCustomer.SetPrimaryKey(myCustomer.PrimaryKeyParams.PRIMARY_KEY_EMAIL,"jdoeano
mail.com");

/* Next we'll demonstrate adding the customer full name as a parameter */

var myCustomer = new myLibrary.Datatype.CustomerObject();

var customerFirstName = new myLibrary.Datatype.CustomerParameter();
customerFirstName.eGainParentObject = "casemgmt";
customerFirstName.eGainChildObject = "individual_customer_data";
customerFirstName.eGainAttribute = "full_name";

customerFirstName.eGainValue = "Joe Brown";

customerFirstName.eGainParamName "full_name";

customerFirstName.eGainMinLength = "1";
customerFirstName.eGainMaxLength = "120";
customerFirstName.eGainRequired = "1";
customerFirstName.eGainFieldType = "1";
customerFirstName.eGainPrimaryKey = "0";
customerFirstName.eGainValidationString = "";

myCustomer.AddCustomerParameter(customerFirstName);

/% Next we'll demonstrate adding the customer email address as a parameter */

var customerEmail = new myLibrary.Datatype.CustomerParameter();
customerEmail.eGainParentObject = "casemgmt";

customerEmail.eGainChildObject = "email_address_contact_point_data";

44 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

customerEmail.eGainAttribute = "email_address";

customerEmail.eGainValue = "jdoednomail.com";
customerEmail.eGainParamName = "email_address";
customerEmail.eGainMinLength = "1";
customerEmail.eGainMaxLength = "50";
customerEmail.eGainRequired = "1";
customerEmail.eGainFieldType = "1";
customerEmail.eGainPrimaryKey = "1";
customerEmail.eGainValidationString = "";

myCustomer.AddCustomerParameter(customerEmail);

/* Next we'll demonstrate adding the customer phone number as a parameter */

var customerPhone = new myLibrary.Datatype.CustomerParameter();
customerPhone.eGainParentObject = "casemgmt";
customerPhone.eGainChildObject = "phone_number_data";
customerPhone.eGainAttribute = "phone_number";

customerPhone.eGainValue = "1112223333";

customerPhone.eGainParamName "phone_number";

customerPhone.eGainMinLength = "1";
customerPhone.eGainMaxLength = "18";
customerPhone.eGainRequired = "1";
customerPhone.eGainFieldType = "1";
customerPhone.eGainPrimaryKey = "1";
customerPhone.eGainValidationString = "";

myCustomer.AddCustomerParameter(customerPhone);

/% Next we'll demonstrate adding the Delay Time (in minutes) as a parameter */

var delayTimeInMin = new myLibrary.Datatype.CustomerParameter();

delayTimeInMin.eGainParentObject = "casemgmt";
delayTimeInMin.eGainChildObject = "activity_data";
delayTimeInMin.eGainAttribute = "delay_time_in_min";

delayTimeInMin.eGainValue = "15"; // Note, this value will be 0 for CallBack.
It will be 0 or higher for Delayed Callback

delayTimeInMin.eGainParamName = "delay_time_in_min";
delayTimeInMin.eGainMinLength = "1";
delayTimeInMin.eGainMaxLength = "120";

Callback Code Snippets 45

delayTimeInMin.eGainRequired = "0";
delayTimeInMin.eGainFieldType = "1";
delayTimeInMin.eGainPrimaryKey = "0";
delayTimeInMin.eGainValidationString = "";

myCustomer.AddCustomerParameter(delayTimeInMin);

/* Next we'll demonstrate adding the Subject as a parameter */

var questionPrompt = new myLibrary.Datatype.CustomerParameter();

questionPrompt.eGainParentObject = "casemgmt";
questionPrompt.eGainChildObject = "activity_data";
questionPrompt.eGainAttribute = "subject";
questionPrompt.eGainValue = "0";
questionPrompt.eGainParamName = "subject";
questionPrompt.eGainMinLength = "1";
questionPrompt.eGainMaxLength = "120";
questionPrompt.eGainRequired = "0";

questionPrompt.eGainFieldType = "2";
questionPrompt.eGainPrimaryKey = "0";
questionPrompt.eGainValidationString = "";

myCustomer.AddCustomerParameter(questionPrompt);

Starting the Callback Session

In this example, the settings for the library have already been specified, set the callbacks, and set the customer
object.

/* Now call the Callback initiliaztion method with your entry point and
callbacks. Also specify the subActivity as 'Callback' or 'DelayedCallback' =*/

myCallback.Initialize('1000','en', 'US', myCallbacks, 'rainbow', 'v11',
'Callback");

/* Start the callback */
myCallback.Start();

46 Enterprise Chatand Email Chat and Callback Javascript SDK Developer’s Guide

Handling System Messages

System messages are items sent by the callback application. They will include things like the “Agent has joined”,
“Agent has ended the session” or other system related items. To process these messages simply output the
OnSystemMessageReceivedEventArgs.Message property.

/% Example output of system messages to the Transcript DIV */

myCallbacks.OnSystemMessageReceived = function(systemMessageReceivedEventArgs)
{

$('#TransScript').append(systemMessageReceivedEventArgs.Message);

¥;

Callback Code Snippets 47

Appendix: Reference
Information

» Enabling CORS on ECE server

Enabling CORS on ECE server

If the chat application is deployed on the ECE server, then egainLibrary. CORSHost should be set to the
server context root. However, if chat application is deployed outside the application then the API requests made
from client to server require CORS to be enabled on the server. egainLibrary. CORSHost in this case should
be set to the server context root with FQDN eg.

egainLibrary. CORSHost = http://W:wmwm/system

For details on how to enable CORS in the application, see Enterprise Chat and Email Administrator’s Guide to
Administration Console.

Appendix: Reference Information 49

	Enterprise Chat and Email Chat and Callback Javascript SDK Developer’s Guide, Release 11.6(1)
	Contents
	Preface
	About This Guide
	Obtaining Documentation and Submitting a Service Request
	Documentation Feedback
	Field Alerts and Field Notices
	Document Conventions
	Other Learning Resources

	Library Basics
	Key Concepts
	Getting Started
	Library References
	Library Objects
	Methods
	Library Methods
	Chat Methods
	Callback Methods

	EventHandlers
	Chat EventHandlers
	Callback EventHandlers

	Library Objects
	eGainLibrarySettings
	eGainLibrarySettings Properties
	eGainLibrarySettings Methods
	Sample Code

	eGainLibrary
	eGainLibrary Properties
	eGainLibrary Methods

	Chat (egainChatLibrary.Chat)
	Chat Properties
	Chat Methods
	Sample Code

	Callback (egainChatLibrary.Callback)
	Callback Properties
	Callback Methods
	Sample Code

	CustomerObject (egainChatLibrary.Datatype.CustomerObject)
	CustomerObject Properties
	CustomerObject Methods
	Sample Code

	ResultObject
	ResultObject Properties
	ResultObject Methods

	CustomerParameter
	CustomerParameter Properties
	CustomerParameter Methods

	Library Methods
	Chat and Callback Constructors
	Chat Setup
	Text Chat
	Chat Attachments
	Callback

	Library Event Handlers
	Text Chat
	Chat Attachments
	Callback

	Return Parameters From Event Handlers
	Text Chat
	Chat Attachments
	Callback

	Chat Code Snippets
	Adding a Reference
	Simple Startup Example
	Adding Customer Parameters and Setting Primary Key
	Starting the Chat Session
	Sending Customer Messages to Agent
	Handling Messages Received from an Agent
	Handling System Messages
	Chat Completion
	Masking Sensitive Information & Off-Record

	Callback Code Snippets
	Adding a Reference
	Simple Startup Example
	Adding Customer Parameters and Setting Primary Key
	Starting the Callback Session
	Handling System Messages

	Appendix: Reference Information
	Enabling CORS on ECE server

