
Cisco Finesse Web Services Developer Guide for Release 8.5(3)
API Documentation—December 2011

Contents:

1. Introduction

1.1. Communication with the Cisco Finesse Web Service

2. Working with the Cisco Finesse Web Services APIs ("Hello World")

2.1. Environment and Tools

2.2. Using the Cisco Finesse APIs

3. The Cisco Finesse Desktop APIs

3.1. User APIs

3.2. Dialog APIs

3.3. Team APIs

3.4. System APIs

4. The Cisco Finesse Configuration APIs

4.1. System Configuration APIs

4.2. Cluster Configuration APIs

4.3. Database Configuration APIs

4.4. Layout Configuration APIs

4.5. Reason Code APIs

4.6. Wrap-Up Reason APIs

4.7. Media Properties Layout APIs

5. API Parameter Reference

5.1. Parameter Types and Data Types

5.2. API Header Parameters

5.3. API Request Parameters

5.4. API Response Parameters

6. Cisco Finesse Errors

6.1. HTTP Errors

6.2. Cisco Finesse API Error Codes

7. Cisco Finesse Notifications

7.1. About Cisco Finesse Notifications

7.2. Resources

7.3. Notification Parameter Reference

8. Finesse High Availability

9. Finesse Desktop Gadget Development

[contents]

[contents]

9.1. Notifications on the Finesse Desktop

9.2. Enabling Finesse Notifications in Third-Party Containers

9.3. Finesse Topics

9.4. Subscription Management on the Finesse Desktop

9.5. Persistence of Gadget Preferences

10. Glossary

11. Documents and Documentation Feedback

1. Introduction
This document is the official reference for the Cisco Finesse Application Programming Interface. The Finesse APIs support the Finesse agent desktop,
enabling it to provide agent desktop functionality, which includes call control, state changes, configuration information, and so on.

There are two categories of APIs for Finesse: desktop APIs and configuration APIs.

The Finesse APIs support the following capabilities:

User Sign In/Sign Out
Agent States
Configurations
Subscriptions
Call Control
Reason Codes
Wrap-up Reasons

This guide explains each API and the notification messages returned by the APIs, and begins with a section that assists developers in running and
validating the APIs in a lab environment.

1.1. Communication with the Cisco Finesse Web Service

[contents]

Figure 1: Finesse API and Event Flow

Note: Finesse Release 8.5(3) supports receiving updates through BOSH only.

Making Requests

Receiving Events

1.1.1. Making Requests
Cisco Finesse Desktop operations can be performed using one of the many available REST-like HTTP requests described in this guide. Clients
should make all HTTP requests to port 80.

Most, but not all, Finesse Desktop APIs conform to the following format:

http://<host>:<port>/finesse/api/<object>

Operations on specific objects are performed using the ID of the object in the REST URL. For example, the URL to view a single object would be:

http://<host>:<port>/finesse/api/<object>/<objectID>

All Finesse APIs use HTTP BASIC authentication, which requires the credentials to be sent in the "Authorization" header. The credentials contain
the username and password, separated by a single colon (:), within a BASE64-encoded string. For example, the Authorization header would
contain the following string:

"Basic YWdlbnRiYXJ0b3dza2k6Y2FybWljaGFlbA=="

where "YWdlbnRiYXJ0b3dza2k6Y2FybWljaGFlbA==" is the Base64-encoded string of "agentbartowski:carmichael" (agentbartowski being the

[contents]

[contents]

username and carmichael being the password).

Finesse configuration APIs require the application user ID and password, which are established during installation, for authentication purposes.

Finesse APIs use the following HTTP methods to make requests:

GET—Retrieve a single object or list of objects (for example, a single user or list of users).
PUT—Replace a value in an object (for example, to change the state of a user from NOT_READY to READY).
POST—Create a new entry in a collection (for example, to create a new reason code or wrap-up reason).
DELETE—Remove an entry from a collection (for example, to delete a reason code or wrap-up reason).

Finesse uses the standard HTTP status codes (for example, 200, 400, 500, and so on) in the response. These status codes indicate overall success or
failure of the request.

If an API operation fails, a detailed error is returned in the HTTP response message body. The error, in XML format, appears as follows:

<ApiErrors>
 <ApiError>
 <ErrorType>type</ErrorType>
 <ErrorMessage>message</ErrorMessage>
 <ErrorData>data</ErrorData>
 </ApiError>
</ApiErrors>

All requests must pass through a servlet filter (ServerStateFilter). Each request queries the Dependency Manager for the state of the system. The
Dependency Manager collects the states of its dependencies (such as the state of the Cisco Finesse Notification Service) and reports these states to
external entities.

If the Cisco Finesse Notification Service is down, Finesse is out of service. Finesse rejects any API requests and returns an HTTP 503 error. The
error appears as follows:

<ApiErrors>
 <ApiError>
 <ErrorType>Service Unavailable</ErrorType>
 <ErrorData></ErrorData>
 <ErrorMessage>SERVER_OUT_OF_SERVICE</ErrorMessage>
 </ApiError>
</ApiErrors>

1.1.2. Receiving Events
Real-time events (such as call events, state events, and so on) are sent by the Cisco Finesse Notification Service, using the XEP-0060 Publish-
Subscribe extension of the XMPP (Extensible Messaging and Presence Protocol) protocol. Applications that need to communicate with the
Notification Service must use XMPP over the BOSH (Bidirectional-streams Over Synchronous HTTP) transport.

BOSH is an open technology for real-time communication and is useful for maintaining a long-lived, bidirectional TCP connection between two
entities (such as client and server). See documentation at the XMPP Standards Foundation for details about both XMPP and BOSH (XEP-0124).

Client applications can communicate with the Cisco Finesse Notification Service through BOSH, using the binding URI http://<host>:7071/http-
bind. Developers can create their own BOSH library or use any that are available publicly, as documented on the Cisco Developer Network.

After creating the connection, applications can receive notification events of feeds to which they are subscribed. Users are currently subscribed to
a few feeds by default (subject to change). Other feeds require an explicit subscription (see section 7.1.2 Subscription Management).

2. Working with the Cisco Finesse Web Services APIs ("Hello World")
This section explains how to work with the Cisco Finesse Web Services APIs to validate your lab development environment.

http://xmpp.org/extensions/xep-0060.html
http://www.xmpp.org/
http://developer.cisco.com/web/cupapi/overview-of-interfaces

[contents]

[contents]

Environment and Tools

Using the Cisco Finesse APIs

2.1. Environment and Tools
The topics in this section are for use as a learning exercise and are not meant to be used in real deployments.

To complete these exercises, you need the following:

A user who is configured as an agent in Unified CCE (with an agent ID, password, and extension).
Make the agent a member of a team and of a queue. (A queue is a Unified CCE Skill Group.)
Three phones that are configured in Cisco Unified Communications Manager: one for the agent, one for the caller, and one to use for
conferencing and transfer APIs. These can be Cisco IP "hard phones" or Cisco IP Communicator softphones.
Two tools: Poster and Pidgin.

Note: Poster and Pidgin are meant to aid in development; however, they are not officially supported.

2.1.1. Poster
Poster is a utility that allows you to send HTTP requests to the Finesse Web Service by entering the URI for an API and checking the response. All
APIs are accessible by URI and follow a request/response paradigm. There is always a single response for any request.

You can download Poster from https://addons.mozilla.org/en-US/firefox/addon/2691/.

Note that although the Finesse Desktop is not supported on Firefox (it is supported on Internet Explorer 8 only), the Poster tool is a Firefox plug-
in.

After Poster is added to Firefox, press Ctrl-Alt-P to launch it.

To test an API in Poster, follow these steps:

1. Copy and paste the URI for the API request from this Developer Guide into a text editor. For example, to enter the URI for signing in, copy
the URI from the Sign In API. Examine the pasted code for case sensitivity and format and remove any carriage returns.

2. Update the URI with the IP address and port of your Cisco Finesse Web Services server.
3. Add any mandatory parameters for the request.
4. Enter the username and password for the agent you set up for these exercises.
5. For Content Type, enter application/xml.
6. Click the appropriate action (GET, PUT, or POST).

https://addons.mozilla.org/en-US/firefox/addon/2691/

[contents]

Figure 2: Poster Request

The object response appears in the Poster window.

Figure 3: Poster Response

2.1.2. Pidgin
Pidgin is a multiplatform instant messaging client that supports many common messaging protocols, including XMPP. You can use Pidgin to
establish an XMPP connection and view XMPP messages published by the Cisco Finesse Notification Service.

Notifications that result from API requests made in Poster appear in the XMPP Console tool of the Pidgin application. For example, if you use
Poster to subscribe to call events and then use your Cisco IP Phone to place a call to an agent, you can see the call delivered event in the Pidgin
XMPP Console window.

Note: Make sure that you use the same username and resource values in both Poster and Pidgin.

You can download Pidgin from http://www.pidgin.im/download/.

Perform the following steps to configure XMPP:

1. In Pidgin, go to Tools > Plugins to open the Plugins dialog box.
2. Check the XMPP Console and XMPP Service Discovery check boxes.

Perform the following steps to configure Pidgin:

http://www.pidgin.im/download/

1. Add an account for your XMPP server. Go to Pidgin > Accounts > Manage Accounts > Add Account. The Add Account dialog box opens.
2. For Protocol, select XMPP.
3. For Username, enter the username for the agent that you added.
4. For Domain, enter the fully-qualified domain name of the Cisco Finesse server.
5. For Resource, enter any text.
6. For Password, enter the password of the agent.

Figure 4: The Pidgin Interface

7. Click Save.
8. Click the Advanced tab.
9. Check the Allow plaintext auth over unencrypted streams check box.

10. For Connect Server, enter the IP address of the Finesse server.
11. If the Connection Security drop-down menu is present, choose Use encryption if available.
12. Click Save.

Note: Connect port and File transfer proxies should be filled in automatically (5222 should appear in the Connect port field).

The XMPP logo next to the agent's name becomes active (is no longer dimmed). To see event messages in Pidgin, open the XMPP Console.

[contents]

Figure 5: Open XMPP Console in Pidgin

Note: The agent must be signed in to Finesse through Poster or the browser interface to be signed in to the XMPP account on Pidgin.

The XMPP Console window immediately begins updating every few seconds with iq type statements. The window does not display an event
message until an event occurs. If the XMPP Console window fills with iq type notifications and becomes difficult to navigate, close and reopen it
to refresh with a clean window.

Figure 6: The XMPP Console Window

2.2. Using the Cisco Finesse APIs
APIs that control actions on the Finesse Desktop and call control make use of two objects:

User object—The User object represents agent and supervisor data and actions. This object is used to get information about a single user or list
of users, to sign in or out of the Finesse Desktop, and change agent state.
Dialog object—The Dialog object represents a dialog with participants. For media type "voice", this object represents a call. A participant can
represent an internal user (such as an agent) or an external user (for example, a customer). A participant can belong to only one dialog but a
user can be a participant in several dialogs. The Dialog object is used for call control and call data.

The following sections provide instructions and examples for using the APIs with Poster and Pidgin.

[contents]2.2.1. Signing In to Finesse
Use the User—Sign In to Finesse API to sign the agent in.

This example uses the following information:

Finesse server IP address: 172.16.204.26
Agent name: John Smith
Agent ID: 1234
Agent password: jsmith
Agent extension: 1001

1. Access Poster (Ctrl + Alt +P from the Mozilla Firefox browser) and enter the following string in the URL field:

http://172.16.204.26/finesse/api/User/1234

2. Enter the agent's ID (1234) and extension (1001) in the two User Auth fields directly under the URL field.

3.In the Content Type field, enter application/XML.

4.In the area under Content Options, enter the following:

<User>
<state>LOGIN</state>
<extension>1001</extension>
</User>

5.Click PUT.

Poster returns the following response:

PUT on http://172.16.204.26/finesse/api/User/1234
Status 202: Accepted

Finesse returns a user notification, which you can view in Pidgin:

<Update>
 <data>
 <user>
 <dialogs>/finesse/api/User/93964892/Dialogs</dialogs>
 <extension>1001</extension>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <loginId>1234</loginId>
 <loginName>jsmith</loginName>
 <roles>
 <role>Agent</role>
 </roles>
 <state>NOT_READY</state>
 <teamId>1</teamId>
 <teamName>Default</teamName>
 <uri>/finesse/api/User/1234</uri>
 </user>
 </data>
 <event>PUT</event>
 <requestId></requestId>
 <source>/finesse/api/User/1234</source>
</Update>

The agent is now signed in and in NOT_READY state.

[contents]

[contents]

2.2.2. Changing the Agent State
Use the User—Change Agent State API to change the agent state to Ready.

This example uses the same agent information as the previous example.

1. In Poster, enter the following string in the URL field:

http://172.16.204.26/finesse/api/User/1234

2. Enter the agent's ID (1234) and extension (1001) in the two User Auth fields directly under the URL field.

3.In the Content Type field, enter application/XML.

4.In the area under Content Options, enter the following:

<User>
<state>READY</state>
</User>

5. Click PUT.

Poster returns the following response:

PUT on http://172.16.204.26/finesse/api/User/1234
Status 202: Accepted

Finesse returns the following user notification:

<Update>
 <data>
 <user>
 <dialogs>/finesse/api/User/1234/Dialogs</dialogs>
 <extension>1001</extension>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <loginId>1234</loginId>
 <loginName>jsmith</loginName>
 <roles>
 <role>Agent</role>
 </roles>
 <state>READY</state>
 <teamId>1</teamId>
 <teamName>Default</teamName>
 <uri>/finesse/api/User/93964892</uri>
 </user>
 </data>
 <event>PUT</event>
 <requestId></requestId>
 <source>/finesse/api/User/93964892</source>
</Update>

3. The Cisco Finesse Desktop APIs
User APIs

Dialog APIs

Team APIs

System APIs

Cisco Finesse comprises of a set of web APIs that allow Unified Contact Center Enterprise (Unified CCE) to send and receive information about:

[contents]

[contents]

Current system configuration
Agents and agent states
Calls and call states
Teams

The individual Web APIs are method calls sent as GET or POST requests using a REST-like interface over HTTP. Methods follow a request/response
paradigm, and there is always a single response for any request.

All APIs must provide BASIC authentication credentials, as described in Making Requests.

3.1. User APIs
The User object is a container element that holds agent and supervisor objects. Elements common to the subobjects can be at the user level. A user
can have more than one role.

User—Get User

User—Get List of Users

User—Get List of Dialogs Associated with a User

User—Sign In to Finesse

User—Sign Out of Finesse

User—Change Agent State

User—Get ReasonCode

User—Get ReasonCode List

User—Get WrapUpReason

User—Get WrapUpReason List

User—Change Agent State (Pass NotReady or Logout Corresponding ReasonCode to CTI)

User—Get MediaPropertiesLayout

3.1.1. User—Get User
The Get User API allows a user to get a copy of the user object.

URI:

http://<server>/finesse/api/User/<id>

Example URI:

http://host/finesse/api/User/1234

Security Constraints:

Role—Agent, Administrator
Limitations—Agents can only act on their own User object. Administrators can get any User object.

HTTP Method:

GET

http://en.wikipedia.org/wiki/Representational_State_Transfer

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
404—Not Found (for example, the user ID is not known)
500—Runtime exception
503—Service Unavailable (for example, the notification service is not running)

Successful Response:

<User>
 <uri>/finesse/api/User/1234</uri>
 <roles>
 <role>Agent</role>
 <role>Supervisor</role>
 </roles>
 <loginId>1234</loginId>
 <loginName>csmith</loginName>
 <state>NOT_READY</state>
 <extension>1001001</extension>
 <firstName>Chris</firstName>
 <lastName>Smith</lastName>
 <teamId>500</teamId>
 <teamName>Sales</teamName>
 <dialogs>/finesse/api/User/1234/Dialogs</dialogs>
 <teams>
 <Team>
 <id>501</id>
 <name>First Line Support</name>
 </Team>
 <Team>
 <id>502</id>
 <name>Second Line Support</name>
 </Team>
 <Team>
 <id>503</id>
 <name>Third Line Support</name>
 </Team>
 ... other teams ...
 </teams>
 </User>

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>User Not Found</ErrorType>
 <ErrorMessage>UNKNOWN_USER</ErrorMessage>
 <ErrorData>4023</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes: Authorization Failure

[contents]

 Invalid Authorization User Specified
User Not Found
Internal Server Error
Service Unavailable

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
uri
roles
role
loginId
loginName
state
extension
firstName
lastName
dialogs
subscription
Team
teamId
teamName
teams
id
name

3.1.2. User—Get List of Users
The Get List of Users API allows an administrator to get a list of users.

URI:

http://<server>/finesse/api/Users

Example URI:

http://host/finesse/api/Users

Security Constraints:

Role—Administrator
Limitations—Any administrator can use this API.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error
503—Service Unavailable (for example, the notification service is not running)

Successful Response:

<Users>
 <User>
 ... Full User Object ...
 </User>
 <User>
 ... Full User Object ...
 </User>
 <User>
 ... Full User Object ...
 </User>
 <User>
 ... Full User Object ...
 </User>
 <User>
 ... Full User Object ...
 </User>
 ... Additional Users...
</Users>

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Unauthorized</ErrorType>
 <ErrorMessage>The user is not authorized to perform this operation</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
User Not Found
Internal Server Error
Service Unavailable

For descriptions and other possible error codes, see API Error Codes.

[contents]

Response Parameters
uri
roles
role
loginId
loginName
state
extension
firstName
lastName
dialogs
subscription
Team
teamId
teamName
teams
id
name

3.1.3. User—Get List of Dialogs Associated with a User
The User—Get List of Dialogs Associated with a User API allows an administrator or agent to obtain a list of dialogs associated with a particular
user. An administrator can get a list of dialogs that are associated with any user. Agents can only get a list of their own dialogs.

The structure of a single full Dialog object is shown in the following example:

<Dialog>
 <uri>/finesse/api/Dialog/12345678</uri>
 <mediaType>Voice</mediaType>
 <state>ACTIVE</state>
 <fromAddress>2002</fromAddress>
 <toAddress>2000</toAddress>
 <mediaProperties>
 <dialedNumber>2000</dialedNumber>
 <callType>AGENT_INSIDE</callType>
 <DNIS>2000</DNIS>
 <wrapUpReason>Another satisfied customer</wrapUpReason>
 <callvariables>
 <CallVariable>
 <name>callVariable1</name>
 <value>Chuck Smith</value>
 </CallVariable>
 <CallVariable>
 <name>callVariable2</name>
 <value>Cisco Systems,Inc<value>
 </CallVariable>
 <CallVariable>
 <name>callVariable3</name>
 <value>chuckSmith@cisco.com<value>
 </CallVariable>
 ... Other CallVariables up to 10 ...
 <CallVariable>
 <name>callVariable10</name>

 <value>Preferred Customer<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.user</name>
 <value>csmith<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.years[0]</name>
 <value>1985<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.years[1]</name>
 <value>1995<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.years[2]</name>
 <value>2005<value>
 </CallVariable>
 </callvariables>
 </mediaProperties>
 <participants>
 <Participant>
 <mediaAddress>2002</mediaAddress>
 <state>ACTIVE</state>
 <stateCause></stateCause>
 <actions>
 <action>HOLD</action>
 <action>DROP</action>
 </actions>
 </Participant>
 <Participant>
 <mediaAddress>2000</mediaAddress>
 <state>HELD</state>
 <stateCause></stateCause>
 <actions>
 <action>RETRIEVE</action>
 <action>DROP</action>
 </actions>
 </Participant>
 </participants>
</Dialog>

The User—Get List of Dialogs API returns a list of such Dialog objects, all of which are associated with a particular user.

URI:

http://<server>/finesse/api/User/<id>/Dialogs

Example URI:

http://host/finesse/api/User/1234/Dialogs

Security Constraints:

Role—Agent, Administrator
Limitations—Administrators can get a list of dialogs associated with any user. Agents can only get a list of their
own dialogs.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Successful Response:

<Dialogs>
 <Dialog>
 ... Full Dialog Object ...
 </Dialog>
 <Dialog>
 ... Full Dialog Object ...
 </Dialog>
 <Dialog>
 ... Full Dialog Object ...
 </Dialog>
 <Dialog>
 ... Full Dialog Object ...
 </Dialog>
 <Dialog>
 ... Full Dialog Object ...
 </Dialog>
 ... Additional Dialogs...
</Dialogs>

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

For more information about Dialog objects and Dialog APIs see Section 3.2 Dialog APIs.

Response Parameters
uri
mediaType
state
stateCause
fromAddress
mediaAddress
dnis

[contents]

dialedNumber
Participants
Participant
Actions
mediaProperties
callvariables
CallVariable

3.1.4. User—Sign In to Finesse
The User—Sign In to Finesse API allows a user to sign in to the CTI server. This API forces a sign-in. That is, if a user is already signed in, that
user will be signed in again.

If the response is successful, the user is signed in and is automatically set to the NOT_READY state.

URI:

http://<server>/finesse/api/User/<id>

Example URI:

http://host/finesse/api/User/1234

Security Constraints:

Role—Agent or Supervisor
Limitations—Users can only act on their own User objects.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<User>
 <state>LOGIN</state>
 <extension>1001001</extension>
</User>

HTTP Response:

202—Successfully Accepted
400—Bad Request (for example, malformed or incomplete request, or invalid extension)
401—Unauthorized (for example, the user is not authenticated in the Web Session)
404—Not Found (for example, the user ID is not known)
503—Service Unavailable (for example, the notification service is not running)

[contents]

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Invalid Authorization User Specified</ErrorType>
 <ErrorData>4321</ErrorData>
 <ErrorMessage>The user specified in the authentication credentials and the uri don't
 match</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter Missing
Invalid Input
Invalid Device
Generic Error
Authorization Failure
Invalid Authorization User Specified
User Not Found
Service Unavailable

For descriptions and other possible error codes, see API Error Codes.

Notifications Triggered:

User notification

Request Parameters
id—Required
state—Required
extension—Required

3.1.5. User—Sign Out of Finesse
The User—Sign Out of Finesse API allows a user to sign out of the CTI server.

URI:

http://<server>/finesse/api/User/<id>

Example URI:

http://host/finesse/api/User/1234

Security Constraints:

Role—Agent or Supervisor
Limitations—Users can only act on their own User objects.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<User>
 <state>LOGOUT</state>
</User>

HTTP Response:

202—Successfully accepted
400—Bad Request (for example, malformed or incomplete request, or invalid extension)
401—Unauthorized (for example, the user is not authenticated in the Web Session)
404—Not Found (for example, the user ID is not known)
503—Service Unavailable (for example, the notification service is not running)

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Invalid Input</ErrorType>
 <ErrorData>state</ErrorData>
 <ErrorMessage>Invalid State specified for user</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter Missing
Invalid Input
Invalid State
Authorization Failure
Invalid Authorization User Specified
User Not Found
Internal Server Error
Service Unavailable

For descriptions and other possible error codes, see API Error Codes.

Notifications Triggered:

User notification

Request Parameters

[contents]

id—Required
state—Required

3.1.6. User—Change Agent State
The User—Change Agent State API allows a user to change the state of an agent on the CTI server.

If the request is successful, the response of the state change is sent as part of a User notification.

The following figure shows the supported state transitions.

Figure 7: Supported State Transitions

Users can set the following states using this API:

READY
NOT_READY
LOGOUT

The LOGIN state is a transitive state. That is, when set, LOGIN triggers a change that results in a new state.

The following are states that users can be in while on a call. However, these states are not set by the user. For example, agents cannot change their
state to TALKING. They enter the TALKING state when they answer an ACD call.

RESERVED
TALKING
HOLD

URI:

http://<server>/finesse/api/User/<id>

Example URI:

http://host/finesse/api/User/1234

Security Constraints:

Role—Agent or Supervisor
Limitations—Users can only act on their own User objects.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<User>
 <state>READY</state>
</User>

HTTP Response:

202—Successfully accepted
400—Bad request
401—Unauthorized (for example, the user is not authenticated in the Web Session)
404—Not Found (for example, the user ID is not known)
500—Internal server error
503—Service Unavailable (for example, the notification service is not running)

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Parameter Missing</ErrorType>
 <ErrorData>state</ErrorData>
 <ErrorMessage>State Parameter missing</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter Missing
Invalid Input
Invalid State
Authorization Failure
Invalid Authorization User Specified

[contents]

User Not Found
Internal Server Error
Service Unavailable

For descriptions and other possible error codes, see API Error Codes.

Notifications Triggered:

User notification

Request Parameters
id—Required
state—Required

3.1.7. User—Get ReasonCode
The User—Get ReasonCode API allows a user (agent or supervisor) to get an individual NOT_READY or LOGOUT reason code, which is already
defined and stored in the Finesse configuration database (and that is applicable to the user). The user can display the reason code label on their
desktop when they change their state to NotReady or Logout respectively.

URI:

http://<server>/finesse/api/User/<id>/ReasonCode/<reasoncodeId>

Example URI:

http://host/finesse/api/User/1234/ReasonCode/12

Security Constraints:

Role—Agent or Supervisor
Limitations—A user must be signed in to get a reason code. A user cannot retrieve reason codes that belong to
another user.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<ReasonCode>
 <uri>/finesseconfig/api/ReasonCode/1</uri>
 <category>NOT_READY</category>
 <code>12</code>

[contents]

 <label>Lunch</label>
 <forAll>true</forAll>
</ReasonCode>

HTTP Response:

200—Success
400—Bad request
400—Finesse API error (for example, the object does not exist, the object is stale, violation of DB constraint, and so
on)
401—Authorization failure
401—Invalid Authorization User Specified
404—Not Found (for example, the reason code does not exist or has been deleted)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>1234</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Not Found
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
category
code
forAll
label
uri

3.1.8. User—Get ReasonCode List
The User—Get ReasonCode List API allows a user (an agent or supervisor) to get a list of NOT_READY or LOGOUT reason codes (that are
applicable to that user), which are defined and stored in the Finesse configuration database. Users can assign one of the reason codes on the
desktop when they change their state to Not Ready or Logout respectively. The required URL parameter "category" is used to specify which
(Logout or Not Ready) reason codes are returned.

URI: http://<server>/finesse/api/User/<id>/ReasonCodes?category=NOT_READY|LOGOUT

Example URI:

http://host/finesse/api/User/1234/ReasonCodes?category=NOT_READY

Security Constraints:

Role—Agent or Supervisor
Limitations—A user must be signed in to get a list of reason codes. A user cannot retrieve reason codes that belong
to another user.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<ReasonCodes category="NOT_READY">
 <ReasonCode>
 <uri>/finesseconfig/api/ReasonCode/1</uri>
 <category>NOT_READY</category>
 <code>12</code>
 <label>Lunch</label>
 <forAll>true</forAll>
 </ReasonCode>
 <ReasonCode>
 ... Full ReasonCode Object ...
 </ReasonCode>
 <ReasonCode>
 ... Full ReasonCode Object ...
 </ReasonCode>
</ReasonCodes>

HTTP Response:

200—Success
400—Bad request
400—Finesse API error (for example, the object does not exist, the object is stale, violation of DB constraint, and so
on)
401—Authorization failure
401—Invalid Authorization User Specified
404—Not Found (for example, the reason code does not exist or has been deleted)
500—Internal server error

Failure Response
Example: <ApiErrors>

 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>

[contents]

 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>1234</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Not Found
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Note: The ReasonCode list could be empty (for example, if there are no reason codes for the specified category in the Finesse configuration
database).

Note: For Finesse Release 8.5(3), all reason codes that have the forAll parameter set to true, will apply to any user.

Request Parameters
category—Required

Response Parameters
ReasonCodes
category
ReasonCode

3.1.9. User—Get WrapUpReason
The User—Get WrapUpReason API allows a user to retrieve a WrapUpReason object. For more information about wrap-up reasons, see Wrap-up
Reason APIs.

URI:

http://<server>/finesse/api/User/<userId>/WrapUpReason/<wrapUpReasonId>

Example URI:

http://host/finesse/api/User/1234/WrapUpReason/1001

Security Constraints:

Role—Agent, Supervisor, or Administrator

HTTP Method:

GET

Content Type:

Application/XML

[contents]

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<WrapUpReason>
 <uri>/finesse/api/User/1234/WrapUpReason/205</uri>
 <label>Product Question</label>
 <forAll>true</forAll>
</WrapUpReason>

HTTP Response:

200—Success
400—Bad request
400—Finesse API error (for example, the object does not exist, the object is stale, violation of DB constraint, and
so on)
401—Authorization failure
401—Invalid Authorization User Specified
404—User Not Found (the user id provided is invalid and no such agent exists in CTI)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>1234</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
uri
label
forAll

3.1.10. User—Get WrapUpReason List
The User—Get WrapUpReason List API allows a user to get a list of all wrap-up reasons applicable to that user. For more information about
wrap-up reasons, see Wrap-up Reason APIs.

URI:

http://<server>/finesse/api/User/<userId>/WrapUpReasons

Example URI:

http://host/finesse/api/User/1234/WrapUpReasons

Security Constraints:

Role—Agent, Supervisor, or Administrator

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<WrapUpReasons>
 <WrapUpReason>
 <label>Successful tech support call</label>
 <forAll>true</forAll>
 <uri>/finesse/api/User/1234/WrapUpReason/205</uri>
 </WrapUpReason>
 ... more wrap-up reasons ...
</WrapUpReasons>

HTTP Response:

200—Success
400—Bad request
400—Finesse API error (for example, the object does not exist, the object is stale, violation of DB constraint, and
so on)
401—Authorization failure
401—Invalid Authorization User Specified
404—User Not Found (the user id provided is invalid and no such agent exists in CTI)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>1234</ErrorData>
 </ApiError>
</ApiErrors>

[contents]

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
uri
label
forAll

3.1.11. User—Change Agent State (Pass NotReady or Logout Corresponding ReasonCode to CTI)
This API allows users to change the state of the agent in the CTI server and pass along the code value of a corresponding reason code (when the
state to be changed is NotReady or Logout). The user must already be authenticated (by way of the tomcat realm) to successfully use this API.

URI:

http://<server>/finesse/api/User/<id>

Example URI:

http://host/finesse/api/User/1234

Security Constraints:

Role—Agent
Limitations—Users can only act on their own User objects.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<User>
 <state>NOT_READY</state>
 <ReasonCodeId>1001</ReasonCodeId>
</User>

HTTP Response: 202—Successfully accepted
400—Parameter Missing

[contents]

400—Invalid Input
400—Invalid State
401—Authorization Failure (for example, the user is not authenticated in the Web Session)
401—Invalid Authorization User Specified (for example, the authenticated user tried to make a request as another
user)
404—User Not Found (the agent ID provided is invalid and no such agent exists in CTI)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Parameter Missing</ErrorType>
 <ErrorData>state</ErrorData>
 <ErrorMessage>State Parameter missing</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter Missing
Invalid Input
Invalid State
Authorization Failure
Invalid Authorization User Specified
User Not Found
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Notifications Triggered:

User notification

Request Parameters
id—Required
ReasonCodeID
state—Required

3.1.12. User—Get MediaPropertiesLayout
The User—Get MediaPropertiesLayout API allows an agent to get a copy of the mediaProperties object, which determines how call variables and
ECC variables appear on the agent desktop. For more information about the mediaProperties object, see Media Properties Layout APIs.

Note: Finesse Release 8.5(3) supports a single default instance only.

Finesse supports the following media properties:

call variables (callVariable1 through callVariable10)

ECC variables

URI:

http://<server>/finesse/api/User/<userId>/MediaPropertiesLayout/default

Example URI:

http://host/finesse/api/User/1234/MediaPropertiesLayout/default

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<MediaPropertiesLayout>
 <header>
 <entry>
 <displayName>Customer Name</displayName>
 <mediaProperty>callVariable1</mediaProperty>
 </entry>
 </header>
 <column>
 <entry>
 <displayName>Customer Name</displayName>
 <mediaProperty>callVariable1</mediaProperty>
 </entry>
 <entry>
 <displayName>Customer Acct#</displayName>
 <mediaProperty>user.cisco.acctnum</mediaProperty>
 </entry>
 </column>
 <column>
 <entry>
 <displayName>Support contract</displayName>
 <mediaProperty>callVariable2</mediaProperty>
 </entry>
 <entry>
 <displayName>Product calling about</displayName>
 <mediaProperty>callVariable3</mediaProperty>
 </entry>
 </column>
</MediaPropertiesLayout>

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Failure Response Example:
<ApiErrors>

[contents]

[contents]

 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
header
column
entry
displayName
mediaProperty

3.2. Dialog APIs
The Dialog object represents a dialog with participants. For the media type "voice", this object represents a call. A participant represents an internal
or external user's CallConnection, or that user's leg of the call.

Dialog—Get Dialog

Dialog—Take Action on a Participant within a Dialog

Dialog—Update Call Variable Data

Dialog—Create a New Dialog (Make a Call)

Dialog—Make a Consult Call Request

Dialog—Make a Silent Monitoring Call

Dialog—End a Silent Monitoring Call

3.2.1. Dialog—Get Dialog
The Dialog—Get Dialog API allows users to get a copy of the Dialog object.

URI:

http://<server>/finesse/api/Dialog/<id>

Example URI:

 http://host/finesse/api/Dialog/12345678

Security Constraints:

Role—Agent, Administrator
Limitations—Agents can only act on their own Dialog object. Administrators can get any Dialog object.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
401—Invalid Authorization (for example, the authenticated user tried to get a Dialog for which they are not a
participant)
404—Not found (for example, the dialog id is invalid)
500—Internal server error

Successful Response:

<Dialog>
 <uri>/finesse/api/Dialog/12345678</uri>
 <mediaType>Voice</mediaType>
 <state>ACTIVE</state>
 <fromAddress>2002</fromAddress>
 <toAddress>2000</toAddress>
 <mediaProperties>
 <dialedNumber>2000</dialedNumber>
 <callType>AGENT_INSIDE</callType>
 <DNIS>2000</DNIS>
 <wrapUpReason>Another satisfied customer</wrapUpReason>
 <callvariables>
 <CallVariable>
 <name>callVariable1</name>
 <value>Chuck Smith</value>
 </CallVariable>
 <CallVariable>
 <name>callVariable2</name>
 <value>Cisco Systems,Inc<value>
 </CallVariable>
 <CallVariable>
 <name>callVariable3</name>
 <value>chuckSmith@cisco.com<value>
 </CallVariable>
 ... Other CallVariables up to 10 ...
 <CallVariable>
 <name>callVariable10</name>
 <value>Preferred Customer<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.user</name>
 <value>csmith<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.years[0]</name>
 <value>1985<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.years[1]</name>
 <value>1995<value>
 </CallVariable>
 <CallVariable>
 <name>ecc.years[2]</name>

 <value>2005<value>
 </CallVariable>
 </callvariables>
 </mediaProperties>
 <participants>
 <Participant>
 <mediaAddress>2002</mediaAddress>
 <state>ACTIVE</state>
 <stateCause></stateCause>
 <actions>
 <action>HOLD</action>
 <action>DROP</action>
 </actions>
 </Participant>
 <Participant>
 <mediaAddress>2000</mediaAddress>
 <state>HELD</state>
 <stateCause></stateCause>
 <actions>
 <action>RETRIEVE</action>
 <action>DROP</action>
 </actions>
 </Participant>
 </participants>
</Dialog>

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Not Found</ErrorType>
 <ErrorMessage>Invalid dialogId specified for dialog</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Dialog Not Found
Internal Server Error

Response Parameters
uri
mediaType
state
stateCause
fromAddress
mediaAddress
dialedNumber
dnis
wrapUpReason
Participants
Participant
Actions

[contents]

mediaProperties
callType
callvariables
CallVariable

3.2.2. Dialog—Take Action on a Participant within a Dialog
The Dialog—Take Action on a Participant within a Dialog API allows a user to take an action on a participant within a dialog. Agents must be the
participant they are targeting with an action.

URI:

http://<server>/finesse/api/Dialog/<id>

Example URI:

http://host/finesse/api/Dialog/54321

Security Constraints:

Role—Agent
Limitation—Agents can only act on a participant of a dialog when they are that participant.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<Dialog>
 <targetMediaAddress>1001001</targetMediaAddress>
 <requestedAction>ANSWER</requestedAction>
</Dialog>

HTTP Response:

202—Successfully accepted
400—Parameter missing (for example, the targetMediaAddress or action is not provided)
400—Invalid input
401—Authorization failure
401—Unauthorized (for example, the user is not authenticated in the Web Session)
404—Dialog not found
500—Internal server error

Failure Response Example:
<ApiErrors>

[contents]

 <ApiError>
 <ErrorType>Invalid Input</ErrorType>
 <ErrorData>requestedAction</ErrorData>
 <ErrorMessage>Invalid 'requestedAction' specified for dialog</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes:

Invalid Input
Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Notifications Triggered:

Dialog Notification
Dialog CTI Error Notification (if a CTI error occurs)

Request Parameters
targetMediaAddress—Required
requestedAction—Required

3.2.3. Dialog—Update Call Variable Data
The Dialog—Update Call Variable Data API allows a user to set or change call variables (including named variables or ECC variables) on a
particular dialog. If the user is an agent, that user must be the participant they are targeting with the action. The corresponding event is only
published if any of the values of the call variables or named variables are updated.

Note: Cisco Finesse Release 8.5(3) only supports Latin1 characters for ECC variables. Other Unicode characters are not supported. For example, if a
user tries to use this API to update an ECC variable that contains Chinese characters, Finesse may not return the correct value in the subsequent
dialog update it sends to the client.

URI:

http://<server>/finesse/api/Dialog/<id>

Example URI:

http://host/finesse/api/Dialog/54321

Security Constraints:

Role—Agent
Limitation—Agents can only act on a participant of a dialog when they are that participant.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<Dialog>
 <requestedAction>UPDATE_CALL_DATA</requestedAction>
 <mediaProperties>
 <wrapUpReason>{39 byte description of the call}</wrapUpReason>
 <callvariables>
 <CallVariable>
 <name>{name of the call variable/named variable}</name>
 <value>{value to be changed}</value>
 </CallVariable>
 <CallVariable>
 ... Other call variables to be modified ...
 </CallVariable>
 </callvariables>
 </mediaProperties>
</Dialog>

HTTP Response:

202—Successfully accepted
400—Parameter missing (for example, the mediaProperties, callvariables, callvariable, or action is not provided)
400—Invalid input (the callvariable name or action is not recognized or is invalid or there are duplicate call
variable names)
401—Authorization failure
401—Invalid Authorization User Specified (the authenticated user tried to make a request of another dialog that is
not their own)
404—Dialog not found
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter missing
Invalid Input
Authorization Failure
Invalid Authorization User Specified
Dialog not found
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Notifications
Triggered:

Dialog Notification
Dialog CTI Error Notification (if a CTI error occurs)

Request Parameters
mediaProperties—Required
wrapUpReason—Either wrapUpReason or callvariables must be present
callvariables—Either wrapUpReason or callvariables must be present
CallVariable—Required if the callvariables tag is present
requestedAction—Required

Note: If both call variables and a wrap-up reason are present in the request to update call data, the values for the wrap-up reason and call
variables must all pass validation for Finesse to send the request to Unified CCE.

ECC and Call Variable Error Handling
When a client makes an invalid update request for a ECC or call variable, that request is sent to Finesse and then to Unified CCE. Unified CCE
logs certain errors but does not return events for them. In these cases, Finesse does not return an error. Clients must be aware of this behavior
and follow the appropriate Unified CCE documentation.

A client can also send an update request for an ECC or call variable that contains both valid and invalid data (that is, some of the ECC or call
variable updates in the request payload are valid while others are invalid). See the following table to determine the response from Finesse in
these error scenarios.

Error Scenario

Unified CCE Response

Finesse Response

1. A request was sent that generates an
error from Unified CCE to Finesse.

2. The request payload contained no
valid ECC or call variables.

Unified CCE sends an error to Finesse.

Finesse forwards the error to the
client.

1. A request was sent that generates an
error from Unified CCE to Finesse.

2. The request payload contained a
mix of valid and invalid ECC or call
variables.

1. Unified CCE sends an error to Finesse.
2. Unified CCE does not send an UPDATE_CALL_DATA

event to Finesse (that is, Unified CCE fails the entire
request).

1. Finesse forwards the error to
the client.

2. The client does not receive
an UPDATE_CALL_DATA
event.

1. A request was sent that does not
generate an error from Unified CCE
to Finesse.

2. The request payload contained no

Unified CCE does not respond.

Finesse does not respond.

[contents]

valid ECC or call variables.

1. A request was sent that does not
generate an error from Unified CCE
to Finesse.

2. The request payload contained a
mix of valid and invalid ECC or call
variables.

1. Unified CCE does not send an error to Finesse.
2. Unified CCE sends an UPDATE_CALL_DATA event to

Finesse for the valid ECC and call variables.

1. Finesse does not forward an
error to the client.

2. Finesse forwards the
UPDATE_CALL_DATA
event to the client.

Note: When the size of the value of an ECC variable name exceeds its maximum length, Unified CCE silently truncates the value and updates
the variable. As a result, Finesse does not receive a maximum length error.

Users of this API must ensure that the variables they are trying to update exist. Users must follow the exact format of each variable and ensure
that the maximum size is not exceeded.

3.2.4. Dialog—Create a New Dialog (Make a Call)
The Dialog—Create a New Dialog API allows users to make a call. Making a call is accomplished by creating a new Dialog and specifying the
fromAddress (the caller’s extension) and the toAddress (the destination target), and posting it to the Dialog collection for that user.

URI:

http://<server>/finesse/api/User/<id>/Dialogs

Example URI:

http://host/finesse/api/User/1234/Dialogs

Security
Constraints:

Role—Agent
Limitations—Users can only create dialogs with a fromAddress that they are currently signed in to.

HTTP Method:

POST

Content Type:

Application/XML

Input/Output
Format:

XML

HTTP Request:

<Dialog>
 <requestedAction>MAKE_CALL</requestedAction>
 <fromAddress>1001001</fromAddress>
 <toAddress>1001002</toAddress>

[contents]

</Dialog>

HTTP
Response:

202—Successfully accepted
Note: The 202 Successfully accepted response only indicates successful completion of the request. The request is processed
and the actual response of the action is sent as part of a Dialog notification.
400—Parameter missing (for example, the fromAddress or toAddress is not provided)
400—Invalid input
400—Invalid destination
401—Authorization failure (for example, the user is not yet authenticated in the Web Session)
401—Invalid Authorization (for example, the authenticated user tried to use a fromAddress that is not their own)
500—Internal server error

Failure
Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter Missing
Invalid Input
Invalid Destination
Authorization Failure
Invalid Authorization User Specified
Internal Server Error

Notifications
Triggered

If a CTI error occurs, Finesse sends a Dialog CTI Error Notification

Request Parameters
requestedAction
fromAddress
toAddress

3.2.5. Dialog—Make a Consult Call Request
The Dialog—Make a Consult Call Request API allows an agent to make a consult call request. After the consult call request succeeds, that call can
be completed as a transfer or conference. The requestedAction for a consult call is CONSULT_CALL. This request is sent to the Dialog URL of an
existing active call, from where the call is initiated. The ID in the URL represents the Dialog ID of the active call.

Finesse Release 8.5(3) supports the transfer or conference of any held call to the current active call, as long as the agent performing the transfer or
conference is a participant in both the held and active calls. Finesse Release 8.5(3) does not support single-step transfer. Furthermore, Finesse does
not support blind transfer or blind conference through the API or desktop.

Blind transfer is defined as follows: An agent has an active call and initiates a consult call to a destination, and then completes the transfer while
the call is ringing at the destination.

Blind conference is defined as follows: An agent has an active call and initiates a consult call to a destination, and then starts a conference while
the call is ringing at the destination.

Note on call variables in transfer or conference: Finesse maintains a copy of the call variables (including call peripheral variables and ECC
variables) for every call (Dialog object) in the system. The next time Unified CCE sets the call variables to values that are not NULL (through CTI
events like CALL_DATA_UPDATE_EVENT), the call variables maintained by Finesse are updated with these (not NULL) values. In this way,
Finesse ensures that a client always receives the latest data for call variables sent by Unified CCE. Because an empty string is considered a valid
value, when call variables are set to empty strings by Unified CCE, Finesse updates its version of the same call variables to empty strings, and
then updates the client.

Note: An agent or supervisor who signs in after being on an active conference call with other devices (which are not associated with any other
agent or supervisor) may experience unpredictable behavior with the Finesse Desktop due to incorrect Dialog notification payloads. These
limitations also encompass failover scenarios where failover occurs while the agent or supervisor is participating in a conference call. For
example, an agent is on a conference call when the Finesse server fails. When that agent is redirected to the other Finesse server, that agent could
see unpredictable behavior on the desktop. Examples of unpredictable behavior include, but are not limited to, the following:

The desktop does not reflect all participants in a conference call.
The desktop does not reflect that the signed-in agent or supervisor is in an active call.
Dialog updates contain inconsistent payloads.

Despite these caveats, users may continue to perform normal operations on their phones. Desktop behavior will return to normal after the agent
or supervisor drops off the conference call.

URI:

http://<server>/finesse/api/Dialog/<id>

Example URI:

http://host/finesse/api/Dialog/1234

Security
Constraints:

Role—Agent

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output
Format:

XML

[contents]

HTTP Request:

<Dialog>
 <requestedAction>CONSULT_CALL</requestedAction>
 <toAddress>1001002</toAddress>
 <targetMediaAddress>1001001<targetMediaAddress>
</Dialog>

HTTP Response:

202—Successfully accepted
Note: This response only indicates a successful completion of the request. The request is processed and the actual
response is sent as part of a Dialog notification.
400—Parameter missing (for example, the toAddress or requestedAction is not provided)
400—Invalid input (for example, the toAddress or requestedAction is invalid)
400—Invalid destination (for example, the toAddress is the same as the caller's extension)
401—Authorization failure
401—Invalid authorization (for example, a user tried to use a fromAddress that did not belong to that user)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter Missing
Invalid Input
Invalid Destination
Authorization Failure
Invalid Authorization User Specified
Internal Server Error

Notifications
Triggered

Dialog Notification
Dialog CTI Error Notification (if a CTI error occurs)

Request Parameters
requestedAction—Required
targetMediaAddress—Required
toAddress—Required

3.2.6. Dialog—Make a Silent Monitoring Call
The Dialog—Make a Silent Monitoring Call API allows a supervisor to silently monitor an agent on an active call, who is in Talking state. A new
dialog is created, specifying the fromAddress (supervisor's extension) and the toAddress (agent's extension), and posting the call to the
supervisor's dialog collection.

Note: Phones of agents to be monitored must support silent monitoring and must be configured in Cisco Unified Communications Manager as
follows:

The correct device type must be configured.
The device must have Bridge Monitoring enabled.
The correct permissions must be configured (under User Management > End User > PG User, in the Permissions area, select Standard CTI
Allow Call Recording, and then click Add to User Group).

URI:

http://<server>/finesse/api/User/<id>/Dialogs

Example
URI:

http://host/finesse/api/User/1234/Dialogs

Security
Constraints:

Role—Supervisor, Administrator
Limitations—A supervisor must be signed in to the fromAddress (extension) being used to create the silent monitoring call.
Agents to be monitored must be assigned to a team that supervisor is responsible for. An administrator can silently monitor
any call, except a "silent monitored" call.
If the agent transfers the call that the supervisor is monitoring, the silent monitoring session ends.

HTTP
Method:

POST

Content
Type:

Application/XML

Input/Output
Format:

XML

HTTP
Request:

<Dialog>
 <requestedAction>SILENT_MONITOR</requestedAction>
 <fromAddress>1001001</fromAddress>
 <toAddress>2001002</toAddress>
</Dialog>

HTTP
Response:

202—Successfully accepted
Note: This response only indicates a successful completion of the request. The request is processed and the actual response is

[contents]

 sent as part of a Dialog notification.
400—Parameter missing (the fromAddress, toAddress, or requestedAction is not provided)
400—Invalid input (the fromAddress, toAddress, or requestedAction is invalid)
400—Invalid destination (for example, the fromAddress and toAddress are the same)
400—Invalid state (the supervisor is already silent monitoring or in an active call)
401—Authorization failure (the user is not authenticated in the web session yet or is not a supervisor or administrator)
401—Invalid authorization user specified (a user tried to use the ID of another user in the request URL or tried to monitor an
agent that did not belong to a team that user supervises)
401—Unauthorized (a supervisor, who is not an administrator, tried to use a fromAddress that did not belong to that
supervisor to request a silent monitor call)
500—Internal server error

Failure
Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Parameter Missing
Invalid Input
Invalid Destination
Invalid State
Authorization Failure
Invalid Authorization User Specified
Internal Server Error

Notifications
Triggered

Dialog Notification

Request Parameters
requestedAction—Required
fromAddress—Required
toAddress—Required

3.2.7. Dialog—End a Silent Monitoring Call
The Dialog—End a Silent Monitoring Call API allows a supervisor to drop a silent monitoring call that was initiated by that supervisor. The
Dialog is updated by specifying a requestedAction of DROP and targetMediaAddress of the extension of the supervisor who initiated the silent
monitoring call.

URI:

http://<server>/finesse/api/Dialog/<dialogid>

Example URI:

http://host/finesse/api/Dialog/32458

Security
Constraints:

Role—Supervisor, Administrator
Limitations—A supervisor can only end a silent monitoring call that was initiated by that supervisor. An administrator
can end any silent monitoring call.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output
Format:

XML

HTTP Request:

<Dialog>
 <requestedAction>DROP</requestedAction>
 <targetMediaAddress>1001002</targetMediaAddress>
</Dialog>

HTTP Response:

202—Successfully accepted
Note: This response only indicates a successful completion of the request. The request is processed and the actual
response is sent as part of a Dialog notification.
400—Parameter missing (the targetMediaAddress or requestedAction is not provided)
400—Invalid input (the targetMediaAddress or requestedAction is invalid)
401—Authorization failure (the user is not authenticated in the web session yet or is not an administrator or
supervisor)
401—Invalid authorization user specified (for example, a supervisor tried to use a targetMediaAddress that did not
belong to that supervisor)
404—Not found (the dialog specified by the dialogid does not exist)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

[contents]

[contents]

Error Codes:

Parameter Missing
Invalid Input
Authorization Failure
Invalid Authorization User Specified
Not Found
Internal Server Error

Notifications
Triggered

Dialog Notification

Request Parameters
requestedAction—Required
targetMediaAddress—Required

3.3. Team APIs
The team object represents a team and contains the URI, team ID, team name, and the users associated with that team.

Team—Get Object

3.3.1. Team—Get Object
The Team—Get Object API allows a user to get the configuration information for a specific team, which includes the Team ID and a list of agents
that are a member of that team.

URI:

http://<server>/finesse/api/Team/<id>

Example URI:

http://host/finesse/api/Team/5004

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
404—Not found (for example, the team id is invalid)

Successful Response:

<Team>
 <id>5004</id>
 <name>5004</name>
 <uri>/finesse/api/Team/5004</uri>
 <users>
 <User>
 <firstName>John</firstName>
 <lastName>Brown</lastName>
 <loginId>1001053</loginId>
 <state>NOT_READY</state>
 <extension>1001</extension>
 <uri>/finesse/api/User/1001053</uri>
 </User>
 <User>
 <firstName>Jason</firstName>
 <lastName>Smith</lastName>
 <loginId>1001052</loginId>
 <state>TALKING</state>
 <extension>1002</extension>
 <uri>/finesse/api/User/1001052</uri>
 </User>
 </users>
</Team>

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
uri
id
name
users
User
loginId
firstName
lastName

[contents]

[contents]

state

3.4. System APIs
The SystemInfo object represents the Finesse system and includes the current system state, the XMPP server and pubSub domains configured for
the system, and the hostnames or IP addresses of the primary and secondary (if configured) Finesse nodes.

3.4.1. SystemInfo—Get SystemInfo
The SystemInfo—Get SystemInfo API allows a user to get information about the current status of the system, the XMPP server domain, the XMPP
pubSub domain, and hostnames or IP addresses of the primary and secondary nodes.

URI:

http://<server>/finesse/api/SystemInfo

Example URI:

http://host/finesse/api/SystemInfo

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success
500—Internal server error

Successful Response:

<SystemInfo>
 <status>OUT_OF_SERVICE</status>
 <xmppDomain>xmppserver.cisco.com</xmppDomain>
 <xmppPubSubDomain>pubsub.xmppserver.cisco.com</xmppPubSubDomain>
 <primaryNode>
 <host>172.16.204.25</host>
 </primaryNode>
 <secondaryNode>
 <host>172.16.204.26</host>
 </secondaryNode>
</SystemInfo>

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Internal Server Error</ErrorType>
 <ErrorMessage>Runtime Exception</ErrorMessage>

[contents]

[contents]

[contents]

 <ErrorData></ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Internal Server Error
For descriptions and other possible error codes, see API Error Codes.

Response Parameters
status
xmppDomain
xmppPubSubDomain
primaryNode - host
secondaryNode - host

4. The Cisco Finesse Configuration APIs
Administrators use these APIs to configure the Finesse system (for example, the primary and backup CTI server settings).

The Configuration APIs require administrator credentials to be passed into the basic authorization header.

System Configuration APIs

Cluster Configuration APIs

Database Configuration APIs

Layout Configuration APIs

Reason Code APIs

Wrap-Up Reason APIs

Media Properties Layout APIs

4.1. System Configuration APIs
The SystemConfig object is a container element that holds the Finesse system configuration, including details about the primary and backup CTI
servers.

SystemConfig—Get

SystemConfig—Set

4.1.1. SystemConfig—Get
The SystemConfig—Get API allows an administrative user to get a copy of the SystemConfig object.

URI:

http://<server>/finesseconfig/api/SystemConfig

Example URI:
http://host/finesseconfig/api/SystemConfig

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<SystemConfig>
<uri>/finesseconfig/api/SystemConfig</uri>
 <cti>
 <host>10.1.1.1</host>
 <port>42027</port>
 <backupHost>10.1.1.2</backupHost>
 <backupPort>42027</backupPort>
 <peripheralId>5000</peripheralId>
 </cti>
</SystemConfig>

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
cti - host
cti - port
cti - peripheralId

[contents]

cti - backupHost
cti - backupPort

4.1.2. SystemConfig—Set
The SystemConfig—Set API allows an administrative user to configure the system settings.

Note: If the backupHost and backupPort are not specified in the XML body during a PUT, and they were configured at an earlier time, the PUT
operation removes these values from the database.

URI:

http://<server>/finesseconfig/api/SystemConfig

Example URI:

http://host/finesseconfig/api/SystemConfig

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<SystemConfig>
 <cti>
 <host>10.1.1.1</host>
 <port>42027</port>
 <backupHost>10.1.1.2</backupHost>
 <backupPort>42027</backupPort>
 <peripheralId>5000</peripheralId>
 </cti>
</SystemConfig>

HTTP Response:

200—Success (the new settings were successfully written to the database)
400—Bad request
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Invalid Input</ErrorType>
 <ErrorMessage>port</ErrorMessage>
 <ErrorData>65536</ErrorData>
 </ApiError>
</ApiErrors>

[contents]

[contents]

Error Codes

Parameter Missing
Invalid Input
Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
cti - host—Required
cti - port—Required
cti - peripheralId—Required
cti - backupHost—Required if backupPort is present in the request
cti - backupPort—Required if backupHost is present in the request

4.2. Cluster Configuration APIs
The ClusterConfig object is a container element that holds Finesse cluster configuration. This container supports the addition of a single, secondary
Finesse node. After the secondary Finesse node is installed and ready, it becomes part of the cluster.

This feature also reports replication status. Replication status determines whether a user is allowed to or restricted from changing the value of the
secondary node.

The Finesse server interacts with the VOS database to get and set information about the secondary node.

ClusterConfig—Get

ClusterConfig—Set

4.2.1. ClusterConfig—Get
The ClusterConfig—Get API allows a user to get a copy of the ClusterConfig object.

URI:

http://<server>/finesseconfig/api/ClusterConfig

Example URI:

http://host/finesseconfig/api/ClusterConfig

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

[contents]

HTTP Request:

—

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Successful Response Example:

<ClusterConfig>
 <uri>/finesseconfig/api/ClusterConfig</uri>
 <secondaryNode>
 <host>10.1.1.1</host>
 </secondaryNode>
</ClusterConfig>

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes

Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
secondaryNode - host

4.2.2. ClusterConfig—Set
The ClusterConfig—Set API allows an administrative user to configure the cluster settings.

Note: If the host value is blank or is not specified in the XML body during a PUT, the PUT operation removes the host value from the database.

URI:

http://<server>/finesseconfig/api/ClusterConfig

Example URI:

http://host/finesseconfig/api/ClusterConfig

HTTP Method:

PUT

[contents]

[contents]

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<ClusterConfig>
 <secondaryNode>
 <host>10.1.1.1</host>
 </secondaryNode>
</ClusterConfig>

HTTP Response:

200—Success (the new settings were successfully written to the database)
400—Bad request
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Datastore Error</ErrorType>
 <ErrorData>5527</ErrorData>
 <ErrorMessage>Error reading/writing ClusterConfig from the database</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes

Parameter Missing
Invalid Input
Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
secondaryNode - host—Required

4.3. Database Configuration APIs
The EnterpriseDatabaseConfig object is a container element that holds the properties required by Finesse to connect to the Admin Workstation
database (AWDB) server for user authentication.

EnterpriseDatabaseConfig—Get

EnterpriseDatabaseConfig—Set

4.3.1. EnterpriseDatabaseConfig—Get
The EnterpriseDatabaseConfig—Get API allows a user to get a copy of the EnterpriseDatabaseConfig object.

URI:

http://<server>/finesseconfig/api/EnterpriseDatabaseConfig

Example URI:

 http://host/finesseconfig/api/EnterpriseDatabaseConfig

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<EnterpriseDatabaseConfig>
 <uri>/finesseconfig/api/EnterpriseDatabaseConfig</uri>
 <host>10.1.1.1</host>
 <backupHost></backupHost>
 <port></port>
 <databaseName>ucce8x_awdb</databaseName>
 <domain>example.com</domain>
 <username>Admin</username>
 <password>password</password>
</EnterpriseDatabaseConfig>

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Internal Server Error

[contents]

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
host
backupHost
port
databaseName
domain
username
password

4.3.2. EnterpriseDatabaseConfig—Set
The EnterpriseDatabaseConfig—Set API allows an administrative user to configure the enterprise database settings.

URI:

http://<server>/finesseconfig/api/EnterpriseDatabaseConfig

Example URI:

http://host/finesseconfig/api/EnterpriseDatabaseConfig

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<EnterpriseDatabaseConfig>
 <uri>/finesseconfig/api/EnterpriseDatabaseConfig</uri>
 <host>10.1.1.1</host>
 <backupHost>10.1.1.2</backupHost>
 <port>1433</port>
 <databaseName>ucce8.x_awdb</databaseName>
 <domain>example.com</domain>
 <username>Admin</username>
 <password>password</password>
</EnterpriseDatabaseConfig>

HTTP Response:

200—Success (the new settings were successfully written to the database)
400—Bad request
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

[contents]

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Invalid Input</ErrorType>
 <ErrorMessage>host</ErrorMessage>
 <ErrorData>10.1.1</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes

Parameter Missing
Invalid Input
Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
host—Required
backupHost—Optional (Note: If you do not specify the backupHost in the XML body during a PUT but it was configured at an earlier
time, the PUT operation resets the value to blank.)
port—Required
databaseName—Required
domain—Required
username—Required
password—Required

4.4. Layout Configuration APIs
The LayoutConfig object is a container element that enables an administrator to customize the layout of the Finesse Desktop by uploading an XML
file.

The LayoutConfig object is structured as follows:

<LayoutConfig>
 <uri>/finesseconfig/api/LayoutConfig/default</uri>
 <layoutxml><?xml version="1.0" encoding="UTF-8"?>
 <finesseLayout xmlns="http://www.cisco.com/vtg/finesse">
 <layout>
 <role>Agent</role>
 <page>
 <gadget>http://localhost/desktop/gadgets/CallControl.xml</gadget>
 </page>
 <tabs>
 <tab>
 <id>home</id>
 <label>Home</label>
 </tab>
 <tab>
 <id>manageCall</id>
 <label>Manage Call</label>
 </tab>
 </tabs>
 </layout>

[contents]

 <layout>
 <role>Supervisor</role>
 <page>
 <gadget>http://localhost/desktop/gadgets/CallControl.xml</gadget>
 </page>
 <tabs>
 <tab>
 <id>home</id>
 <label>Home</label>
 <gadgets>
 <gadget>http://localhost/desktop/gadgets/TeamPerformance.xml</gadget>
 </gadgets>
 </tab>
 <tab>
 <id>manageCall</id>
 <label>Manage Call</label>
 </tab>
 </tabs>
 </layout>
 </finesseLayout>
</layoutxml>
</LayoutConfig>

LayoutConfig—Get

LayoutConfig—Set

4.4.1. LayoutConfig—Get
The LayoutConfig—Get API allows a user to get a copy of the default LayoutConfig object.

URI:

http://<server>/finesseconfig/api/LayoutConfig/default

Example URI:

http://host/finesseconfig/api/LayoutConfig/default

Security Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to get a copy of the LayoutConfig object.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<LayoutConfig>
 <uri>/finesseconfig/api/LayoutConfig/default/</uri>
 <layoutxml><?xml version="1.0" encoding="UTF-8"?>
 <finesseLayout xmlns="http://www.cisco.com/vtg/finesse">
 <layout>

[contents]

 <role>Agent</role>
 <page>
 <gadget>http://localhost/desktop/gadgets/CallControl.xml</gadget>
 </page>
 <tabs>
 <tab>
 <id>home</id>
 <label>Home</label>
 </tab>
 <tab>
 ...
 </tab>
 </tabs>
 </layout>
 <layout>
 <role>Supervisor</role>
 <page>
 <gadget>http://localhost/desktop/gadgets/CallControl.xml</gadget>
 </page>
 <tabs>
 ...
 </tabs>
 </layout>
 </finesseLayout>
 </layoutxml>
</LayoutConfig>

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
layoutxml

4.4.2. LayoutConfig—Set
The LayoutConfig—Set API allows an administrator to update the default layout setting for the Finesse Desktop.

Note: The XML data is verified to ensure it is valid XML syntax and that it conforms to the Finesse schema.

URI:

http://<server>/finesseconfig/api/LayoutConfig/default

Example URI:

http://host/finesseconfig/api/LayoutConfig/default

Security Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to update the LayoutConfig object.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<LayoutConfig>
 <layoutxml><?xml version="1.0" encoding="UTF-8"?>
 <finesseLayout xmlns="http://www.cisco.com/vtg/finesse">
 <layout>
 <role>Agent</role>
 <page>
 <gadget>http://localhost/desktop/gadgets/CallControl.xml</gadget>
 </page>
 <tabs>
 <tab>
 <id>home</id>
 <label>Home</label>
 <gadgets>
 <gadget>http://localhost/desktop/gadgets/HelloWorld.xml</gadget>
 <gadget>http://localhost/desktop/gadgets/GoodByeWorld.xml</gadget>
 </gadgets>
 </tab>
 <tab>
 ...
 </tab>
 </tabs>
 </layout>
 <layout>
 <role>Supervisor</role>
 <page>
 <gadget>http://localhost/desktop/gadgets/CallControl.xml</gadget>
 </page>
 <tabs>
 ...
 </tabs>
 </layout>
 </finesseLayout>
 </layoutxml>
</LayoutConfig>

HTTP Response:

200—Success (the new settings were successfully written to the database)
400—Parameter missing (the XML file was not provided)
400—Invalid input (the submitted XML is invalid or does not conform to the Finesse layout schema)
401—Authorization failure (for example, the user is not yet authenticated in the web session)
500—Internal server error

[contents]

[contents]

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Invalid Input</ErrorType>
 <ErrorMessage>layoutxml</ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes

Parameter Missing
Invalid Input
Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
layoutxml—Required

4.5. Reason Code APIs
The ReasonCode object represents a reason code that can be applied when an agent is changing state. There are two categories of reason codes: Not
Ready reason codes and Logout reason codes. The ReasonCode APIs are for administrator operations.

The structure of a ReasonCode object is as follows:

<ReasonCode>
 <uri>/finesseconfig/api/ReasonCode/{id}</uri>
 <category>NOT_READY</category>
 <code>10</code>
 <label>Team Meeting</label>
 <forAll>true</forAll>
</ReasonCode>

Note: If you provide two or more duplicate tags in the XML body for a POST or PUT operation, the value of the last duplicate tag is processed and
all other duplicate tags are ignored.

Administrators can create, edit, or delete not ready and sign out reason codes using either the reason code APIs or the Finesse Administration
Console. Not ready reason codes can be configured using the Not Ready Reason Code Management gadget in the Administration Console or using
the reason code APIs, with the category set to NOT_READY. Similarly, sign out reason codes can be configured using the Sign Out Reason Code
Management gadget in the Administration Console or using the reason code APIs with the category set to LOGOUT.

ReasonCode—Get

ReasonCode—Get List

ReasonCode—Create

ReasonCode—Update

ReasonCode—Delete

4.5.1. ReasonCode—Get
The ReasonCode—Get API allows the user to retrieve a full ReasonCode object.

URI:

http://<server>/finesseconfig/api/ReasonCode/<id>

Example URI:

http://host/finesseconfig/api/ReasonCode/476

Security Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to get a reason code.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<ReasonCode>
 <uri>/finesseconfig/api/ReasonCode/{id}</uri>
 <category>NOT_READY</category>
 <code>10</code>
 <label>Team Meeting</label>
 <forAll>true</forAll>
</ReasonCode>

HTTP Response:

200—Success
400—Bad request
400—Finesse API error (for example, the object does not exist, the object is stale, violation of DB constraint, and
so on)
401—Authorization failure
401—Invalid Authorization User Specified
404—Not Found (the resource cannot be found, for example, it might have been deleted)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

[contents]

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
category
code
label
forAll

4.5.2. ReasonCode—Get List
The ReasonCode—Get List API allows an administrator to get a list of Not Ready or Logout reason codes. The required URL parameter category
specifies whether to retrieve Logout reason codes or Not Ready reason codes. If this URL parameter is missing, the API returns an error.

URI:

http://<server>/finesseconfig/api/ReasonCodes?category=NOT_READY|LOGOUT

Example URI:

http://host/finesseconfig/api/ReasonCodes?category=NOT_READY

Security Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to get a list of reason codes.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:
—

<ReasonCodes>
 <category>NOT_READY</category>
 <ReasonCode>
 ... Full ReasonCode Object ...
 </ReasonCode>

[contents]

 <ReasonCode>
 ... Full ReasonCode Object ...
 </ReasonCode>
 <ReasonCode>
 ... Full ReasonCode Object ...
 </ReasonCode>
</ReasonCodes>

HTTP Response:

200—Success
400—Bad request
400—Finesse API error (for example, the object does not exist, the object is stale, violation of DB constraint, and
so on)
401—Authorization failure
401—Invalid Authorization User Specified
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

URL Request Parameter
category—Required

Response Parameters
ReasonCodes
category
ReasonCode

4.5.3. ReasonCode—Create
The ReasonCode—Create API allows an administrator to create a new reason code. The administrator specifies the category, code, label, and
forAll attributes for the reason code.

Note: The forAll parameter determines whether a reason code is global (true) or non-global (false). Cisco Finesse Release 8.5(3) only supports
global reason codes. Non-global reason codes are not supported in this release. If an administrator uses this API to create a reason code and sets
the forAll parameter to false, that reason code will not appear in the Agent Desktop or the Administrative Console.

URI:

http://<server>/finesseconfig/api/ReasonCode/

Example URI:

http://host/finesseconfig/api/ReasonCode/

Security
Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to create a reason code.

HTTP
Method:

POST

Content Type:

Application/XML

Input/Output
Format:

XML

HTTP
Request:

<ReasonCode>
 <category>NOT_READY</category>
 <code>24</code>
 <label>Lunch Break</label>
 <forAll>true</forAll>
</ReasonCode>

HTTP
Response:

200—Success; the Finesse server has successfully created the new ReasonCode. The response contains an empty response
body, and a "location:" header denoting the absolute URL of the newly created ReasonCode object
400—Bad request
400—Finesse API error (for example, the reason code already exists)
401—Authorization failure
401—Invalid Authorization User Specified
500—Internal server error

Failure
Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes: Authorization Failure

[contents]

 Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
category—Required
code—Required
label—Required
forAll—Required

4.5.4. ReasonCode—Update
The ReasonCode—Update API allows an administrator to modify an existing reason code. The administrator specifies an existing reason code and
category, along with the value of the field to update.

Note: The forAll parameter determines whether a reason code is global (true) or non-global (false). Cisco Finesse Release 8.5(3) only supports
global reason codes. Non-global reason codes are not supported in this release. If an administrator uses this API to update a reason code and sets
the forAll parameter to false, that reason code will not appear in the Agent Desktop or in the Administrative Console.

URI:

http://<server>/finesseconfig/api/ReasonCode/<id>

Example URI:

http://host/finesseconfig/api/ReasonCode/476

Security Restraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to update a reason code.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<ReasonCode>
 <code>1001</code>
 <label>Lunch break</label>
 <forAll>true</forAll>
</ReasonCode>

[contents]

HTTP Response:

200—Success (The Finesse server successfully updated the reason code)
400—Bad request
400—Finesse API error (for example, duplicate reason code)
401—Authorization failure
401—Invalid Authorization User Specified
404—Not found
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
code
label
forAll

Note: You do not need to include the attributes (code, label, or forAll) that you do not need to change. For example, if you want to change only
the label for an existing reason code from "In Meeting" to "Attend Meeting", you can send the following request:

<ReasonCode>
 <label>Attend Meeting</label>
</ReasonCode>

4.5.5. ReasonCode—Delete
The ReasonCode—Delete API allows an administrator to delete an existing reason code.

URI:

http://<server>/finesseconfig/api/ReasonCode/<id>

Example URI:

http://host/finesseconfig/api/ReasonCode/4235

[contents]

Security Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to delete a reason code.

HTTP Method:

DELETE

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success (The Finesse server successfully deleted the specified reason code)
400—Bad request
400—Finesse API error (for example, the database operation failed due to a table being locked)
401—Authorization failure
401—Invalid Authorization User Specified
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

4.6. Wrap-Up Reason APIs
The WrapUpReason object represents the reason that an agent can apply to a call during call wrap-up.

The WrapUpReason object is structured as follows:

<WrapUpReason>
 <uri>/finesseconfig/api/WrapUpReason/{id}</uri>
 <label>Issue/Complaint</label>
 <forAll>true</forAll>

[contents]

</WrapUpReason>

Note: If you provide two or more duplicate tags in the XML body for a POST or PUT operation, the value of the last duplicate tag is processed and
all other duplicate tags are ignored.

WrapUpReason—Get

WrapUpReason—Get List

WrapUpReason—Create

WrapUpReason—Update

WrapUpReason—Delete

4.6.1. WrapUpReason—Get
The WrapUpReason—Get API allows a user to retrieve a WrapUpReason object.

URI:

http://<server>/finesseconfig/api/WrapUpReason/<id>

Example URI:

http://host/finesseconfig/api/WrapUpReason/31

Security Restraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to get a wrap-up reason.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<WrapUpReason>
 <uri>/finesseconfig/api/WrapUpReason/{id}</uri>
 <label>Product Question</label>
 <forAll>true</forAll>
</WrapUpReason>

HTTP Response:

200—Success
400—Bad request (the request body is invalid)

[contents]

400—Finesse API error (for example, object does not exist or is stale)
401—Authorization failure
401—Invalid Authorization User Specified (for example, an authenticated user tried to use the identity of another
user)
404—Not found (for example, the wrap-up reason was deleted)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
uri
label
forAll

4.6.2. WrapUpReason—Get List
The WrapUpReason—Get List API allows an administrator to retrieve a list of WrapUpReason objects.

URI:

http://<server>/finesseconfig/api/WrapUpReasons

Example URI:

http://host/finesseconfig/api/WrapUpReasons

Security Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to get a list of wrap-up reasons.

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

Successful Response:

<WrapUpReasons>
 <WrapUpReason>
 ... Full WrapUpReason Object ...
 </WrapUpReason>
 <WrapUpReason>
 ... Full WrapUpReason Object ...
 </WrapUpReason>
 <WrapUpReason>
 ... Full WrapUpReason Object ...
 </WrapUpReason>
</WrapUpReasons>

HTTP Response:

200—Success
400—Bad request (the request body is invalid)
400—Finesse API error (for example, object does not exist or is stale)
401—Authorization failure
401—Invalid Authorization User Specified (for example, an authenticated user tried to use the identity of another
user)
404—Not found (for example, the wrap-up reason was deleted)
500—Internal server error

Failure Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
uri
label

[contents]

forAll

4.6.3. WrapUpReason—Create
The WrapUpReason—Create API allows an administrator to create a new wrap-up reason. The administrator specifies the label and forAll
attributes for the wrap-up reason.

Note: The forAll parameter determines whether a wrap-up reason is global (true) or non-global (false). Cisco Finesse Release 8.5(3) only supports
global wrap-up reasons. Non-global wrap-up reasons are not supported in this release. If an administrator uses this API to create a wrap-up
reason and sets the forAll parameter to false, that wrap-up reason will not appear in the Agent Desktop or the Administrative Console.

URI:

http://<server>/finesseconfig/api/WrapUpReason/

Example URI:

http://host/finesseconfig/api/WrapUpReason/

Security
Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to create a wrap-up reason.

HTTP
Method:

POST

Content Type:

Application/XML

Input/Output
Format:

XML

HTTP
Request:

<WrapUpReason>
 <label>Recommendation</label>
 <forAll>true</forAll>
</WrapUpReason>

HTTP
Response:

200—Success
The Finesse server successfully created the new wrap-up reason. The response contains an empty response body, and a
"location:" header denoting the absolute URL of the newly created WrapUpReason object.
400—Bad request (for example, one of the required parameters was not provided or is invalid)
400—Finesse API error (for example, the wrap-up reason already exists)
401—Authorization failure
401—Invalid Authorization User Specified
500—Internal server error

[contents]

Failure
Response
Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
label—Required
forAll—Required

4.6.4. WrapUpReason—Update
The WrapUpReason—Update API allows an administrator to modify an existing wrap-up reason. The administrator references an existing wrap-
up reason by its ID and specifies the values of the fields to update.

Note: The forAll parameter determines whether a wrap-up reason is global (true) or non-global (false). Cisco Finesse Release 8.5(3) only supports
global wrap-up reasons. Non-global wrap-up reasons are not supported in this release. If an administrator uses this API to update a wrap-up
reason and sets the forAll parameter to false, that wrap-up reason will not appear in the Agent Desktop or the Administrative Console.

URI:

http://<server>/finesseconfig/api/WrapUpReason/<id>

Example URI:

http://host/finesseconfig/api/WrapUpReason/23

Security Restraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to update a wrap-up reason.

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

[contents]

HTTP Request:

<WrapUpReason>
 <label>Sales call</label>
 <forAll>true</forAll>
</WrapUpReason>

HTTP Response:

200—Success (The Finesse server successfully updated the wrap-up reason)
400—Bad request (if a required parameter is not provided or is invalid)
400—Finesse API error (for example, duplicate wrap-up reason or wrap-up reason does not exist)
401—Authorization failure
401—Invalid Authorization User Specified
404—Not found (for example, the wrap-up reason was deleted)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
label
forAll

Note: You do not need to include the attributes (label or forAll) that you do not need to change. For example, if you want to change only the
label for an existing wrap-up reason from "Wrong Number" to "Wrong Department", you can send the following request:

<WrapUpReason>
 <label>Wrong Department</label>
</WrapUpReason>

4.6.5. WrapUpReason—Delete
The WrapUpReason—Delete API allows an administrator to delete an existing wrap-up reason. The administrator references an existing
WrapUpReason object by its ID.

URI: http://<server>/finesseconfig/api/WrapUpReason/<id>

[contents]

Example URI:

http://host/finesseconfig/api/WrapUpReason/475

Security Constraints:

Role—Administrator
Limitations—A user must be signed in as an administrator to delete a wrap-up reason.

HTTP Method:

DELETE

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

—

HTTP Response:

200—Success (The Finesse server successfully deleted the specified wrap-up reason)
400—Bad request
400—Finesse API error (for example, the database operation failed due to a table being locked)
401—Authorization failure
401—Invalid Authorization User Specified
404—Not Found (for example, the wrap-up reason was deleted)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Invalid Authorization User Specified
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

[contents]

4.7. Media Properties Layout APIs
The MediaPropertiesLayout object represents the appearance of media properties carried in the dialog objects in the call control gadget on the agent
or supervisor desktop. Administrators can use these APIs to customize the layout of media properties.

The MediaPropertiesLayout is structured as follows:

<MediaPropertiesLayout>
 <header>
 <entry>
 <displayName>Customer Name</displayName>
 <mediaProperty>callVariable1</mediaProperty>
 </entry>
 </header>
 <column>
 <entry>
 <displayName>Customer Name</displayName>
 <mediaProperty>callVariable1</mediaProperty>
 </entry>
 <entry>
 <displayName>Customer Acct#</displayName>
 <mediaProperty>user.cisco.acctnum</mediaProperty>
 </entry>
 </column>
 <column>
 <entry>
 <displayName>Support contract</displayName>
 <mediaProperty>callVariable2</mediaProperty>
 </entry>
 <entry>
 <displayName>Product calling about</displayName>
 <mediaProperty>callVariable3</mediaProperty>
 </entry>
 </column>
</MediaPropertiesLayout>

Note: Finesse Release 8.5(3) supports the following media properties: call variables (up to 10) and ECC variables.

MediaPropertiesLayout—Get

MediaPropertiesLayout—Set

4.7.1. MediaPropertiesLayout—Get
The MediaPropertiesLayout—Get API allows a user to get a copy of the default MediaPropertiesLayout object.

Finesse Release 8.5(3) supports only a single default instance.

URI:

http://<server>/finesseconfig/api/MediaPropertiesLayout/default

Example URI:

http://host/finesseconfig/api/MediaPropertiesLayout/default

HTTP Method:

GET

Content Type:

Application/XML

Input/Output Format: XML

[contents]

HTTP Request:

—

Successful Response:

<MediaPropertiesLayout>
... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>

HTTP Response:

200—Success
401—Unauthorized (for example, the user is not authenticated in the Web Session)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorType>Authorization Failure</ErrorType>
 <ErrorMessage>UNAUTHORIZED</ErrorMessage>
 <ErrorData>jsmith</ErrorData>
 </ApiError>
</ApiErrors>

Error Codes:

Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Response Parameters
header
column
entry
displayName
mediaProperty

4.7.2. MediaPropertiesLayout—Set
The MediaPropertiesLayout—Set API allows an administrator to configure the default call variable layout.

URI:

http://<server>/finesseconfig/api/MediaPropertiesLayout/default

Example URI:

http://host/finesseconfig/api/MediaPropertiesLayout/default

HTTP Method:

PUT

Content Type:

Application/XML

Input/Output Format:

XML

HTTP Request:

<MediaPropertiesLayout>
 <header>
 <entry>
 <displayName>Customer Name</displayName>
 <mediaProperty>callVariable1</mediaProperty>
 </entry>
 </header>
 <column>
 <entry>
 <displayName>Customer Name</displayName>
 <mediaProperty>callVariable1</mediaProperty>
 </entry>
 <entry>
 <displayName>Customer Acct#</displayName>
 <mediaProperty>user.cisco.acctnum</mediaProperty>
 </entry>
 </column>
 <column>
 <entry>
 <displayName>Support contract</displayName>
 <mediaProperty>callVariable2</mediaProperty>
 </entry>
 <entry>
 <displayName>Product calling about</displayName>
 <mediaProperty>callVariable3</mediaProperty>
 </entry>
 </column>
</MediaPropertiesLayout>

HTTP Response:

200—Success (the new settings were successfully written to the database)
400—Parameter missing (at least one of the required parameters was not provided)
400—Invalid input (at least one of the parameters provided is not valid)
401—Authorization failure (for example, the user is not yet authenticated in the Web Session)
500—Internal server error

Failure Response Example:

<ApiErrors>
 <ApiError>
 <ErrorData>The entry contained an invalid media property: callVariable11</ErrorData>
 <ErrorType>Invalid Input</ErrorType>
 <ErrorMessage>HTTP Status code: 400 (Bad Request)
 Api Error Type: Invalid Input
 Error Message: Invalid media property name 'callVariable11'
 </ErrorMessage>
 </ApiError>
</ApiErrors>

Error Codes

Parameter Missing

[contents]

[contents]

[contents]

Invalid Input
Authorization Failure
Internal Server Error

For descriptions and other possible error codes, see API Error Codes.

Request Parameters
header—Optional
column—Optional
entry—Optional
displayName—Required
mediaProperty—Required

5. API Parameter Reference
Parameter Types and Data Types

API Header Parameters

API Request Parameters

API Response Parameters

5.1. Parameter Types and Data Types
The tables in the API Request and Response Parameter sections include a column named Parameter Type/Data Type.

5.1.1. Parameter Types
Body Parameter

Path Parameter

Query Parameter

Body Parameter
A body parameter (also known as a complex parameter) appears in the body of the message. Body parameters are used in the Set Call Data API
only. In this example, the callVariables and the callerEnteredDigits are body parameters:

{
 "call": {
 "data": {
 "callVariable1": "X",
 "callVariable2": "Y",
 "callVariable3": "Z",
 "callerEnteredDigits": "765747",

Path Parameter
A path parameter is included in the path of the URI. In this example, callId is a path parameter:

http://host:80/webservices/CallService/Call/<callId>
/consultCall?dialedNumber=1002&consultType=1

[contents]

[contents]

[contents]

Query Parameter
Query parameters are passed in a query string on the end of the URI you are calling and are preceded by a question mark. Multiple query
parameters are connected by an ampersand. In this URI, extension and forcedFlag are query parameters.

http://host:80/webservices/ConnectionService/Connection/
signIn?extension=1012&forcedFlag=1

5.1.2. Data Types
Data types used in API parameters and event message fields are listed in the following table:

Data Type

Description

Boolean

A logical data type that has one of two values: true or false.

Integer

A 32-bit wide integer.

Long

A long integer that represents a whole number whose range is greater than or equal to that of a standard integer.

String

A variable-length string variable. If a maximum length exists, it is listed with the parameter description.

Time

Date and Time

5.2. API Header Parameters
Name

Parameter Type / Data Type

Description

Used as a Request Parameter by

password

Path | String

The password that allows a user to sign in

User Sign In to Finesse

username

Path | String

The name that allows a user to sign in

User Sign In to Finesse

5.3. API Request Parameters
| A - B| C | D - F | H - L | M - P | R - S | U - W |

Name

Parameter
Type /
Data
Type

Description

Used as a Request
Parameter by

backupHost

Body |
String

The hostname or IP address of the backup AWDB server
Validation: No special characters allowed except "." and "-"

EnterpriseDatabaseConfig
- Set

callvariables

Collection

A list of call variables to be modified
Validation: Either wrapUpReason or callvariables must be present. Cannot be
missing or empty

Dialog - Update Call
Variable Data

CallVariable

XML

Contains the name and value of a call variable belonging to this particular
dialog that needs to be updated
Size:

CallVariable - 40 bytes
ECC/Named Variables - Sum of all Names, Values and index(if array) <=
2000 bytes. Each ECC variable value cannot exceed the length defined by
CTI Admin

Validation:
There should be at least one call variable to be modified
The name must be present and not empty
There must be no duplicate names
The Value tag must be specified (but it can be empty)
Call variables must match up to one of the pre-defined call variable
names (for example, callVariable1...callVariable10)
For ECC/Named Variables:

The variable starts with the prefix "user"
If the variable is a Named Array, the variable should end with a
number that is enclosed in square brackets. That is, an opening
bracket '[' followed by a number, followed by a closing bracket ']'
(for example, user.myarray[2]). If the variable includes the square
brackets in any other order, it will not be considered to be a named
array variable but will instead be considered as a named scalar
variable, and will be allowed to be sent to the CTI server. For
example, the variable user.my[array] would be considered to be a
named scalar variable
ECC Variable names should match those defined in the CTI Server
administration UI, in name and in length
All ECC Variable validations as applied in a CTI server are
applicable, but, these validations are performed by the CTI server

Dialog - Update Call
Variable Data

that receives these ECC Variables
Finesse Release 8.5(3) only supports Latin1 characters for ECC variables.
Other Unicode characters are not supported.

category

Query |
String

The category of the reason code.
Possible Values: NOT_READY, LOGOUT
Validation: The combination of category, code, and label must be unique.

ReasonCode—Get List
ReasonCode - Create
User—Get ReasonCode
List

code

Integer

The value of the reason code.
Possible values: 0–65535
Validation: The combination of category, code, and label for a reason code
must be unique.

ReasonCode - Create
ReasonCode - Update

column

List of
entry
objects

Grouping of media properties for agent and supervisor desktops.
Validation: Valid entry tags
Finesse Release 8.5(3) supports a maximum of two columns in the
MediaPropertiesLayout object. Columns can contain a maximum of 10 entries
and can be empty.
The first column specified in the PUT request appears on the left of the call
control gadget on the desktop. The second column appears on the right.

MediaPropertiesLayout -
Set

cti - backupHost

Body |
String

The hostname or IP address of the backup CTI server (must not be the same
as the hostname or IP address of the primary CTI server)
Validation: No special characters allowed except "." and "-"

SystemConfig - Set

cti - backupPort

Body |
Integer

The port number of the backup CTI server
Validation: must be between 1 and 65535

SystemConfig - Set

cti - host

Body |
String

The hostname or IP address of the primary CTI server
Default value: localhost
Validation: No special characters allowed except "." and "-"

SystemConfig - Set

cti - peripheralId

Body |
Integer

The ID of the CTI server peripheral
Default value: 5000
Validation: must be between 1 and 32767

SystemConfig - Set

cti - port

Body |
Integer

The port number of the primary CTI server
Default value: 42027

SystemConfig - Set

 Validation: must be between 1 and 65535

databaseName

Body |
String

The name of the AWDB

EnterpriseDatabaseConfig
- Set

displayName

String

Part of an entry. A label that describes the mediaProperty for that entry (for
example, Account Number) that appears on the agent or supervisor desktop.
Each entry must have exactly one display name. HTML tags are rendered as
plain text and do not retain formatting.
Validation: Any valid string (including an empty string). The maximum
length of a displayName is 50 characters.

MediaPropertiesLayout -
Set

domain

Body |
String

The domain of the AWDB

EnterpriseDatabaseConfig
- Set

entry

Entry
object
containing
a name
and
media
property

A displayName and mediaProperty combination.
Validation: Each entry must have exactly one displayName and one
mediaProperty. The displayName can be empty.

MediaPropertiesLayout -
Set

extension

Body |
Integer

The extension with which the user wants to sign in
Type: number (maximum of 16 bytes)
Validation: the extension exists in Cisco Unified CM

User Sign In to Finesse

forAll

Boolean

The access range of the reason code or wrap-up reason.
Validation: must be true or false
Only global reason codes and wrap-up reasons (forAll parameter is set to
"true") are supported for Finesse Release 8.5(3).

ReasonCode - Create
ReasonCode - Update
WrapUPReason - Create
WrapUpReason - Update

fromAddress

String

Used for matching the User media device. This value is the same as the
extension the user is currently signed into.
For silent monitoring, this value represents the extension of the supervisor
who initiated the silent monitoring call.

Dialog - Create a New
Dialog
Dialog - Make a Silent
Monitoring Call

header

Entry
object

A single entry (combination of displayName and mediaProperty) that
appears in the call header on the desktop for each call.

MediaPropertiesLayout -
Set

host

Body |
String

The hostname or IP address of the AWDB server
Validation: No special characters allowed except "." and "-"

EnterpriseDatabaseConfig
- Set

id

Path |
String

The ID of the user (maximum of 12 characters)
Validation: The user is configured in Unified CCE

User Sign In to Finesse
User Sign Out of Finesse
User - Change Agent
State
User—Change Agent
State (Pass NotReady or
Logout Corresponding
ReasonCode to CTI)

label

String

The reason code or wrap-up reason label
Validation for WrapUpReason APIs: The label must be unique. The label
cannot be longer than 39 bytes (which is equal to 39 US English characters).
Validation for ReasonCode APIs: The combination of category, code, and
label must be unique. The label cannot be longer than 40 characters.

ReasonCode - Create
ReasonCode - Update
WrapUpReason - Create
WrapUpReason - Update

layoutxml

String

The XML data that determines the layout of the Finesse desktop
Validation: Must be valid XML and conform with the Finesse schema

LayoutConfig - Set

mediaProperties

XML

Collection of media-specific properties related to the Dialog that need to be
modified
Validation: Cannot be missing or empty

Dialog - Update Call
Variable Data

mediaProperty

String

Part of an entry. The name of the call variable or ECC variable that is
displayed to the agent or supervisor.
Validation: Each entry must have exactly one mediaProperty. Allowable
strings are callVariable1 to callVariable10, or a valid ECC variable. The
maximum length is 32 characters.

MediaPropertiesLayout -
Set

password

Body |
String

The password required to sign into the database

EnterpriseDatabaseConfig
- Set

port

Body |
Integer

The port of the AWDB server
Validation: must be between 1 and 65535

EnterpriseDatabaseConfig
- Set

ReasonCodeID

String

An empty string for no reason code. Otherwise, a database id for the
ReasonCode
Validation: Only for a state change to Not_Ready or Logout; the value must

User—Change Agent
State (Pass NotReady or
Logout Corresponding
ReasonCode to CTI)

correspond to a database id. Logout does not prevent state change with an
invalid ReasonCodeId.

requestedAction

Body |
String

The action to take on the targeted participant
Possible values: ANSWER, HOLD, RETRIEVE, DROP, TRANSFER,
CONFERENCE, SILENT_MONITOR
Validation: Only actions that currently exist on a participant can be used

Dialog - Take Action on a
Participant within a
Dialog
Dialog - Make a Silent
Monitoring Call
Dialog - End a Silent
Monitoring Call

requestedAction
(Create a new
Dialog)

String

The way in which the Dialog is created
Possible values: MAKE_CALL

Dialog - Create a New
Dialog

requestedAction
(Make a consult call
request)

String

The way in which the Dialog is created
Possible values: CONSULT_CALL

Dialog - Make a Consult
Call Request

requestedAction
(Update Call
Variable Data)

String

The action to take on the dialog
Possible values: UPDATE_CALL_DATA

Dialog - Update Call
Variable Data

secondaryNode -
host

Path |
String

The hostname or IP address of the secondary Finesse node
Validation: No special characters allowed except "." and "-"

ClusterConfig - Set

state

Body |
String

The new state that the user wants to be in
Possible values: LOGIN, LOGOUT, READY, NOT_READY

User Sign In to Finesse
User Sign Out of Finesse
User - Change Agent
State
User—Change Agent
State (Pass NotReady or
Logout Corresponding
ReasonCode to CTI)

targetMediaAddress

Body |
String

The extension that the user is currently signed in to, which is used to locate
the participant to target with the action request
For silent monitoring, this value represents the extension of the supervisor
who initiated the silent monitoring call.

Dialog - Take Action on a
Participant within a
Dialog
Dialog - Make a Consult
Call Request
Dialog - End a Silent
Monitoring Call

[contents]

toAddress

String

The destination for the call
In a silent monitoring call, the toAddress is the agent's extension.

Dialog - Create a New
Dialog
Dialog - Make a Consult
Call Request
Dialog - Make a Silent
Monitoring Call

username

Body |
String

The username required to sign into the database

EnterpriseDatabaseConfig
- Set

wrapUpReason

String

A description of the call
Size: 39 bytes (which is equal to 39 US English characters)
Validation: Either wrapUpReason or callvariables must be present

Dialog - Update Call
Variable Data

5.4. API Response Parameters
| A - B | C | D - E | F - H | I - L | M - O |P - R | S | T- V | W - X

Name

Parameter
Type / Data
Type

Description

Used as a Response
Parameter by

Actions

XML

A list of actions that will be allowed for the participant as a result of the
dialog update
For a list of possible values, see the Actions parameter values table

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

backupHost

String

The hostname or IP address of the backup AWDB server

EnterpriseDatabaseConfig
- Get

callType

String

The type of call.
Possible values: ACD_IN,
PREROUTE_ACD_IN,PREROUTE_DIRECT_AGENT,TRANSFER,
OTHER_IN, OUT,AGENT_INSIDE, CONSULT, CONFERENCE,
SUPERVISOR_MONITOR

Dialog - Get Dialog

callvariables

Collection

A list of up to ten call and ECC variables

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

CallVariable

XML

Contains the name and value of a call variable belonging to this particular
Dialog. The name indicates whether the variable is a Call variable or an
ECC variable, based on naming conventions.
Call variable names start with callVariable# where # is 1-10. All ECC
variable names (both scalar and array) are prepended with "user". ECC
variable arrays include an index enclosed within square brackets located
at the end of the ECC array name.

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

category

String

The category of a ReasonCode.
Possible Values: NOT_READY, LOGOUT

ReasonCode—Get List
ReasonCode—Get
User—Get ReasonCode
User—Get ReasonCode
List

code

Integer

The value of the reason code.
Possible values: 0–65535
Validation: The combination of category, code, and label for a reason code
must be unique.

ReasonCode—Get

column

List of entry
objects

Grouping of media properties for agent and supervisor desktops.
Finesse Release 8.5(3) supports a maximum of two columns in the
MediaPropertiesLayout object. Columns can contain a maximum of 10
entries and can be empty. The first column supplied is always the left
column. The second column (if any) is always the right column.

MediaPropertiesLayout -
Get

cti - backupHost

String

The hostname or IP address of the backup CTI server

SystemConfig - Get

cti - backupPort

Integer

The port number of the backup CTI server
Possible values: 1—65535

SystemConfig - Get

cti - host

String

The hostname or IP address of the primary CTI server

SystemConfig - Get

cti - peripheralId

Integer

The ID of the CTI server peripheral
Possible values: 1–32767

SystemConfig - Get

cti - port

Integer

The port number of the primary CTI server
Possible values: 1–65535

SystemConfig - Get

databaseName String The name of the AW database EnterpriseDatabaseConfig

 - Get

dialedNumber

String

The number dialed

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

dialogs

String

The URI for the list of dialogs in which the user is a participant

User - Get User
User - Get List of Users

displayName

String

Part of an entry. A label that describes the mediaProperty for that entry
(for example, Account Number) that appears on the agent or supervisor
desktop (maximum length of 50 characters).

MediaPropertiesLayout -
Get

dnis

String

The DNIS provided with the call
For routed calls, the DNIS is the route point.

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

domain

String

The domain of the AWDB

EnterpriseDatabaseConfig
- Get

entry

Entry object
containing a
name and
media
property

A displayName and mediaProperty combination.
The displayName can be empty.

MediaPropertiesLayout -
Get

eventType

String

The type of CTI event:
Ringing—The agent's phone is ringing.
Answered—The agent answers the phone.
Dropped—The call terminates.
Work Ready—The agent transitions to the Work Ready agent state.
Work Not Ready—The agent transitions to the Work Not Ready agent
state.

extension

Integer

The extension the user is currently using

User - Get User
User - Get List of Users

firstName String The first name of the user User - Get User

 User - Get List of Users
Team - Get Object

forAll

Boolean

Whether a reason code or wrap-up reason applies to all agents
Possible Values: true or false
Only global reason codes and wrap-up reasons (forAll parameter is set to
"true") are supported for Finesse Release 8.5(3).

ReasonCode—Get
User—Get ReasonCode
User - Get
WrapUpReason
User - Get
WrapUpReason List
WrapUpReason - Get
WrapUpReason - Get List

fromAddress

String

The calling line ID of the caller.

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

header

Entry object

A single entry (combination of displayName and mediaProperty) that
appears in the call header on the desktop for each call.

MediaPropertiesLayout -
Get

host

String

The hostname or IP address of the AWDB server

EnterpriseDatabaseConfig
- Get

id

String

The unique identifier for the team, user, or action

User - Get User
User - Get List of Users
Team - Get Object

label

String

The UI label for a wrap-up reason or reason code, (for example, Sales Call,
Complaint)

WrapUpReason - Get
WrapUpReason - Get List
ReasonCode—Get
ReasonCode—Get List
User—Get ReasonCode
User - Get WrapUp
Reason
User - Get
WrapUpReason List

lastName

String

The last name of the user

User - Get User
User - Get List of Users
Team - Get Object

layoutxml

String

The XML data that determines the layout of the Finesse desktop

LayoutConfig - Get

loginId

String

The login ID of the user

User - Get User
User - Get List of Users
Team - Get Object

loginName

String

The login name of the user

User - Get User
User - Get List of Users

mediaAddress

String

Point of contact for this participant
Possible Values: Extension of an agent who is a participant on a call dialog
object, ANI for a caller who is a participant on a call

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

mediaProperties

XML

Includes all of the properties for a Call that corresponds to the Dialog

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

mediaProperty

String

Part of an entry. The name of the call variable or ECC variable that is
displayed to the agent or supervisor (maximum length of 32 characters).

MediaPropertiesLayout -
Get

mediaType

String

The type of media under which a dialog is classified
Possible values: voice, email, chat

User - Get List of Dialogs
Associated with a User

name

String

The name of the team

User - Get User
User - Get List of Users
Team - Get Object

Participant

XML

A participant in a dialog

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

Participants

XML

A list of all participants, both internal and external, involved in a dialog

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

password

String

The password required to sign in to the database

EnterpriseDatabaseConfig
- Get

port

Integer

The port of the AWDB server

EnterpriseDatabaseConfig
- Get

primaryNode - host

String

The hostname or IP address of the primary Finesse node

SystemInfo - Get
SystemInfo

ReasonCode (object)

XML

A reason code object, (this object can have a category of NOT_READY or
LOGOUT, and a descriptive label and numeric code-value)

ReasonCode—Get List
User—Get ReasonCode
User—Get ReasonCode
List

ReasonCodes

XML

Represents a list of ReasonCode objects

ReasonCode—Get List
User—Get ReasonCode
List

role

String

One of the roles assigned to a user
Possible values: Agent, Supervisor

User - Get User
User - Get List of Users

roles

String

A list of roles assigned to a user

User - Get User
User - Get List of Users

secondaryNode - host

String

The hostname or IP address of the secondary Finesse node

ClusterConfig - Get
SystemInfo - Get
SystemInfo

state (dialog)

String

The last state of this dialog
For a list of possible values, see the state (dialog) parameter values table

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

state (participant)

String

The last participant state change for a dialog
For a list of possible values, see the state (participant) parameter values
table

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

state (user)

String

The state of the user
Possible values: LOGOUT, NOT_READY, READY, RESERVED,

User - Get User
User - Get List of Users

TALKING, WORK, WORK_READY, UNKNOWN
For more information about WORK and WORK_READY states, see the
section WORK and WORK_READY User States.

Team - Get Object
Team - Get Object

stateCause
(participant)

String

The cause for the last participant state in a dialog
This parameter is normally associated with a FAILED participant state
Possible values: BUSY, BAD_DESTINATION, OTHER

Dialog - Get Dialog
User - Get List of Dialogs
Associated with a User

status

String

The state of the system
Possible values:
IN_SERVICE (The system is in service and normal operations are
accepted)
OUT_OF_SERVICE (The system is out of service and normal operations
will result in a 503 Service Unavailable response)

SystemInfo - Get
SystemInfo

subscription

String

The URI for the subscription

User - Get User
User - Get List of Users

Team

XML

One set of team information

User - Get User
User - Get List of Users

teams

XML

A list of teams that a user supervises (applies to users who have a role of
supervisor only)

User - Get User
User - Get List of Users

Team

XML

A set of information (ID and name) for one team

User - Get User
User - Get List of Users

teamId

String

The ID of the team to which the user belongs

User - Get User
User - Get List of Users

teamName

String

The name of the team to which the user belongs

User - Get User
User - Get List of Users

uri

String

The URI to get a new copy of the object (for example, user, dialog, team,
ReasonCode, or WrapUpReason object)

User - Get User
User - Get List of Users
Dialog - Get Dialog
User - Get List of Dialogs

[contents]

Associated with a User
Team - Get Object
User—Get ReasonCode
User - Get
WrapUpReason
User - Get
WrapUpReason List
WrapUpReason - Get
WrapUpReason - Get List

User

XML

One specific user on a team

Team - Get Object

username

String

The username required to sign into the database

EnterpriseDatabaseConfig
- Get

users

XML

The list of users that belong to a team

Team - Get Object

wrapUpReason

String

A description of the call
Size: 39 bytes (which is equal to 39 US English characters)

Dialog - Get Dialog

xmppDomain

String

The XMPP server domain

SystemInfo - Get
SystemInfo

xmppPubSubDomain

String

The XMPP server pubSub domain

SystemInfo - Get
SystemInfo

5.4.1. State (Dialog) Parameter Values
The following table describes possible values for the state (dialog) response parameter:

Dialog State

Description

ALERTING

Indicates that the call is ringing at a device

ACTIVE

Indicates that the dialog has at least one active participant

DROPPED Indicates that the dialog has no active participants

[contents]

FAILED

Indicates that the dialog has failed

INITIATING

Indicates that the phone is off the hook at a device

INITIATED

Indicates that the phone is dialing at the device

5.4.2. Actions Parameter Values
The following table describes possible values (allowable actions) for the Actions response parameter:

Participant Allowable
Action

Enabled Button on
Desktop

Description

MAKE_CALL

Make a New Call

Enables the agent to make an outgoing call

ANSWER

Answer

Enables the agent to answer an incoming call

HOLD

Hold

Enables the agent to hold a call that is currently active on the desktop

RETRIEVE

Retrieve

Enables the agent to retrieve a call that was on hold on the desktop

DROP

End

Enables the agent to drop the participant of a call

UPDATE_CALL_DATA

—

Enables the agent to set call data for the call
Finesse Release 8.5(3) does not allow an agent to set call data from the desktop. A user can
set call data through the API only.

CONSULT_CALL

Consult

Enables the agent to make a consult call for transfer or conference

TRANSFER

Transfer

Enables the agent to complete a transfer between the selected held call and the existing
active call on the desktop

CONFERENCE Conference Enables the agent to start a conference between the selected held call and the existing active
call on the desktop

[contents]

Note: For Finesse Release 8.5(3), the Participant Allowable Action is present where applicable for all participants on a call, including participants
who are not agents. The actions for participants who are not agents are not needed by the client and may not always be accurate. These actions
will be removed in a subsequent release.

5.4.3. State (Participant) Parameter Values
The following table describes possible values for the state (participant) response parameter:

Participant State

Allowable Actions for the Participant State

Call State
on Finesse
Desktop

Description

INITIATING

DROP, UPDATE_CALL_DATA

Off Hook

Indicates that an outgoing call, not yet active, exists
on the device

INITIATED

DROP, UPDATE_CALL_DATA

Dialing

Indicates that the phone is dialing at a device

ALERTING

ANSWER

Incoming

Indicates that an incoming call is ringing on the
device

ACTIVE

HOLD, DROP, UPDATE_CALL_DATA,
CONSULT_CALL

Active

Indicates that the participant is active on the call

FAILED

DROP

Busy

Indicates that the call failed (BUSY)

FAILED

DROP

Error

Indicates that the call failed (BAD_DESINATION)

FAILED

DROP

Error

Indicates that the call failed (OTHER)

HELD

RETRIEVE, DROP, UPDATE_CALL_DATA,
TRANSFER (if active call exists),
CONFERENCE (if active call exists)

Hold

Indicates that the participant has held their
connection to the call

DROPPED

—

—

Indicates that the participant has dropped from the
call

[contents]

WRAP_UP

UPDATE_CALL_DATA

Active

Indicates that the participant is not in active state on
the call but is wrapping up after the participant has
dropped from the call

SILENT_MONITOR

DROP, UPDATE_CALL_DATA

Active

Indicates that the participant is silently monitoring an
agent

5.4.4. CTI Event Mappings for Dialog and Participant State
The following table provides a list of CTI call events and the associated Dialog and Participant states for the call. This table is specifically oriented
towards the agent receiving an incoming call.

Note: If the caller is also an agent, then the events go to the caller. If the caller is not an agent, events are not published to the caller.

Scenario

CTI Event

Event Method

Dialog State

Participant State
(Agent)

Participant State
(Caller)

Start the Call

BEGIN_CALL_EVENT

POST (Caller)

INITIATING

Not a participant
yet

INITIATING

Call arrives at Agent

CALL_DELIVERED

POST (Agent), PUT
(Caller)

ALERTING

ALERTING

INITIATED

Agent answers call

CALL_ESTABLISHED

PUT

ACTIVE

ACTIVE

ACTIVE

Caller drops call

CALL_CONNECTION_CLEARED

PUT

ACTIVE

ACTIVE

DROPPED

Agent is dropped
from call

CALL_CONNECTION_CLEARED

PUT

DROPPED

DROPPED

DROPPED

Call is cleared

CALL_CLEARED_EVENT

PUT

DROPPED

DROPPED

DROPPED

Call is removed

END_CALL_EVENT

DELETE

DROPPED

DROPPED

DROPPED

The following table provides a list of CTI call events and their mapping to the Dialog state and Participant state for the call. This table is
specifically oriented towards the caller making an outgoing call:

Note: If the recipient is also an agent, then the events go to the recipient. If not, they are not published to the recipient.

Scenario

CTI Event

Event Method

Dialog State

Participant
State (Caller)

Participant
State
(Recipient)

Start of any Call

BEGIN_CALL_EVENT

POST (Caller)

INITIATING

INITIATING

Not a
participant yet

Caller takes phone
off-hook

CALL_SERVICE_INITIATED_EVENT

POST (Caller)

INITIATING

INITIATING

Not a
participant yet

Caller dials number

CALL_ORIGINATED_EVENT

PUT (Caller)

INITIATED

INITIATED

Not a
participant yet

Destination is Busy

CALL_FAILED_EVENT (BUSY)

PUT (Caller)

FAILED

FAILED

Not a
participant yet

Destination is Bad

CALL_FAILED_EVENT
(BAD_DESTINATION)

PUT (Caller)

FAILED

FAILED

Not a
participant yet

Destination is
Recipient

CALL_DELIVERED

PUT (Caller), POST
(Recipient)
(See the note that
precedes this table)

ALERTING

INITIATED

ALERTING

Recipient answers
call

CALL_ESTABLISHED

PUT

ACTIVE

ACTIVE

ACTIVE

Caller drops call

CALL_CONNECTION_CLEARED

PUT

ACTIVE

DROPPED

ACTIVE

Recipient is dropped
from call

CALL_CONNECTION_CLEARED

PUT

DROPPED

DROPPED

DROPPED

Call is cleared

CALL_CLEARED_EVENT

PUT

DROPPED

DROPPED

DROPPED

Call is removed

END_CALL_EVENT

DELETE

DROPPED

DROPPED

DROPPED

The following table provides a list of CTI call events and their mapping to the Dialog state and Participant state for that call. This table is

specifically oriented towards holding a call.

Note : If the caller is also an agent, then the events go to the caller. If not, they are not published to the caller.

Scenario

CTI Event

Event
Method

Dialog
State

Participant State
(Agent)

Participant State
(Caller)

Call has arrived and has been
answered

—

—

—

—

—

Agent holds call

CALL_HELD

PUT

ACTIVE

HELD

ACTIVE

Caller holds call

CALL_HELD

PUT

ACTIVE

HELD

HELD

Agent retrieves call

CALL_RETRIEVED

PUT

ACTIVE

ACTIVE

HELD

Caller retrieves call

CALL_RETRIEVED

PUT

ACTIVE

ACTIVE

ACTIVE

The following table provides a list of CTI call events and their mapping to the Dialog and Participant states for a call transfer. In this scenario, a
call exists between the caller and Agent A. The transfer occurs after Agent B answers the consult call.

Scenario

CTI Event (Original Call)

CTI Event (Consult Call)

Event
Method

Dialog State

Participant
State

Agent A starts consult
call

CALL_HELD

—

PUT
(original
call
only)

Original call
—ACTIVE

Caller—
ACTIVE
Agent A—
HELD
(original
call)
Agent B—
Not yet a
participant

Agent A takes phone
off-hook
(BEGIN_CALL_EVENT
assumed)

—

CALL_SERVICE_INITIATED_EVENT

PUT
(consult
call
only)

Original call
—ACTIVE
Consult call
—
INITIATING

Caller—
ACTIVE
Agent A—
INITIATING
(consult call)
Agent B—
Not yet a
participant

Agent A dials number

—

CALL_ORIGINATED_EVENT

PUT
(consult
call
only)

Original call
—ACTIVE
Consult call
—
INITIATED

Caller—
ACTIVE
Agent A—
INITIATED
(consult call)
Agent B—
Not yet a
participant

Agent B receives the
call

—

CALL_DELIVERED

PUT
(consult
call, on
Agent A
POST
(consult
call on
Agent B

Original call
—ACTIVE
Consult call
—
ALERTING

Caller—
ACTIVE
Agent A—
INITIATED
(consult call)
Agent B—
ALERTING

Agent B answers the
call

—

CALL_ESTABLISHED

PUT
(consult
call
only)

Original call
—ACTIVE
Consult call
—ACTIVE

Caller—
ACTIVE
Agent A—
ACTIVE
(consult call)
Agent B—
ACTIVE

Agent A completes the
transfer of the caller to
Agent B

CALL_TRANSFERRED_EVENT

—

DELETE
(original
call on
Agent
A)
DELETE
(consult
call on
Agent
A)
DELETE
(consult
call on
Agent
B)
POST
(original
call on
Agent
B)

Original call
—
DROPPED
(Agent A),
ACTIVE
(Agent B)
Consult call
—
DROPPED
(both Agent
A and Agent
B)

Caller—
ACTIVE
Agent A—
DROPPED
(original and
consult call)
Agent B—
DROPPED
(consult
call),
ACTIVE
(original
call)

[contents]

[contents]

[contents]

[contents]

If the caller is also an agent, that caller receives a Dialog update (PUT) with an updated participant list after the transfer is complete.

5.4.5. WORK and WORK_READY User States
A user is in either WORK or WORK_READY state during wrap-up. A user is placed in WORK state when Unified CCE plans to set the state of
that user to NOT_READY when wrap-up ends. If Unified CCE plans to set the state of the user to READY when wrap-up ends, that user is placed
in WORK_READY state.

A user transitions to WORK state for one of the following reasons:

The user was in NOT_READY state before taking a call.
The user set a state of NOT_READY while in TALKING state.

If wrap-up times out, the user transitions to NOT_READY state.

A user transitions to WORK_READY state for one of the following reasons:

The user was in READY state before taking a call.
The user set a state of READY while in TALKING state.

If wrap-up times out, the user transitions to READY state.

A user transitions out of WORK or WORK_READY state by performing one of the following actions:

The user lets the wrap-up timer expire.
The user sets a state of either READY or NOT_READY.

6. Cisco Finesse Errors
HTTP Errors

Cisco Finesse API Error Codes

6.1. HTTP Errors
All HTTP errors are returned as HTTP 1.1 Status Codes. Errors that might be for Finesse-specific events are listed below:

500 Internal Server Error: Finesse Web Services returns 500 if the CTI connection is lost but the loss is not yet detected by automated means.
500:5526 - DB_RUNTIME_EXCEPTION (database error, but the database is thought to be operational)
500:5525 - RUNTIME_EXCEPTION (a non-database error)
500:5500 - AWS_SERVICE_UNAVAILABLE (AWS not operational)
503 Service Unavailable: If Finesse is in PARTIAL_SERVICE or OUT_OF_SERVICE, it returns 503 for all requests. If any dependent service
goes down, Finesse goes to OUT_OF_SERVICE state (for example, if the Cisco Finesse Notification Service is down).
This error is due to a temporary outage or overloading condition. A retry after several seconds is likely to succeed.
For example, the system returns 503 when the system is just starting up and when the system is trying to connect to the CTI server.

6.2. Cisco Finesse API Error Codes

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Error codes for Cisco Finesse are categorized as follows:

4xx - Client-related error codes
5xx - Server-related error codes

Each error code includes a failure response, error code, and error message. The following is an example of the Failure Message format:

{
 "response":"failure",
 "errorCode":xxxx,
 "errorMessage":<error message>
}

In addition to Cisco Finesse API errors, a response might return a CTI error or an HTTP error. HTTP errors are documented online: HTTP 1.1 Status
Codes

Status

Error Code

Description

400

Generic Error

Any generic error.

400

Invalid Destination

The toAddress and fromAddress are the same. This error occurs if users attempt to call their own extensions.

400

Invalid Device

The extension is invalid.

400

Invalid Input

One of the parameters (for example, state, fromAddress, toAddress, targetMediaAddress, or
requestedAction), as part of the user input, is invalid or not recognized.
The submitted XML is not valid (LayoutConfig APIs).

400

Invalid State

The requested state change is not allowed (for example, a user already in LOGOUT state requests a state
change to LOGOUT).
A supervisor who is already in an active call (in TALKING or ON_HOLD state) makes a silent monitoring
request.

400

Parameter Missing

The extension, state value, or requestedAction is not provided.
If creating a dialog, the fromAddress or toAddress is not provided.
If creating a layout, the XML file is not provided.

401

Authorization Failure

Unauthorized (for example, the user is not yet authenticated in Web Session).
The user is not authorized to use the API (for example, an agent tries to use an API that only supervisors or
administrators are authorized to use).

401 Invalid Authorization The authenticated user tried to make a request for another user.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

[contents]

[contents]

[contents]

[contents]

 User Specified

The authenticated user tried to use a fromAddress or targetMediaAddress that does not belong to that user.
The primary and backup AWDB servers are down and Finesse cannot authenticate the user.

404

Not Found

The resource specified is invalid or does not exist.

404

Dialog Not Found

The dialog id provided is invalid or no such dialog exists.

404

User Not Found

The agent ID provided is invalid or not recognized. No such agent exists in CTI.

500

Internal Server Error

A runtime exception is caught (for example, a broken connection with the CTI server or another component).

503

Service Unavailable

If any dependent service goes down, Finesse goes to OUT_OF_SERVICE state (for example, if the Cisco
Finesse Notification Service or the Cisco Finesse Database is down).

7. Cisco Finesse Notifications

7.1. About Cisco Finesse Notifications
The Cisco Finesse Web Service sends notifications to any clients that are subscribed to that class of resource.

For example, a client that is subscribed to User notifications receives a notification when an agent signs in or signs out of the Finesse Desktop, when
agent information changes, or when an agent's state changes.

Note: The preceding example illustrates some possible cases where notifications are sent. It is not intended to be an exhaustive list.

Note: The Notification payloads are XML encoded. If these payloads contain any special XML characters, you must ensure that the client decodes
this information correctly before processing it further.

7.1.1. Notification Frequency
Notifications are published as they occur when there is a change in the resource characteristics.

7.1.2. Subscription Management
Finesse clients can interface directly with the Cisco Notification Service to send subscribe and unsubscribe requests notification feeds published to
their respective nodes (such as /finesse/api/User/1000) by following the XEP-0600 standard.

Clients are automatically subscribed to receive the following notification feeds for the same User:

User - finesse/api/User/{id}
Dialogs - /finesse/api/User/{id}/Dialogs

To receive notifications for feeds to which they are not automatically subscribed, clients must explicitly subscribe to the node on which the

[contents]

notifications are published. For example, agent state change notifications for all agents on a specific team are published to the node
/finesse/api/Team/{id}/Users. Clients must request a subscription to this node to receive notifications on this feed.

The following example shows how to subscribe to agent state change notifications for a specific team:

<iq type='set'
 from='CharlesNorrad@finesse-server.cisco.com'
 to='pubsub.finesse-server.cisco.com'
 id='sub1'>
 <pubsub xmlns='http://jabber.org/protocol/pubsub'>
 <subscribe
 node='finesse/api/Team/TheA/Users'
 jid='ChuckieNorrad@finesse-server.cisco.com'/>
 </pubsub>
</iq>

The following example shows how to unsubscribe to agent state change notifications for a specific team:

<iq type='set'
 from='ChuckieNorrad@finesse-server.cisco.com'
 to='pubsub.finesse-server.cisco.com'
 id='unsub1'>
 <pubsub xmlns='http://jabber.org/protocol/pubsub'>
 <unsubscribe
 node='finesse/api/Team/TheA/Users'
 jid='userid@finesse-server.cisco.com'/>
 </pubsub>
</iq>

You can obtain connection details by performing a GET using the SystemInfo API (http://<server>/finesse/api/SystemInfo). The returned payload
provides you with the domain and pubsub addresses used to interact with the Cisco Finesse Notification Service.

<SystemInfo>
 <status>IN_SERVICE</status>
 <xmppDomain>xmppserver.cisco.com</xmppDomain>
 <xmppPubSubDomain>pubsub.xmppserver.cisco.com</xmppPubSubDomain>
</SystemInfo>

Users are identified in the following manner: userid@xmppserver.cisco.com

Stanzas are sent to the pubsub domain (pubsub.xmppserver.cisco.com).

Clients should ensure that any subscriptions that are no longer required are cleaned up.

Subscription Persistence
All subscriptions are stored in a database and persist through the following shutdown events:

Finesse experiences a CTI failover
Cisco Notification Service restarts
Cisco Tomcat restarts

In each of the preceding events, the client does not need to resubscribe to explicit subscriptions.

However, subscriptions do not persist across multiple Finesse servers. If a client fails over to an alternate Finesse server, that client must
resubscribe to any explicit subscriptions.

7.2. Resources
User Notifications

Dialog Notifications

Dialog CTI Error Notifications

[contents]

Team Notifications

7.2.1. User Notifications
Finesse sends a User notification when information about a user changes.

Format:

XML

Node:

/finesse/api/User/{id}

Source:

/finesse/api/User/<id>

Data:

User

Payload:

<Update>
 <event>{put|delete}</event>
 <source>/finesse/api/User/{id}</source>
 <data>
 <user>
 <!-- full User object -->
 </user>
 </data>
</Update>

Notification Triggers:

Addition of a user
Deletion of a user
State change
First or last name change
Role change

Notification Parameters
event
source
data

Sample Notification Payload
<Update>
 <event>put</event>
 <source>/finesse/api/User/csmith</source>
 <data>
 <user>
 <uri>/finesse/api/User/csmith</uri>
 <state>NOT_READY</state>
 <extension>1001001</extension>

[contents]

 <firstName>Chris</firstName>
 <lastName>Smith</lastName>
 </user>
 </data>
</Update>

7.2.2. Dialog Notifications
Finesse sends a Dialog notification when there is a change to information (or to an action) related to a call to which the user belongs.

Format:

XML

Node:

/finesse/api/User/{id}/Dialogs

Source:

/finesse/api/User/{id}/Dialogs (when a Dialog is added or removed from the Dialogs collection for a User)
/finesse/api/Dialog/{id} (when a Dialog within the Dialogs collection for a User is modified)

Data:

Dialog

Payload:

<Update>
 <data>
 <dialogs>
 <Dialog>
 <!-- full Dialog object -->
 </Dialog>
 </dialogs>
 </data>
 <event>{POST|DELETE}</event>
 <requestId>xxxxxxxxx</requestId>
 <source>/finesse/api/User/{id}/Dialogs</source>
</Update>

Notification Triggers:

Incoming call
Modification of participant state (for example, when a participant answers or hangs up a call)
A new participant to the call
Modification of the call data or actions

Notification Parameters
event
source
data
requestId

Sample Notification Payload

[contents]

 <Update>
 <data>
 <dialogs>
 <Dialog>
 <fromAddress>1001002</fromAddress>
 <mediaType>Voice</mediaType>
 <state>ALERTING|ACTIVE|INACTIVE</state>
 <uri>/finesse/api/Dialog/16792694</uri>
 <mediaProperties>
 <dialedNumber>2000</dialedNumber>
 <callType>AGENT_INSIDE</callType>
 <DNIS>2000</DNIS>
 <callvariables>
 <CallVariable>
 <name>callVariable1</name>
 <value>Chuck Smith</value>
 </CallVariable>
 <CallVariable>
 <name>callVariable2</name>
 <value>Cisco Systems,Inc<value>
 </CallVariable>
 ...
 <CallVariable>
 <name>callVariable10</name>
 <value>Preferred Customer<value>
 </CallVariable>
 <CallVariable>
 <name>user.user</name>
 <value>csmith<value>
 </CallVariable>
 <CallVariable>
 <name>user.years[0]</name>
 <value>1985<value>
 </CallVariable>
 <CallVariable>
 <name>user.years[1]</name>
 <value>1995<value>
 </CallVariable>
 </callvariables>
 </mediaProperties>
 <Participants>
 <Participant>
 <state>ALERTING|INITIATING|ACTIVE|INACTIVE</state>
 <mediaAddress></mediaAddress>
 <stateCause></stateCause>
 <actions>
 <action>...</action>
 <action>...</action>
 </actions>
 </Participant>
 </Participants>
 </Dialog>
 </dialogs>
 </data>
 <event>POST</event>
 <requestId></requestId>
 <source>/finesse/api/User/1001001/Dialogs</source>
</Update>

7.2.3. Dialog CTI Error Notifications
Call operations performed on a Dialog (such as MAKE_CALL, HOLD, RETRIEVE, ANSWER, END, TRANSFER, CONSULT, and CONFERENCE)
may result in CTI errors. The Notification system sends these errors as an asynchronous update. The error notifications include the error type and
the CTI error code and error constant. The error type is “Call Operation Failure”.

Format:

XML

Node:

/finesse/api/User/{id}/Dialogs

Source: /finesse/api/Dialog/[ID]

Data:

apiErrors

Payload:

<Update>
 <data>
 <apiErrors>
 <apiError>
 <errorData>[CTI Error Code]</errorData>
 <errorMessage>[CTI Error Constant]</errorMessage>
 <errorType>Call Operation Failure</errorType>
 </apiError>
 </apiErrors>
 </data>
 <event>PUT</event>
 <requestId></requestId>
 <source>/finesse/api/Dialog/[ID]</source>
</Update>

Notification
Triggers:

The notification system delivers this error notification if call operations on a Dialog (such as MAKE_CALL, HOLD, RETRIEVE,
ANSWER, END, TRANSFER, CONSULT, and CONFERENCE) result in a CTI error

Notification Parameters
event
source
data
requestId

Sample Notification Payload
<Update>
 <data>
 <apiErrors>
 <apiError>
 <errorData>34</errorData>
 <errorMessage>CF_RESOURCE_OUT_OF_SERVICE</errorMessage>
 <errorType>Call Operation Failure</errorType>
 </apiError>
 </apiErrors>
 </data>
 <event>PUT</event>
 <requestId></requestId>
 <source>/finesse/api/Dialog/12345</source>
</Update>

CTI Error Messages
The following table lists possible call control-specific error messages and their corresponding codes and descriptions.

CTI Error Message

Description

Code

CF_INVALID_CONSULT_TYPE

The consult type is invalid

273

[contents]

CF_INVALID_CONNECTION_ID_FOR_ACTIVE_CALL

The active connection ID in the request is invalid

23

CF_INVALID_CALLING_DEVICE

The calling device is not valid

5

CF_INVALID_CALLED_DEVICE

The called device is not valid

6

7.2.4. Team Notifications
Finesse sends a team notification when the agent name or agent state changes for an agent who belongs to that team.

Format:

XML

Node:

/finesse/api/Team/{id}/Users

Source:

/finesse/api/User/{id}

Data:

Summary version of the User object

Payload:

<Update>
 <event>{put}</event>
 <source>/finesse/api/User/{id}</source>
 <requestId>xxxxxxxxx</requestId>
 <data>
 <user>
 <uri>/finesse/api/User/{id}</uri>
 <loginId>{id}</loginId>
 <firstName>Jack</firstName>
 <lastName>Brown</lastName>
 <state>NOT_READY</state>
 </user>
 </data>
</Update>

Notification Triggers:

Agent name is changed for an agent belonging to the team
Agent state is changed for an agent belonging to the team

Notification Parameters
event
source
data

[contents]

requestId

Sample Notification Payload
<Update>
 <event>put</event>
 <source>/finesse/api/Team/1004</source>
 <requestId>xxxxxxxxx</requestId>
 <data>
 <team>
 <uri>/finesse/api/Team/1004</uri>
 <id>1004</id>
 <name>Shiny</name>
 <users>
 <User>
 <uri>/finesse/api/User/{id}</uri>
 <loginId>{id}</loginId>
 <firstName>Charles</firstName>
 <lastName>Norrad</lastName>
 <state>LOGOUT</state>
 </User>
 <User>
 <uri>/finesse/api/User/{id}</uri>
 <loginId>{id}</loginId>
 <firstName>Jack</firstName>
 <lastName>Brown</lastName>
 <state>NOT_READY</state>
 </User>
 ... other users ...
 </users>
 </team>
 </data>
</Update>

7.3. Notification Parameter Reference
Name

Data
Type

Description

Possible Values

Used by
These
Notifications

Data

Object

Provides the new representation of the modified User or
Team or Dialog object. This information is not provided
when a user is deleted.
On an error notification, provides the List of ApiError
objects representing the failure conditions detected by the
server.

The entire User, Team, or Dialog object
in its most current and updated form.
The Team object includes all of its
agents.

User
Notification
Dialog
Notification
Dialog CTI
Error
Notification
Team
Notification

Event

String

The type of modification that occurred to the User or Team
or Dialog object.

PUT: A property of the User, Team, or
Dialog object has been modified.
DELETE: The User, Team, or Dialog has
been deleted.
POST: A User, Team, or Dialog object
was added.

User
Notification
Dialog
Notification
Dialog CTI
Error
Notification
Team
Notification

[contents]

Source

String

The User resource location that was modified.

/finesse/api/User/{id}
/finesse/api/Dialog/{id}
/finesse/api/Team/{id}
/finesse/api/User/{id}/Dialogs

User
Notification
Dialog
Notification
Dialog CTI
Error
Notification
Team
Notification

RequestId

String

The requestId that was returned when the triggering REST
API request was made. If the event was unsolicited, this tag
is empty.

An opaque, unique String, used to
correlate the originating request with the
resulting event.

Dialog
Notification
Dialog CTI
Error
Notification
Team
Notification

8. Finesse High Availability
Finesse uses Presence as a mechanism to detect the availability of a particular instance of the Finesse server. The BOSH user associated with an agent
is automatically subscribed to the presence of the 'finesse' BOSH user. If the Finesse server goes down or loses connection to the CTI server, a
presence notification with a state of Unavailable is published to the BOSH user of all agents. Finesse clients can use this notification as a mechanism to
detect availability of the Finesse server and decide whether to failover to the alternate Finesse server.

To receive these notifications, a client must be logged in to the Finesse server and the Notification Service on the same server.

This mechanism cannot be used to detect the availability of the Notification Service. Clients use the status of the BOSH connection to detect the
availability of the Notification Service.

The following table lists whether a presence notification is sent and the presence status for Finesse under various scenarios:

Action

Presence Notification

Presence Status

From User

Cisco Tomcat goes down

Yes

'Unavailable'

'finesse'

Finesse webapp goes down

Yes

'Unavailable'

'finesse'

Finesse loses connection to the CTI server

Yes

'Unavailable'

'finesse'

Notification Service goes down

No

'Unavailable'

'finesse'

[contents]

[contents]

[contents]

[contents]

[contents]

9. Finesse Desktop Gadget Development
Notifications on the Finesse Desktop

Enabling Finesse Notifications in Third-Party Containers

Finesse Topics

Subscription Management on the Finesse Desktop

Persistence of Gadget Preferences

9.1. Notifications on the Finesse Desktop
The Finesse Desktop contains support for OpenSocial Core Gadget Specification 1.1. OpenSocial Core Gadget Specification 1.1 supports an
intergadget notification system that is based on the OpenAjax Hub 2.0 Specification.

The Finesse Desktop automatically establishes a BOSH connection to the Notification Service upon sign-in. The Finesse Desktop publishes
notifications that it receives from the Notification Service to OpenAjax Hub topics. An OpenAjax topic is a string name that identifies a particular
topic type to which a client can subscribe or publish. Gadgets must subscribe to these topics to receive notifications.

If the BOSH connection is disconnected, the Finesse Desktop attempts to reconnect at 30-second intervals until the connection is re-established.

We recommend that you review the OpenSocial and OpenAjax Hub specifications before you implement gadget support for notifications on the
Finesse Desktop.

9.2. Enabling Finesse Notifications in Third-Party Containers
There are strict requirements that must be followed to leverage the Finesse Desktop notification framework on a third-party container.

1. Clients must add a specific Finesse gadget, which establishes the BOSH connection and publishes notifications to Finesse-specific OpenAjax
topics.

2. Third-party containers (that is, those other than the Finesse Desktop) must provide support for the OpenSocial Core Gadget Specification 1.1 to
ensure that gadgets can subscribe to Finesse-specific notifications through the OpenAjax Hub.

9.3. Finesse Topics
A gadget that is within the Finesse environment has the ability to subscribe or publish to a set of Finesse Desktop topics via OpenAjax Hub. The
following sections provide details for the available topics.

Connection Information

Finesse Notifications

Finesse Requests

Finesse Responses

9.3.1. Connection Information
Topic Name

finesse.info.connection

http://opensocial-resources.googlecode.com/svn/spec/1.1/Core-Gadget.xml
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification

[contents]

Topic Type

Gadgets subscribe to this topic.

Gadgets subscribe to the finesse.info.connection topic to receive status information about the BOSH connection, which is automatically established
by the Finesse Desktop or a Finesse Desktop gadget (within a non-Finesse container). Connection status information can be used to determine the
state of the connection so that a gadget can act appropriately. Additionally, a resource ID is provided in the published data to allow the gadget to
construct a subscribe request to the Finesse Web Services. Connection information is published every time there is a connection state change.

The published data is a JavaScript object with the following properties:

{
 status: string,
 resourceID: string
}

The status parameter describes the BOSH connection status. It can have any one of the following values:

connected
connecting
disconnected
disconnecting
reconnecting
unloading

Note: A BOSH connection status of "unloading" indicates that an action in the browser (such as refreshing the browser or clicking the back
button) caused the BOSH connection to initiate the unloading process.

The resourceID parameter is a unique identifier for the BOSH connection. Although the resourceID parameter is provided with every connection
status change, the ID is not available until after a BOSH connection has been successfully established. It is possible that the BOSH connection
reconnects with a different resourceID.

A situation can occur where a gadget is loaded after the Finesse Desktop or gadget has already published connection information. In this case,
have the gadget publish a request to a Finesse request topic, which forces the Finesse Desktop to publish the connection information again. For
more information, see Finesse Requests.

9.3.2. Finesse Notifications
Topic Name

finesse.api.[resourceObject].[resourceID]

Topic Type

Gadgets subscribe to this topic.

If a user has any subscriptions for a particular notification, either created by the Finesse Desktop or by an explicit subscribe request (see
Subscription Management on the Finesse Desktop), the Notification Service delivers updates through the established BOSH connection. The
Finesse Desktop automatically handles the management of the BOSH event connection to the Notification Service. Any notifications that are
delivered through the connection are converted to JavaScript Object, and then published by the Finesse Desktop to an OpenAjax Hub topic. The
name of the topic matches the node on the Finesse Notification Service on which the notification was published. However, to comply with
OpenAjax topic conventions, all slashes (/) are replaced with dots (.) and the leading slash is removed.

[contents]

To receive notifications, the gadgets must

1. Subscribe to the OpenAjax topic for a particular notification feed. This action ensures that no notifications are missed after sending the
subscription request to Finesse Web Services.

2. If required, make a request to the Finesse Notification Service to create a subscription for the notification feed (see Subscription Management
on the Finesse Desktop).

In Finesse, each notification type has an equivalent topic to which gadgets can subscribe. For a list of available Finesse notifications, see section 7
Cisco Finesse Notifications and look under the "node" property. These notifications are structured as follows:

{
content : Raw object payload as a String,
object : JavaScript object representation of the payload
}

Sample Notification Payload
{
 event: "PUT"
 source: "/finesse/api/User/1000"
 data: {}
}

To receive notifications for User object updates, a client within the Finesse Desktop must subscribe to finesse.api.user.1000.

{
 content: "<Update>
 <data>[User Object]</data>
 <event>PUT</event>
 <source>/finesse/api/User/[ID]</source>
 </Update>"
 object: {
 Update: {
 data: [User Object],
 event: "PUT",
 source: "/finesse/api/User/[ID]
 }
 }
}

9.3.3. Finesse Requests
Topic Name

finesse.info.requests

Topic Type

Gadgets publish to this topic.

Communication between gadgets and the Finesse Desktop or other gadgets is done through inter-gadget notification via OpenAjax Hub. A
gadget can send an operation request to the Finesse Desktop by publishing a request object to the Finesse request topic.

The gadget must construct an object to be published to the request topic with the following structure:

{
 type: string,
 data: object
}

The type parameter describes the request type.

The data parameter provides additional information for the Finesse Desktop to respond to the request. The contents of this data depends on the
type of request.

The following sections describe the different types of requests supported.

Note: More request types may be added in the future.

ConnectionInfoReq
Sending an "ConnectionInfoReq" request forces the Finesse Desktop to publish a connection information object to all gadgets subscribed to the
finesse.info.connection topic. This request allows gadgets to determine the current state of the BOSH connection and retrieve the resource ID. The
gadget must be subscribed to the connectionInfo topic to receive the event.

The gadget should publish the following object to the topic finesse.info.requests:

{
 type: “ConnectionInfoReq”,
 data: { }
}

It is possible that the gadget may come up before the Finesse Desktop is ready to start responding to a request to send connection information.
For this reason, gadgets should subscribe to the finesse.info.connection topic regardless. When the Finesse Desktop or gadget is ready, it starts
publishing connection information immediately.

Note: The topic finesse.info.connection is shared across all subscribed gadgets. Gadgets that subscribe to this topic may receive duplicate
notifications. Gadgets must be able to handle duplicate notifications appropriately.

ConnectionReq
Sending a "ConnectionReq" forces the Finesse Desktop to attempt to establish a BOSH connection with the Notification Service. This request
can only go through if either no active connection currently exists or if the current connection is in the "disconnected" state.

The gadget should publish the following object to the topic finesse.info.requests:

{
 type: "ConnectionReq",
 data: {
 id: ID,
 password: password,
 xmppDomain: xmppDomain
 },
}

The id and password parameters specify the ID and password of the XMPP user for which to establish a BOSH connection. The xmppDomain
parameter specifies the domain of the XMPP server.

SubscribeNodeReq
Sending a "SubscribeNodeReq" request causes the managed BOSH connection to send an XEP-0060 standard subscribe request (described in
section 7.1 About Cisco Finesse Notifications) to subscribe to the notification feed for the specified node. The response to this request is
published on the response topic finesse.info.responses.{invokeID}, where the invokeID must be generated by the gadget to identify this unique
request and subscription. For more details, see Finesse Responses. The Cisco gadgets use an RFC1422v4-compliant universally unique identifier
(UUID) for this invokeID. For more details, see the Finesse Software Development Kit (SDK).

To guarantee that the gadget receives the response, it must subscribe to the response topic (on the OpenAjax Hub) of its self-generated
invokeID before sending the following object to the topic finesse.info.requests:

{
 type: "SubscribeNodeReq",
 data: {
 node: "/finesse/api/Team/{id}/Users" // the node of interest
 },

[contents]

 invokeID: "xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx"
}

The node parameter specifies the node to subscribe to. The invokeID parameter is self-generated and is used to track this particular subscription.
This parameter is also used as part of the OpenAjax topic to which the response of the request is published.

UnsubscribeNodeReq
Sending an "UnsubscribeNodeReq" request causes the managed BOSH connection to send an XEP-0060 standard unsubscribe request
(described in section 7.1 About Cisco Finesse Notifications) to unsubscribe from the specified node. The response of this request is published on
the response topic finesse.info.responses.{invokeID}, where the invokeID must be generated by the gadget to identify this unique request. For
more details, see Finesse Responses. The Cisco gadgets use an RFC1422v4-compliant UUID for this invokeID. For more details, see the Finesse
SDK.

To guarantee that the gadget receives the response, it must subscribe to the response topic (on the OpenAjax Hub) of its self-generated
invokeID before sending the following object to the topic finesse.info.requests:

{
 type: "UnsubscribeNodeReq",
 data: {
 node: "/finesse/api/Team/{id}/Users",
 subid: "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 },
 invokeID: "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxy"
}

The node parameter specifies the node to subscribe to. The subid parameter specifies the subscription to remove, which is uniquely identified by
the invokeID that was used in the subscribe request. The invokeID parameter is self-generated and is used as part of the OpenAjax topic to
which the response of the request is published.

9.3.4. Finesse Responses
Topic Name

finesse.info.responses.{invokeID}

Topic Type

Gadgets subscribe to this topic.

Responses to requests are published to these channels. When a request is made, the gadget generates and specifies a unique invokeID as part of
the request. This invokeID is used as the trailing token in the topic to which the response of the request is published.

Because this topic is only used to communicate the response of a single request and never used again, be sure to unsubscribe from the topic as
part of the callback handler in the subscribe request. For example:

// Generate invokeID and construct request
var UUID = _util.generateUUID(),
data = {
 type: "ExampleReq",
 data: {},
 invokeID: UUID
},

// Subscribe to the response channel to ensure we don't miss the response
OAAsubid = gadgets.Hub.subscribe("finesse.info.responses."+ UUID, function (topic, data) {
 // Unsubscribe from the response topic to prevent memory leaks
 // Do this before processing the response in case the processing throws an exception
 gadgets.Hub.unsubscribe(OAAsubid);

 // Process the response here
});

[contents]

[contents]

[contents]

// Publish the request after we have registered our response callback on the response topic
gadgets.Hub.publish("finesse.info.requests", data);

9.4. Subscription Management on the Finesse Desktop
Because the Finesse Desktop provides a managed BOSH connection to the Cisco Finesse Notification Service, the ability to subscribe or unsubscribe
to a particular notification feed is also provided as an interface using the SubscribeNodeReq and UnsubscribeNodeReq requests described in section
9.3.3 Finesse Requests.

9.5. Persistence of Gadget Preferences
The Finesse Desktop can persist gadget preferences in the browser. Gadgets can set preferences using the standard OpenSocial gadget APIs, as
shown in the following example:

var myPrefs = new gadgets.Prefs();
myPrefs.set("hello","world");

After a gadget sets its preferences, anytime that gadget is constructed (in the same browser), these preferences continue to be available through the
same APIs.

var myPrefs = new gadget.Prefs(),
helloValue = myPrefs.getString("hello");

Note: Do not use preferences to persist critical application data. This data is stored on the browser and may be manually purged by the user at will.
This storage is meant for preferences (similar to the type of information that is typically stored inside a cookie), and not complex application data.
Additionally, when the browser runs out of the allocated storage space, this data is purged.

Additionally, if special characters are expected in the value of the preference, they should be escaped inbound and unescaped outbound, as shown
in the following example:

var myPrefs = new gadget.Prefs(),
myPrefs.set("hello", gadgets.util.escapeString("!@#$%^&*()<>?");
…
var myPrefs = new gadget.Prefs(),
helloValue = gadgets.util.unescapeString(myPrefs.getString("hello"));

Note: Do not use special characters within the name of the preference. The use of special characters within the name of the preference is not
supported.

10. Glossary
Terms and Definitions are provided in this section.

BOSH - Acronym for Bidirectional-streams Over Synchronous HTTP. The BOSH protocol defines how arbitrary XML elements can be transported
efficiently and reliably over HTTP in both directions between a client and server.

Call Connections - Refers to the parties on the call. Typically includes the agent and the calling party - another agent, customer calling into call
center, another party calling into call center.

Call Variables - These are text fields in the desktop interface. They might appear as Var1 ... Var10, or they might be configured by the system
administrator and labeled for specific purpose such as Account Number, Case Number, and so forth. Each call variable is a free-form string of up to
41 characters. The data entered in these fields is saved in the Termination Call Detail table in the database schema.

Client - The client is a computer application, such as a web browser, that runs on a user's local computer or workstation and connects to a server as
necessary to send or receive information.

http://xmpp.org/extensions/xep-0124.html

[contents]

GET (HTTP Method) - This method requests a representation of the specified resource.

ISDN - Acronym for Integrated Services Digital Network - a set of communications standards for simultaneous digital transmission of voice, video,
data, and other network services over the traditional circuits of the public switched telephone network.

JSON - Acronym for JavaScript Object Notation, a text-based open standard designed for human-readable data interchange, derived from the
JavaScript programming language

Party - Refers to a person who is receiving a call or who is being added to a conference.

POST (HTTP Method) - The POST request method is used when the client needs to send data to the server as part of the request, such as when
uploading a file or submitting a completed form.

Queue - The term queue in this guide refers to the Skill Group in Unified CCE. A queue is a collection of agents at a single contact center who share a
common set of competencies that equip them to handle the same types of requests. Some examples of queues are a collection of agents who speak a
specific language or who can assist callers with billing questions.

Route Point - A CTI route point designates a virtual device that can receive multiple, simultaneous calls for application-controlled redirection. For
example, route point 4006 might represent the extensions of several agents in a queue.

Unified CCE - The Cisco Unified Contact Center Enterprise delivers intelligent contact routing, call treatment, network-to-desktop computer
telephony integration (CTI), and multichannel contact management over an IP infrastructure. It combines multichannel automatic call distributor
(ACD) functionality with IP telephony in a unified solution, enabling your company to rapidly deploy a distributed contact center infrastructure.

Unmonitored device - This might be a caller phone or an agent phone known to Unified Communications Manager that the agent has not logged
into.

XMPP - Acronym for the Extensible Messaging and Presence Protocol.

XMPP Server - An XMPP server provides basic messaging, presence, and XML routing features. The XMPP server acts as an intelligent abstraction
layer for XMPP communications. Its primary responsibilities are to manage connections from - or sessions for - other entities, in the form of XML
streams, and to route appropriately-addressed XML stanzas among such entities over XML streams. OpenFire is the XMPP Server used by the Cisco
Finesse.

11. Documents and Documentation Feedback
DOCUMENTS

The Cisco Finesse Web Services Developer Guide is available from the Cisco Developer Network (CDN):

Point your browser to http://developer.cisco.com/web/finesse/overview.

Click the link for Cisco Finesse.

Sign in with your Cisco credentials.

Click Documentation.

If you have development questions, you can post them to the Cisco Finesse forums on the Cisco Developer Network, located at the following link:
http://developer.cisco.com/web/finesse/forums

The following documents are available from the Finesse page on Cisco.com
(http://www.cisco.com/en/US/products/ps11324/tsd_products_support_series_home.html):

Cisco Finesse Installation and Getting Started Guide
User Guide for the Cisco Finesse Administration and Serviceability Consoles
Release Notes for Cisco Finesse Release 8.5(3)

http://en.wikipedia.org/wiki/Integrated_Services_Digital_Network
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/POST_(HTTP)
http://en.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol
http://www.igniterealtime.org/projects/openfire/index.jsp
http://developer.cisco.com/web/finesse/overview
http://developer.cisco.com/web/finesse/forums
http://www.cisco.com/en/US/products/ps11324/tsd_products_support_series_home.html

DOCUMENTATION FEEDBACK

You can provide comments about this document by sending email to the following address: mailto:ccbu_docfeedback@cisco.com

We appreciate your comments.

Copyright 2010–2011 Cisco Systems, Inc. All rights reserved.

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND
RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE
INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR
LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California,
Berkeley (UCB) as part of UCBs public domain version of the UNIX operating system. All rights reserved. Copyright 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY
HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR
ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR
INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF
CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other
countries. A listing of Cisco's trademarks can be found at http://www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1005R) Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and
figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

mailto:ccbu_docfeedback@cisco.com

	Local Disk
	Cisco Finesse Web Services Developer Guide for Release 8.5(3)

