
Cisco Finesse Web Services Developer and JavaScript Guide, Release
12.6(1)
First Published: 2020-04-24

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2010–2020 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Introduction 1C H A P T E R 1

What's New in Cisco Finesse 12.6(1) 1

Deprecated Features 4

Cisco Finesse REST APIs 4

JavaScript Library and Sample Gadgets 5

Communication with the Cisco Finesse Web Service 6

Client Requests 6

HTTPS Requests 8

Real-Time Events 8

API Parameter Types 9

Cisco Finesse API Errors 10

Lab Development Environment Validation with Cisco FinesseWeb Services APIs 13C H A P T E R 2

Environment and Tools 13

Postman 13

Pidgin for Windows 15

Adium for Mac OS X 18

Cisco Finesse APIs 21

Sign In to Finesse 22

Change Agent State 23

Cisco Finesse Desktop APIs 27C H A P T E R 3

User 27

User APIs 29

User—Sign In to Finesse 29

User—Sign In as a Mobile Agent 31

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
iii

User—Sign Out of Finesse Desktop 33

User—Get User 34

User—Get User Id from loginName 38

User—Get List 41

User—Get List of Dialogs (Voice Only by Default) 42

User—Get List of Dialogs (Nonvoice Only) 43

User—Get List of Reservation Dialogs 44

User—Change Agent State 44

User—Agent State Change With Reason Code 53

User—Get Reason Code 55

User—Get Reason Code List 56

User—Get Wrap-Up Reason 57

User—Get Wrap-Up Reason List 58

User—Get Default Media Properties Layout 59

User—Get Media Properties Layout List 63

User—Get List of Phone Books 64

User—Get List of Workflows 66

User API Parameters 71

User API Errors 77

Devices 78

Devices API 78

Devices—Get List of Devices for Extension 78

Devices API Parameters 79

Devices API Errors 80

Dialog 80

Dialog APIs 83

Dialog—Get Dialog 83

Dialog—Create a New Dialog (Make a Call) 86

Dialog—Take Action on Participant 89

Dialog—Update Call Variable Data 93

Dialog—Send DTMF String 97

Dialog—Make a Consult Call Request 99

Dialog—Initiate a Single Step Transfer 102

Dialog—Make a Silent Monitor Call 103

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
iv

Contents

Dialog—End a Silent Monitor Call 105

Dialog—Make a Barge Call 106

Dialog—End a Barge Call 109

Dialog—Drop Participant from Conference 110

Dialog—Start Recording 112

Dialog—Accept, Close, or Reject an Outbound Option Preview Reservation 114

Dialog—Accept, Close, or Reject a Direct Preview Outbound Reservation 115

Dialog—Reclassify a Direct Preview Call 117

Dialog—Schedule or Cancel a Callback 118

Dialog API Parameters 120

State (Dialog) Parameter Values 131

Actions Parameter Values 134

State (Participant) Parameter Values 137

CTI Event Mappings for Dialog and Participant States 139

Outbound Call Types and BAStatus 147

Disposition Code Parameter Values for Nonvoice Tasks 150

Dialog API Errors 151

Queue 153

Queue APIs 153

Queue—Get Queue 153

Queue—Get List of Queues for User 155

Queue API Parameters 157

Queue API Errors 159

Team 159

Team APIs 160

Team—Get Team 160

Team—Get List of TeamMessages 162

Team API Parameters 165

Team API Errors 165

TeamResource 165

TeamResource APIs 166

TeamResource—Get Reason Codes 166

TeamResource—Get Wrap-Up Reasons 167

TeamResource—Get Media Properties Layouts 168

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
v

Contents

TeamResource—Get Phone Books 169

TeamResource—Get Workflows 171

TeamResource—Get Layout 176

TeamResource API Parameters 180

TeamResource API Errors 181

Get Script Selectors 182

ClientLog 187

ClientLog APIs 187

ClientLog—Post to Finesse 187

CompressedClientLog—Post Compressed Log to Finesse 188

ClientLog API Parameters 189

ClientLog API Errors 189

Task Routing APIs 190

Media 190

Media APIs 191

MediaDomain—Get List 201

Agent States for Nonvoice Media 201

Media API Parameters 204

Media API Errors 208

Dialog APIs for Nonvoice Tasks 209

User APIs for Nonvoice Tasks 210

Single Sign-On 211

Single Sign-On APIs 212

Single Sign-On—Test API 212

Single Sign-On—Fetch Access Token 213

Single Sign-On—Refresh Existing Access Token 216

Single Sign-On—Get User Authentication Mode 217

Single Sign-On Parameters 218

Single Sign-On API Errors 219

Client Integration 219

TeamMessage 221

TeamMessage APIs 222

TeamMessage—Get Team Message 222

TeamMessage—Get List 223

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
vi

Contents

TeamMessage—Create a Team Message 225

TeamMessage—Delete a Team Message 225

TeamMessage API Parameters 226

TeamMessage API Errors 227

Cisco Finesse Configuration APIs 229C H A P T E R 4

SystemConfig 229

SystemConfig APIs 230

SystemConfig—Get 230

SystemConfig—Set 231

SystemConfig API Parameters 232

SystemConfig API Errors 233

ConfigInfo 233

ConfigInfo APIs 234

ConfigInfo—Get 234

ConfigInfo API Parameters 235

ConfigInfo API Errors 235

ECCVariableConfig 235

ECCVariableConfig APIs 236

ECCVariableConfig—Get ECC Variable Configuration 236

ECCVariableConfig API Parameters 237

ECCVariableConfig API Errors 238

ClusterConfig 238

ClusterConfig APIs 238

ClusterConfig—Get 238

ClusterConfig—Set 239

ClusterConfig API Parameters 240

ClusterConfig API Errors 240

EnterpriseDatabaseConfig 241

EnterpriseDatabaseConfig APIs 241

EnterpriseDatabaseConfig—Get 241

EnterpriseDatabaseConfig—Set 242

EnterpriseDatabaseConfig API Parameters 244

EnterpriseDatabaseConfig API Errors 244

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
vii

Contents

LayoutConfig 245

LayoutConfig APIs 258

LayoutConfig—Get 258

LayoutConfig—Set 258

LayoutConfig API Parameters 259

LayoutConfig API Errors 259

ReasonCode 260

ReasonCode APIs 261

ReasonCode—Get 261

ReasonCode—Get List 262

ReasonCode—Create 263

ReasonCode—Update 264

ReasonCode—Delete 266

ReasonCode API Parameters 266

ReasonCode API Errors 267

WrapUpReason 267

WrapUpReason APIs 268

WrapUpReason—Get 268

WrapUpReason—Get List 269

WrapUpReason—Create 269

WrapUpReason—Update 271

WrapUpReason—Delete 272

WrapUpReason API Parameters 273

WrapUpReason API Errors 273

ChatConfig 274

ChatConfig APIs 274

ChatConfig—Get 274

ChatConfig—Set 275

ChatConfig API Parameters 275

ChatConfig API Errors 276

Cloud Connect 276

Cloud Connect Configuration 276

Cloud Connect Configuration APIs 276

Cloud Connect Configuration Parameters 279

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
viii

Contents

Cloud Connect Configuration API Errors 279

Cloud Connect Services 280

Cloud Connect Services APIs 280

Cloud Connect Services API Errors 282

MediaPropertiesLayout 282

MediaPropertiesLayout APIs 283

MediaPropertiesLayout—Get 283

MediaPropertiesLayout—Get Default Layout 284

MediaPropertiesLayout—Get List 286

MediaPropertiesLayout—Create 287

MediaPropertiesLayout—Update 289

MediaPropertiesLayout—Update Default Layout 291

MediaPropertiesLayout—Delete 293

MediaPropertiesLayout API Parameters 294

MediaPropertiesLayout API Errors 297

PhoneBook 297

PhoneBook APIs 298

PhoneBook—Get 298

PhoneBook—Get List 299

PhoneBook—Create 300

PhoneBook—Update 301

PhoneBook—Delete 301

PhoneBook—Import Contact List (CSV) 302

PhoneBook—Import Contact List (XML) 304

PhoneBook—Export Contact List 305

PhoneBook API Parameters 306

PhoneBook API Errors 306

Contact 307

Contact APIs 308

Contact—Get 308

Contact—Get List 309

Contact—Create 309

Contact—Update 310

Contact—Delete 311

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
ix

Contents

Contact API Parameters 312

Contact API Errors 313

Workflow 313

Workflow APIs 318

Workflow—Get 318

Workflow—Get List 321

Workflow—Create 322

Workflow—Update 323

Workflow—Delete 325

Workflow API Parameters 326

Workflow API Errors 330

WorkflowAction 331

WorkflowAction APIs 333

WorkflowAction—Get 333

WorkflowAction—Get List 333

WorkflowAction—Create 334

WorkflowAction—Update 336

WorkflowAction—Delete 337

WorkflowAction API Parameters 338

WorkflowAction API Errors 342

Team 342

Team APIs 343

Team—Get List 343

Team—Get List of Reason Codes 344

Team—Update List of Reason Codes 345

Team—Get List of Wrap-Up Reasons 346

Team—Update List of Wrap-Up Reasons 347

Team—Get List of Phone Books 348

Team—Update List of Phone Books 349

Team—Get Layout Configuration 350

Team—Update Layout Configuration 351

Team—Get List of Workflows 353

Team—Update List of Workflows 354

Team API Parameters 355

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
x

Contents

Team API Errors 356

SystemVariable 356

SystemVariable APIs 356

SystemVariable—List 356

SystemVariable API Parameters 360

SystemVariable API Errors 360

Cisco Finesse Serviceability APIs 361C H A P T E R 5

SystemInfo 361

SystemInfo APIs 362

SystemInfo—Get 362

SystemInfo API Parameters 363

SystemInfo API Errors 369

Finesse MaintenanceMode 369

Finesse MaintenanceMode APIs 370

Finesse MaintenanceMode—Get 370

Finesse MaintenanceMode—Update 370

Finesse MaintenanceMode API Parameters 372

Finesse MaintenanceMode API Errors 373

ConnectedUsersInfo 373

ConnectedUsersInfo APIs 374

ConnectedUsersInfo—Summary 374

ConnectedUsersInfo—Get Connected Users Information 375

ConnectedUsersInfo API Parameters 376

ConnectedUsersInfo API Errors 378

Diagnostic Portal 378

Diagnostic Portal APIs 378

Diagnostic Portal—Get Performance Information 378

Diagnostic Portal—Get Product Version 380

Diagnostic Portal API Errors 380

RuntimeConfigInfo 381

RuntimeConfigInfo APIs 381

RuntimeConfigInfo—Get 381

RuntimeConfigInfo API Parameters 382

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
xi

Contents

RuntimeConfigInfo API Errors 384

Locked Out Users 385

Cisco Finesse Notifications 387C H A P T E R 6

About Cisco Finesse Notifications 387

Notification Frequency 387

Subscription Management 387

Subscription Persistence 389

Resources 389

User Notification 389

Dialog Notification 390

Dialogs/Media Notification 397

Dialog CTI Error Notification 400

Team Notification 402

Queue Notifications 403

User/Queue Notification 405

Media Notification 407

Media and Dialogs/Media Asynchronous Error Notification 408

Notification Parameters 412

Managing Notifications in Third-Party Applications 413

Connect to XMPP over HTTP (BOSH/WebSocket) using Finesse EventTunnel 415

Connect to XMPP over TCP 416

Finesse High Availability 419C H A P T E R 7

Failure Scenarios 419

Desktop Presence and Forced Logout 420

Failure Handling for Task Routing Clients 422

Finesse Desktop Gadget Development 423C H A P T E R 8

Finesse Gadgets 423

Gadget Description 424

Simple Example Gadget 426

Gadget Limitations 427

Import Finesse JavaScript API 428

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
xii

Contents

alternateHosts Configuration 429

Headless Gadget Configuration 429

Multi-Tab Gadgets 429

Best Practices for Gadget Development 430

Supported OpenSocial Features 432

Gadget Specification XML Features 432

Required Module pref Feature 432

Loading Indicator Feature 433

APIs Available to Gadget JavaScript 434

Gadget Preferences 435

Caveats 435

Gadget Caching 436

Notifications on Finesse Desktop 436

Finesse Notifications in Third-Party Containers 436

Finesse Topics 437

Connection Information 437

Finesse Notifications 438

Finesse Requests 438

ConnectionInfoReq 439

ConnectionReq 439

SubscribeNodeReq 440

UnsubscribeNodeReq 440

Finesse Responses 440

Workflow Action Event 441

Finesse Container Timer 442

Handling Special Characters in CSS 444

Subscription Management on Finesse Desktop 445

Gadget Height Management 445

Setting Gadget Height—Desktop Layout XML 445

Setting Gadget Height—Using Gadget API 445

Third-Party Gadgets 449C H A P T E R 9

Enable or Reset 3rdpartygadget Account 449

CSS Requirements 449

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
xiii

Contents

Upload Third-Party Gadgets 450

Permissions 452

Replication 452

Migration 452

Backup and Restore 452

Restrictions 452

CORS Support for Finesse REST APIs 453

Maintenance Mode 453

Cisco Finesse JavaScript APIs 455C H A P T E R 1 0

Client Services 455

Container Services 457

Container Services Topics 466

Finesse Toaster 467

Popover Service 469

Events 476

Gadget View Changed Event 476

Timer Tick Event 477

Workflow Action Event 478

Task Activity Notification 480

ClientLogger 482

Digital Channel 483

Cisco Common Desktop Stock Icon Names with Image 487

Channel Service 488

Gadget Configuration 492

Interfaces 493

Request Handlers 493

REST Services 494

JavaScript Representation of Finesse REST API 494

REST Collection Objects 494

RestBase and RestCollectionBase Common Parameters 496

JavaScript Library 499

Subscription Support 500

REST Base 502

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
xiv

Contents

REST Collection Base 504

User 505

User.MediaStates 520

User.States 520

User.WorkMode 521

User.WrapUpMode 521

UserMediaPropertiesLayout 522

UserMediaPropertiesLayouts 522

Users 522

Dialog 523

Dialog.Actions 528

Dialog.ParticipantStates 529

Dialog.ReasonStates 530

Dialog.States 530

DialogBase 531

DialogLogoutActions 534

Dialogs 535

Queue 536

Queues 537

Team 537

TeamNotReadyReasonCode 538

TeamNotReadyReasonCodes 539

TeamSignOutReasonCodes 540

Media 541

Media.States 548

MediaDialog 548

MediaDialog.States 549

MediaDialog.TaskActions 550

MediaDialogs 550

MediaList 551

MediaOptionsHelper 552

MediaOptionsHelper.States 553

MediaPropertiesLayout 553

Script Selectors 555

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
xv

Contents

ChatConfig 555

ECCVariableConfig 557

Contact 558

Contacts 559

InterruptActions 559

PhoneBook 560

PhoneBooks 561

ReasonCodeLookup 562

ReasonCodes 562

SystemInfo 563

SystemInfo.Statuses 567

WrapUpReason 567

WrapUpReasons 568

ShortcutKey Service 568

Utilities 574

Desktop Cache 584

JSONValidator 587

WorkflowService 587

JSON Schema 590

Log Collection 591C H A P T E R 1 1

Log Collection 591

Documents and Documentation Feedback 595C H A P T E R 1 2

Documents and Documentation Feedback 595

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
xvi

Contents

C H A P T E R 1
Introduction

• What's New in Cisco Finesse 12.6(1), on page 1
• Deprecated Features, on page 4
• Cisco Finesse REST APIs, on page 4
• JavaScript Library and Sample Gadgets, on page 5
• Communication with the Cisco Finesse Web Service, on page 6
• API Parameter Types, on page 9
• Cisco Finesse API Errors, on page 10

What's New in Cisco Finesse 12.6(1)
REST APIs

The following APIs have been added in Cisco Finesse 12.6(1).

• Device—Get List of Devices for Extension—This API allows a user to retrieve the list of devices
associated with an extension. This API is only supported for Unified CCE deployments.

• Finesse MaintenanceMode—This API allows the user to request Finesse to move to maintenance mode.
The following are the new Finesse MaintenanceMode APIs:

• Finesse MaintenanceMode—Get

• Finesse MaintenanceMode—Update

• ConnectedUserInfo—This API retrieves the list of agent details logged in during the real time. The
following are the new ConnectedUserInfo APIs:

• ConnectedUserInfo—Summary

• ConnectedUserInfo—Get Connected Users Information

The following changes are made to the payloads in Cisco Finesse 12.6(1) REST APIs:

• User APIs—The following fields are added to the payload:

• deviceSelection—Indicates whether the CTI device selection is enabled for the agent.

• activeDeviceId—A unique ID of the active device associated with the extension to which the agent
is signed in.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
1

• Devices—Information about the list of devices associated with an extension.

• skillTargetId—Indicates the unique identifier for the skill target assigned to the agent in the Unified
CCE database.

• services—Information about the list of services that are configured for an agent or a supervisor.

• Dialog—Drop Participant from Conference—This API allows an agent or supervisor to make a request
to drop other participants from a conference based on the permission set by the administrator.

• services—Information about the list of services that are associated with a dialog.

• Single Sign-OnAPIs—The optional parameters are added in the Fetch Access Token and Refresh Existing
Access Token APIs

• SystemInfo APIs—The following fields are added to the payload:

• ctiTimeInMMode—The total time (in seconds) that the CTI server is in maintenance mode.

• ctiMMode—Indicates whether the CTI server is in maintenance mode.

• ctiServers—Information about the list of CTI servers that the Cisco Finesse is connected to.

• finesseTimeInMMode—The total time (in seconds) that the Finesse server is in maintenance mode.

• finesseMMode—Indicates whether the Finesse server is in maintenance mode.

Finesse Desktop Gadget Development

A new subsection is added for Multi-Tab gadgets functionality.

jQuery

The jQuery version hosted by Finesse has been upgraded from 3.4.1 to 3.5.1.

JavaScript APIs

The finesse.containerservices.TaskActivityNotification JavaScript APIs has been added in Cisco
Finesse 12.6(1).

The following changes are made to the payloads in Cisco Finesse 12.6(1) JavaScript APIs:

• Gadget Configuration—Added the skillTargetId field which refers to the skill ID of the user.

• User—The following functions are added:

• getActiveDeviceId()—Retrieves the current active device ID of the agent.

• getDevices()—Retrieves the list of devices associated with a particular extension.

• getSkillTargetId—Retrieves the Id for the skill target assigned to the user in the Unified CCE
database.

• getServices()—Retrieves the list of services configured for the user.

• isDeviceSelectionEnabled—Retrieves whether the device selection is enabled for the user.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
2

Introduction
What's New in Cisco Finesse 12.6(1)

• loginWithActiveDeviceId()—Performs an agent login for a user and associates the agent with the
specified extension and device.

• Container Services—The following services are added:

• enableTitleBar()—Displays the title bar for a page-level gadget which is not visible by default.

• getMyGadgetView()—Returns the current view details of the gadget.

• hideCertificateBanner()—Request to hide the Certificate Banner.

• hideMyGadget()—Makes the current gadget inaccessible by hiding it from the title bar of the
multi-tab gadget.

• hideMyGadgetNotification()—Removes the current gadget's notifications from the title bar of the
multi-tab gadget.

• isTabbedGadget()—Checks if the gadget is configured inside a multi-tab gadget.

• setMyGadgetTitle(title)—Sets the title of the current gadget.

• showCertificateBanner()—Displays the Certificate Banner with message "Gadget certificates are
yet to be accepted."

• showMyGadget()—Makes the current gadget accessible by showing its tab in the title bar of the
multi-tab gadget.

• showMyGadgetNotification()—Makes a red dot appear on the gadget title if it is not the current
active gadget. The notification dot disappears if the tab is active.

• Container Services Topics—The following service is added:

• FINESSE_MAINTENANCE_MODE_EVENT—Listens to notification related to Finesse
maintenance mode changes.

• SystemInfo—The following functions are added:

• getCtiMMode—Retrieves the CTI server in maintenance mode.

• getCtiTimeInMMode—Retrieves the total time (in seconds) that the CTI server is in maintenance
mode.

• getCtiServers—Retrieves the list of CTI servers that Cisco Finesse is connected to.

• getFinesseMMode—Retrieves the Finesse server in maintenance mode.

• getFinesseTimeInMMode—Retrieves the total time (in seconds) that the Finesse server is in
maintenance mode.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
3

Introduction
What's New in Cisco Finesse 12.6(1)

Deprecated Features
Notifications over BOSH (Long Polling)

In this release, support for notifications over BOSH (long polling) is deprecated. Applications that require
notifications are recommended to use WebSocket-based notifications (Finesse desktop) or notifications over
direct XMPP (over TCP).

The usage of port 7443 is deprecated and the port 8445 should be used instead. For the details on how to use
port 8445 forWebSocket notifications, refer to theManaging Notifications in Third-Party Applications section
of the Cisco Finesse Web Services Developer and JavaScript Guide.

Cisco Finesse REST APIs
This document is the official reference for the Cisco Finesse Application Programming Interface (API). The
Finesse desktop APIs support the Finesse desktop, providing agent desktop functionality, such as call control
and state changes.

The Finesse configuration APIs support the Finesse administration console, providing the ability to configure
resources (such as reason codes, wrap-up reasons, and workflows).

The Finesse APIs support the following capabilities:

• User Sign In/Sign Out

• Agent States

• Configurations

• Subscriptions

• Call Control

• Reason Codes

• Wrap-up Reasons

• Teams

• Team Resource

• Queues

• Task Routing

• Mobile Agents

• Workflows

• TeamMessages

• Desktop Chat

This guide explains each API and the notificationmessages returned by the APIs. The guide includes a section
to assist developers with running and validating the APIs in a lab environment.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
4

Introduction
Deprecated Features

https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide

REST API Response Caching

The Finesse webproxy caches the following REST API responses:

• ChatConfig

• ECCVariableConfig (applicable for Unified CCE)

• MediaDomain (applicable for Unified CCE)

• TeamResource: The responses of the TeamResource API are cached at the team-level.

When Reason Codes,Wrap-Up Reasons, Phone Books,Workflows, orMedia Properties Layouts specific
to a Team are updated, the Finesse webproxy cache is cleared and the update is reflected in the next
TeamResource API request.

Proxy cache bypassing degrades performance and is only recommended for debugging purposes during the
gadget development or troubleshooting.

• To bypass the server cache for the Finesse API, include bypassServerCache=true as a query parameter
in the request or clear server cache using the CLI utils webproxy cache clear rest.

• To bypass the server cache for the Finesse desktop, include bypassServerCache=true&nocache as a
query parameter in the desktop URL.

Formore information on the CLI commands, seeCisco Finesse Administration Guide at https://www.cisco.com/
c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

JavaScript Library and Sample Gadgets
Finesse provides a JavaScript library (finesse.min.js) and several sample gadgets to help jump-start your
gadget development. The JavaScript library provides a substantial amount of fundamental code infrastructure
that you would otherwise must write yourself.

The Cisco Finesse JavaScript library is dependent on the jQuery library, which needs to be manually imported
in the gadget code. Starting Finesse 12.6(1), the hosted jQuery version has been upgraded to 3.5.1. Gadgets
that use jQuery directly should evaluate if there are any impacts due to the upgrade. The jQuery Migrate
development tool can help resolve any upgrade issues. For more information about the jQuery Migrate
development tool, see https://github.com/jquery/jquery-migrate/.

• You can access the JavaScript library at the following URL:
https://<FQDN>:<port>/desktop/assets/js/finesse.min.js

The unminified version of finesse.min.js can be accessed from the URL:
https://<FQDN>:<port>/desktop/assets/js/finesse.js

Note

• For JavaScript API documentation, refer to the Cisco Finesse JavaScript APIs chapter.

• You can access JQuery at the following URL: https://<FQDN>:<port>/desktop/assets/js/jquery.min.js.

• If you have third-party gadgets that are loaded on Finesse, the third-party gadgets can access the JavaScript
library at: /desktop/assets/js/finesse.min.js.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
5

Introduction
JavaScript Library and Sample Gadgets

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html
https://github.com/jquery/jquery-migrate/

• The sample gadgets are available from Cisco DevNet at the following link: https://developer.cisco.com/
site/finesse/.

For the proper functioning of the JavaScript library, you must import both the Finesse JavaScript library and
JQuery.

Note

Communication with the Cisco Finesse Web Service
The Cisco Finesse Notification Service name in the following diagram is specific to Unified CCE deployments.
In a Unified CCX deployment, the notification service is named the Cisco Unified CCX Notification Service.

Figure 1: Finesse API and Event Flow

The Finesse desktop supports receiving updates through BOSH/WebSocket only.Note

Client Requests
Cisco Finesse Release 12.5(1) or higher supports only secure HTTP (HTTPS) requests from clients. Cisco
Finesse desktop operations can be performed using the available RESTHTTPS request described in this guide.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
6

Introduction
Communication with the Cisco Finesse Web Service

https://developer.cisco.com/site/finesse/
https://developer.cisco.com/site/finesse/

Operations on specific objects are performed using the ID of the object in the REST URL. For example, the
URL to view a single object (HTTPs) would be:

The URL to view a single object (HTTPS) would be:

https://<FQDN>:<port>/finesse/api/<object>/<objectID>

FQDN is the fully-qualified domain name of the Finesse server.

Finesse configuration APIs require the application user ID and password, which is established during
installation, for authentication purposes.

Finesse APIs use the following HTTP methods to make requests:

• GET: Retrieve a single object or list of objects (for example, a single user or list of users).

• PUT: Replace a value in an object (for example, to change the state of a user from NOT_READY to
READY).

• POST: Create a new entry in a collection (for example, to create a new reason code or wrap-up reason).

• DELETE: Remove an entry from a collection (for example, to delete a reason code or wrap-up reason).

Finesse uses the standard HTTP status codes (for example, 200, 400, and 500) in the response. These status
codes indicate overall success or failure of the request.

If an API operation fails, a detailed error is returned in the HTTP response message body. The error, in XML
format, appears as follows:

<ApiErrors>
<ApiError>

<ErrorType>type</ErrorType>
<ErrorMessage>message</ErrorMessage>
<ErrorData>data</ErrorData>

</ApiError>
</ApiErrors>

Finesse has a Dependency Manager that collects the state of internal dependencies for Finesse (such as the
state of the Cisco Finesse Notification Service) and reports these states to external entities.

If any of these dependencies are down, Finesse is out of service. If the Cisco Finesse Tomcat is running,
Finesse rejects any API requests and returns an HTTP 503 error. The error appears as follows:

<ApiErrors>
<ApiError>
<ErrorType>Service Unavailable</ErrorType>
<ErrorData></ErrorData>
<ErrorMessage>SERVER_OUT_OF_SERVICE</ErrorMessage>

</ApiError>
</ApiErrors>

If the Cisco Finesse Tomcat service is not running, Finesse returns a Connection Timeout error.

All Finesse APIs use HTTP BASIC authentication, which requires the credentials to be sent in the
"Authorization" header. The credentials contain the username and password, separated by a single colon (:),
within a BASE64-encoded string. For example, the Authorization header would contain the following string:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
7

Introduction
Client Requests

"Basic YWdlbnRiYXJ0b3dza2k6Y2FybWljaGFlbA=="

where "YWdlbnRiYXJ0b3dza2k6Y2FybWljaGFlbA==" is the Base64-encoded string of
"agentbartowski:carmichael" (agentbartowski being the username and carmichael being the password).

In case of Single Sign-On mode, the Authorization header would contain the following string:
Bearer <authtoken>

where the authtoken has to be fetched from IDS through the ADFS server.

If an administrator changes the password for an agent or supervisor on the secondary Administration & Data
server (if configured) while the primary distributor process on Unified CCE is down, the agent or supervisor
can still use the old password and access all REST APIs except the sign-in request. To ensure this does not
happen, the primary distributor must be up and running when the administrator changes the password.

HTTPS Requests
Cisco Finesse does not support plain HTTP but supports only secure HTTP (HTTPS). In response to clients
accessing Finesse using plain HTTP, the 301 HTTP redirect is issued to the secured port 8445.

Cisco Finesse supports HTTP/2 protocol by default.Note

Clients must make all HTTPS requests to port 8445. Finesse desktop APIs conform to the following format:
https://<FQDN>:<port>/finesse/api/<object>

Use the fully qualified domain name (FQDN) of the Finesse server instead of the IP address to avoid address
mismatch errors (SSL certificate uses the Finesse hostname.)

Note

The following ports are disabled by default:

• BOSH/WebSocket (HTTP)—7071

• XMPP—5222

Use the CLI command utils finesse set_property webservices enableInsecureOpenfirePort true to enable
these ports. For more information on CLI commands, see Cisco Finesse Administration Guide at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

For gadget development, Finesse server and client connections only support TLS 1.2 by default.Note

Real-Time Events
Real-time events (such as call events, state events, and so on) are sent by the Cisco Finesse Notification
Service, using the XEP-0060 Publish-Subscribe extension of the XMPP (Extensible Messaging and Presence
Protocol) protocol. Applications that need to communicate with the Notification Service must use XMPP over
the BOSH (Bidirectional-streams Over Synchronous HTTP)/WebSocket transport.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
8

Introduction
HTTPS Requests

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

All real-time events are sent over HTTPS.

BOSH/WebSocket is an open technology for real-time communication and is useful for emulating a long-lived,
bidirectional TCP connection between two entities (such as client and server). See documentation at the XMPP
Standards Foundation (http://www.xmpp.org) for details about both XMPP andBOSH/WebSocket (XEP-0124).

Client applications can communicate with the Cisco Finesse Notification Service through BOSH/WebSocket
over HTTPS, using the binding URI https://<FQDN>:7443/http-bind. Developers can create their own
BOSH/WebSocket library or use any that are available publicly.

After creating the connection, applications can receive notification events of feeds to which they are subscribed.
Users are currently subscribed to a few feeds by default (subject to change). Other feeds require an explicit
subscription (see Subscription Management).

The agents must be connected to the Cisco Notification Service to retain the user presence information. If
not, it can result in unexpected behavior or cause the desktop not to respond as expected.

Note

API Parameter Types
The following sections describe the parameter and data types for the Cisco Finesse Desktop Interface APIs.

API Header Parameters

DescriptionTypeName

The password used in the request header to make any Finesse API request.
Finesse supports a "Basic" authorization scheme only and authorization is
required for each Finesse API request.

Stringpassword

The username used in the request header to make any Finesse API request.
Finesse supports a "Basic" authorization scheme only and authorization is
required for each Finesse API request.

Stringusername

Path Parameter

A path parameter is included in the path of the URI. In the following example, dialogId is a path parameter.
https://<FQDN>:<port>/finesse/api/Dialog/<dialogId>

Query Parameter

A query parameter is passed in a query string on the end of the URI you are calling. The query parameter is
preceded by a question mark. Multiple query parameters are connected by an ampersand (&). In the following
example, category is a query parameter.
https://<FQDN>:<port>/finesse/api/User/<id>/ReasonCodes?category=NOT_READY

Data Types

The following table lists the data types used in API parameters and notification message fields.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
9

Introduction
API Parameter Types

http://www.xmpp.org

DescriptionType

A logical data type that has one of two values: true or false.Boolean

A 32-bit wide integer.Integer

A 64-bit wide integer.Long

A variable-length string. If a maximum length exists, it is listed with the parameter
description.

String

Cisco Finesse API Errors
Error codes for Cisco Finesse are categorized as follows:

• 4xx—Client-related error

• 5xx—Server-related error

Each error includes a failure response, error type, error message, and error data. The following is an example
of a failure message format:

<ApiErrors>
<ApiError>

<ErrorType>Authentication Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

In addition to Cisco Finesse API errors, a response may return a CTI error or an HTTP error.

This document contains information about error type and error message. You can find information about error
data values for most User and Dialog errors in the following documents:

For Finesse deployments with Unified CCE, see the CTI Server Message Reference Guide for Cisco Unified
Contact Center Enterprise, which you can find at https://developer.cisco.com/site/cti-protocol/documentation/
.

For Finesse deployments with Unified CCX, see the https://developer.cisco.com/docs/contact-center-express/
#!cti-protocol-dev-guide.

Note

HTTP Errors

All HTTP errors are returned as HTTP 1.1 Status Codes. Errors that might be for Finesse-specific events are
listed below:

500 Internal Server Error
FinesseWeb Services returns 500 if the CTI connection is lost but the loss is not yet detected by automated
means.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
10

Introduction
Cisco Finesse API Errors

https://developer.cisco.com/site/cti-protocol/documentation/
https://developer.cisco.com/docs/contact-center-express/#!cti-protocol-dev-guide
https://developer.cisco.com/docs/contact-center-express/#!cti-protocol-dev-guide

• 500 - DB_RUNTIME_EXCEPTION (database error, but the database is thought to be operational)

• 500 - RUNTIME_EXCEPTION (a non-database error)

• 500 - AWS_SERVICE_UNAVAILABLE (AWS not operational)

503 Service Unavailable
If Finesse is in PARTIAL_SERVICE or OUT_OF_SERVICE, it returns 503 for all requests. If any
dependent service goes down, Finesse goes to OUT_OF_SERVICE state (for example, if the Cisco
Finesse Notification Service is down).This error is due to a temporary outage or overloading condition.
A retry after several seconds is likely to succeed. For example, the system returns 503 when the system
is just starting up and when the system is trying to connect to the CTI server.

Peripheral Error Codes

Cisco Finesse, Release 12.5(1) introduces peripheral error codes for CTI operations, which provide a more
detailed description of the error scenario. The newly added parameters are:

• peripheralErrorCode

• peripheralErrorMsg

• peripheralErrorText

Example:

<ApiErrors>
<ApiError>

<ErrorType>Service Unavailable</ErrorType>
<ErrorData></ErrorData>
<ErrorMessage>SERVER_OUT_OF_SERVICE</ErrorMessage>
<peripheralErrorCode>13036</peripheralErrorCode>

<peripheralErrorMsg>PERERR_GW_E_JTAPIOBJ_PERFORMANSWERCALL_NO_TERMINAL_CONNECTION</peripheralErrorMsg>

<peripheralErrorText>The routine performAnswerCall in class JTapiObj got a null
connection from a call to 'findTerminalConnection'</peripheralErrorText>

</ApiError>
</ApiErrors>

For more information, see Cisco IPCC Error Codes at https://www.cisco.com/c/en/us/support/docs/
voice-unified-communications/unified-contact-center-enterprise/26142-error-codes.html.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
11

Introduction
Cisco Finesse API Errors

https://www.cisco.com/c/en/us/support/docs/voice-unified-communications/unified-contact-center-enterprise/26142-error-codes.html
https://www.cisco.com/c/en/us/support/docs/voice-unified-communications/unified-contact-center-enterprise/26142-error-codes.html

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
12

Introduction
Cisco Finesse API Errors

C H A P T E R 2
Lab Development Environment Validation with
Cisco FinesseWeb Services APIs

• Environment and Tools, on page 13
• Cisco Finesse APIs, on page 21

Environment and Tools
The topics in this section are for use as a learning exercise and are not meant for use in real deployments.

To complete these exercises, you need the following:

• A user who is configured as an agent in Unified CCE or Unified CCX (with an agent ID, password, and
extension). Make the agent a member of a team and of a queue. (A queue is a skill group.)

• Three phones that are configured in Cisco Unified Communications Manager: one for the agent, one for
the caller, and one to use for conferencing and transfer APIs. These can be Cisco IP "hard phones" or
Cisco IP Communicator softphones.

• Tools: Postman and Pidgin for Windows or Adium for Mac OS X.

Postman, Pidgin and Adium are meant to aid in development; however, they are not officially supported.Note

Postman

Procedure

Postman is an example of a REST client utility that allows you to send HTTP requests to a specific URL. You can use this
utility in your lab to exercise the Finesse Web Service APIs by entering the URI for an API and checking the response. All
APIs are accessible by URI and follow a request/response paradigm. There is always a single response for any request.

You can download Postman from https://www.getpostman.com/.

For using self-signed SSL certificates with Postman see, http://blog.getpostman.com/2014/01/28/
using-self-signed-certificates-with-postman/

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
13

https://www.getpostman.com/
http://blog.getpostman.com/2014/01/28/using-self-signed-certificates-with-postman/
http://blog.getpostman.com/2014/01/28/using-self-signed-certificates-with-postman/

To test an API in Postman, follow these steps:

Step 1 Copy and paste the URI for the API request from this Developer Guide into a text editor. For example, to
enter the URI for signing in, copy the URI from the User—Sign In to Finesse API. Examine the pasted code
for case sensitivity and format and remove any carriage returns.

Step 2 Update the URI with the IP address of your Cisco Finesse Web Services server.
Step 3 Add any mandatory parameters for the request.
Step 4 Enter the username and password for the agent you set up for these exercises.
Step 5 For Content Type, enter application/xml

Step 6 Click the appropriate action (GET, PUT, or POST).

Figure 2: Postman Rest Client

When you send zip files, select Content Type as form-data. For more information, see
CompressedClientLog—Post Compressed Log to Finesse, on page 188.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
14

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Postman

Figure 3: Send Zip File

Pidgin for Windows
Pidgin is a multiplatform instant messaging client that supports many commonmessaging protocols, including
XMPP. You can use Pidgin to establish an XMPP connection and view XMPP messages published by the
Cisco Finesse Notification Service.

You cannot be signed in to Pidgin at the same time you are signed in to Finesse as the XMPP event feed is
disrupted.

Note

Notifications that result from API requests made in Postman appear in the XMPP Console tool of the Pidgin
application. For example, if you use Postman to change an agent's state, you can see the resulting agent state
change event in the Pidgin XMPP Console window.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
15

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Pidgin for Windows

Make sure that you use the same username and resource values in both Postman and Pidgin.Note

You can download Pidgin from http://www.pidgin.im/download/.

Perform the following steps to configure XMPP:

1. In Pidgin, go to Tools > Plugins to open the Plugins dialog box.
2. Check the XMPP Console and XMPP Service Discovery check boxes.

Perform the following steps to configure Pidgin:

1. Add an account for your XMPP server. Go to Pidgin > Accounts > Manage Accounts > Add Account.
The Add Account dialog box opens.

2. For Protocol, select XMPP.
3. For Username, enter the username for the agent that you added.
4. For Domain, enter the fully-qualified domain name of the Cisco Finesse server.
5. For Resource, enter any text.
6. For Password, enter the password of the agent.

Figure 4: The Pidgin Interface

7. Click Save.
8. Click the Advanced tab.
9. Check the Allow plaintext auth over unencrypted streams check box.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
16

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Pidgin for Windows

http://www.pidgin.im/download/

10. For Connect Server, enter the IP address of the Finesse server.
11. If the Connection Security drop-down menu is present, choose Use encryption if available.
12. Click Save.

Connect port and File transfer proxies should be filled in automatically (5222 should appear in the Connect
port field).

Note

When connecting to the secure port 5223:

1. Add the Finesse Notification Service certificate in the Pidgin certificate manager. Finesse Notification
Service shares the same certificate with Cisco Finesse Tomcat.

2. To download the certificate:

a. Sign in to the Cisco Unified Operating System Administration through the URL
(https://FQDN:8443/cmplatform, where FQDN is the fully qualified domain name of the primary
Finesse server and 8443 is the port number).

b. Click Security > Certificate Management.

c. Click Find to get the list of all the certificates.

d. In the Certificate List screen, choose Certificate from the Find Certificate List where drop-down
menu, enter tomcat in the begins with option and click Find.

e. Click the FQDN link which appears in the Common Name column parallel to the listed tomcat
certificate.

f. In the pop-up that appears, click the option Download .PEM File to save the file on your desktop.

3. In the Pidgin CertificateManager, go to the Connection Security drop-downmenu and chooseUse old-style
SSL.

4. In the Connect Server field, enter the FQDN of the Finesse server.

Note

The XMPP logo next to the agent's name becomes active (is no longer dimmed). To see event messages in
Pidgin, open the XMPP Console.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
17

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Pidgin for Windows

Figure 5: Open XMPP Console in Pidgin

The agent must be signed in to Finesse through Postman or the browser interface to be signed in to the XMPP
account on Pidgin.

Note

The XMPP Console window immediately begins to update every few seconds with iq type statements. The
window does not display an event message until an event occurs. If the XMPP Console window fills with iq
type notifications and becomes difficult to navigate, close and reopen it to refresh with a clean window.

Figure 6: The XMPP Console Window

Adium for Mac OS X
Adium is a free open source instant messaging application for Mac OS X. You can use Adium to establish
an XMPP connection and view XMPP messages published by the Cisco Finesse Notification Service.

You can download Adium from https://www.adium.im.

Perform the following steps to configure XMPP:

1. In Adium go to Preferences > Account > '+' > XMPP (Jabber).

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
18

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Adium for Mac OS X

https://www.adium.im

2. For Jabber ID, enter the username for the agent along with the fully qualified domain name of the Cisco
Finesse server.

3. For Password, enter the password of the agent.

Figure 7: The Adium Interface

4. Enable XMPP Advanced Features (Default: Off).

To enable the XML Console menu run the following command in Terminal: defaults write
com.adiumX.adiumX AMXMPPShowAdvanced -bool YES

5. In Adium go to File > Logged in User > XML Console.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
19

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Adium for Mac OS X

Figure 8: Open XML Console in Adium

The agent must be signed in to Finesse through Postman or the browser interface to be signed in to the XMPP
account on Adium.

Note

The XML Console window immediately begins to update every few seconds with iq type statements. The
window does not display an event message until an event occurs. If the XML Console window fills with
iq type notifications and becomes difficult to navigate, close and reopen it to refresh with a clean window.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
20

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Adium for Mac OS X

Figure 9: The XML Console Window

Cisco Finesse APIs
APIs that control actions on the Finesse desktop and call control make use of two objects:

• User object: The User object represents agent and supervisor data and actions. This object is used to get
information about a single user or list of users, to sign in or out of the Finesse Desktop, and change agent
state.

• Dialog object: The Dialog object represents a dialog with participants. For media type "voice", this object
represents a call. A participant can represent an internal user (such as an agent) or an external user (for
example, a customer). A participant can belong to only one dialog but a user can be a participant in
several dialogs. The Dialog object is used for call control and call data.

GET requests are synchronous. That is, the response body of a successful GET request contains all requested
contents, which you can view in Postman or RESTClient. No event is published by XMPP and no event is
received in Pidgin.

PUT and POST requests are asynchronous. A successful response is an HTTP return code of 200 or 202. The
response body does not contain the updated object information.

If a PUT, POST, or DELETE request is on a User or Dialog object, the update is published by XMPP as a
real-time event to Pidgin. If a PUT, POST, or DELETE request is on a configuration object (for example, a
ReasonCode object), XMPP does not publish a real-time update. You must perform a GET request to get an
updated copy of the object.

GET, PUT, POST, and DELETE requests that fail Finesse server internal checks are synchronous. If a request
fails, Postman or RESTClient display the error. No event is published by XMPP to Pidgin. However, if the
request fails on CTI side, Finesse will send an api Error XMPP event back to client after receiving a failure
confirmation response from the CTI Server.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
21

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Cisco Finesse APIs

For each object, Finesse maintains an internal request queue where each subsequent request for this object is
processed only after a success or a failure confirmation response is received from the CTI Server for the
previous request.

RequestId is a user provided unique string that is added to the request API header and used to correlate
originating requests with the resulting XMPP notifications or errors.

RequestId is a best effort request-response correlation and is not reliable.Note

XMPP event notifications that match the requested action are tagged with the requestId (if available) from
the original request. If the originating request results in a system error, the corresponding XMPP error
notifications also contain the requestId. Note that the request id is not sent in the case of synchronous responses
to GET requests. Although not mandatory, using a unique requestId helps in tracking error messages and
allows a user to debug issues faster, as messages with requestId are easily tracked in Finesse logs.

The requestId facility is not implemented for Task routing APIs. For more information, see the section on
Task Routing APIs.

Note

The following sections provide instructions and examples for using the APIs with Postman and Pidgin.

Sign In to Finesse
Use the User - Sign In to Finesse API to sign the agent in.

This example uses the following information:

• Finesse server FQDN: finesse1.xyz.com

• Agent name: John Smith

• Agent ID: 1234

• Agent password: 1001

• Agent extension: 1001

• requestId: xyz

This example shows the URL field for a Unified CCE deployment. In a Unified CCX deployment, you must
include the port number in the URL.

Note

1. Access Postman (Ctrl + Alt +P from the Mozilla Firefox browser) and enter the following string in the
URL field:
https://finesse1.xyz.com/finesse/api/User/1234

2. Enter the agent's ID (1234) and password (1001) in the two User Auth fields directly under the URL field.

3. In the Content Type field, enter application/XML.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
22

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Sign In to Finesse

4. In the area under Content Options, enter the following:
<User>
<state>LOGIN</state>
<extension>1001</extension>
</User>

5. (Optional) To add the requestId:

a. Click Headers.

b. In the Name field, enter requestId, and in the Value field, enter xyz.

c. Click Add/Change

6. Click PUT.

Postman returns the following response:
PUT on https://finesse1.xyz.com/finesse/api/User/1234
Status 202: Accepted

Finesse returns a user notification, which you can view in Pidgin:
<Update>

<data>
<user>

<dialogs>/finesse/api/User/1234/Dialogs</dialogs>
<extension>1001</extension>
<firstName>John</firstName>
<lastName>Smith</lastName>
<loginId>1234</loginId>
<loginName>jsmith</loginName>
<roles>

<role>Agent</role>
</roles>
<pendingState></pendingState>
<reasonCodeId>-1</reasonCodeId>
<settings>

<wrapUpOnIncoming></wrapUpOnIncoming>
<wrapUpOnOutgoing></wrapUpOnOutgoing>

<settings>
<state>NOT_READY</state>
<stateChangeTime>2014-05-27T00:33:44.836Z</stateChangeTime>
<teamId>1</teamId>
<teamName>Default</teamName>
<uri>/finesse/api/User/1234</uri>

</settings>
</user>

</data>
<event>PUT</event>
<requestId>xyz</requestId>
<source>/finesse/api/User/1234</source>

</Update>

The agent is now signed in and in NOT_READY state.

Change Agent State
Use the User - Change agent state API to change the agent state to Ready.

This example uses the same agent information as the previous example.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
23

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Change Agent State

This example shows the URL field for a Unified CCE deployment. In a Unified CCX deployment, you must
include the port number in the URL.

Note

1. In Postman, enter the following string in the URL field:
https://finesse1.xyz.com/finesse/api/User/1234

2. Enter the agent's ID (1234) and password (1001) in the two User Auth fields directly under the URL field.

3. In the Content Type field, enter application/XML.

4. In the area under Content Options, enter the following:
<User>
<state>READY</state>
</User>

5. (Optional) To add the requestId:

a. Click Headers.

b. In the Name field, enter requestId, and in the Value field, enter xyz.

c. Click Add/Change

6. Click PUT.

Postman returns the following response:
PUT on https://finesse1.xyz.com/finesse/api/User/1234
Status 202: Accepted

Finesse returns the following user notification:
<Update>
<data>
<user>
<dialogs>/finesse/api/User/1234/Dialogs</dialogs>
<extension>1001</extension>
<firstName>John</firstName>
<lastName>Smith</lastName>
<loginId>1234</loginId>
<loginName>jsmith</loginName>
<roles>
<role>Agent</role>

</roles>
<state>READY</state>
<pendingState></pendingState>
<settings>
<wrapUpOnIncoming></wrapUpOnIncoming>
<wrapUpOnOutgoing></wrapUpOnOutgoing>

</settings>
<stateChangeTime>2014-05-27T00:35:24.123Z</stateChangeTime>
<teamId>1</teamId>
<teamName>Default</teamName>
<uri>/finesse/api/User/1234</uri>

</user>
</data>
<event>PUT</event>
<requestId>xyz</requestId>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
24

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Change Agent State

<source>/finesse/api/User/1234</source>
</Update>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
25

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Change Agent State

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
26

Lab Development Environment Validation with Cisco FinesseWeb Services APIs
Change Agent State

C H A P T E R 3
Cisco Finesse Desktop APIs

• User, on page 27
• Devices, on page 78
• Dialog, on page 80
• Queue, on page 153
• Team, on page 159
• TeamResource, on page 165
• Get Script Selectors, on page 182
• ClientLog, on page 187
• Task Routing APIs, on page 190
• Single Sign-On, on page 211
• TeamMessage, on page 221

User
The User object represents an agent or supervisor and includes information about the user, such as roles, state,
and teams. The User object is structured as follows:
<User>

<uri>/finesse/api/User/1001001</uri>
<roles>

<role>Agent</role>
<role>Supervisor</role>

</roles>
<loginId>1001001</loginId>
<loginName>csmith</loginName>
<state>NOT_READY</state>
<stateChangeTime>2012-03-01T17:58:21.234Z</stateChangeTime>
<mediaType>1</mediaType>
<pendingState>NOT_READY</pendingState>
<reasonCodeId>16</reasonCodeId>
<ReasonCode>

<category>NOT_READY</category>
<uri>/finesse/api/ReasonCode/16</uri>
<code>10</code>
<label>Team Meeting</label>
<forAll>true</forAll/>
<systemCode>false</systemCode>
<id>16</id>

</ReasonCode>
<settings>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
27

<wrapUpOnIncoming>OPTIONAL</wrapUpOnIncoming>
<wrapUpOnOutgoing>NOT_ALLOWED</wrapUpOnOutgoing>
<deviceSelection>enabled</deviceSelection>

</settings>
<extension>1001001</extension>
<mobileAgent>

<mode>CALL_BY_CALL</mode>
<dialNumber>4085551234</dialNumber>

</mobileAgent>
<firstName>Chris</firstName>
<lastName>Smith</lastName>
<teamId>500</teamId>
<teamName>Sales</teamName>
<skillTargetId>6067</skillTargetId>
<dialogs>/finesse/api/User/1001001/Dialogs</dialogs>
<teams>

<Team>
<uri>/finesse/api/Team/2001</uri>
<id>2001</id>
<name>First Line Support</name>

</Team>
<Team>

<uri>/finesse/api/Team/2002</uri>
<id>2002</id>
<name>Second Line Support</name>

</Team>
<Team>

<uri>/finesse/api/Team/2003</uri>
<id>2003</id>
<name>Third Line Support</name>

</Team>
... other teams ...

</teams>
<services>

<service>AgentAnswers</service>
... other services ...

</services>
<activeDeviceId>SEP0019305D8EC1</activeDeviceId>
<Devices>

<Device>
<deviceId>SEP0019305D8EC1</deviceId>
<deviceType>30018</deviceType>
<deviceTypeName>Cisco 7961</deviceTypeName>

</Device>
<Device>

<deviceId>CSFJP5550016</deviceId>
<deviceType>503</deviceType>
<deviceTypeName>Cisco Unified Client Services Framework</deviceTypeName>

</Device>
</Devices>

</User>

The <services> element only applies to Unified CCE deployments.Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
28

Cisco Finesse Desktop APIs
User

User APIs

User—Sign In to Finesse
The User—Sign in to Finesse API allows a user to sign in to the CTI server. If the response is successful, the
user is signed in to Finesse and is automatically placed in NOT_READY state.

If five consecutive sign-ins fail due to an incorrect password, Finesse blocks access to the user account for a
period of 5 minutes.

This API forces a sign-in. That is, if the user is already signed in, that user is authenticated via the sign-in
process. If the user's credentials are correct, the user is signed in again but the user keeps the current state.
For example, if a user signs in, changes state to Ready, and then signs in again, the user remains in Ready
state.

To sign in as a mobile agent, see User—Sign In as a Mobile Agent, on page 31.

To sign in to nonvoice Media Routing Domains, see Media—Sign In, on page 191.

Note

https://<FQDN>/finesse/api/User/<id>URI:

https://finesse1.xyz.com/finesse/api/User/1234Example URI:

Users can only act on their own User objects.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<User>
<state>LOGIN</state>
<extension>1001001</extension>
<activeDeviceId>CSFJP5550016</activeDeviceId>

</User>

HTTP Request:

id (required): The ID of the user

state (required): The new state that the user wants to be in (LOGIN)

extension (required): The extension with which the user wants to sign in

activeDeviceId: A unique ID of the active device.

Note • This parameter is required when the extension is a shared line
between multiple devices and agent is enabled for shared ACD
line usage.

• This parameter is optional if there is only a single device
associated with the extension, while shared ACD line usage is
enabled for the agent.

• This parameter should not be passed if shared ACD line usage
is not enabled for the agent.

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
29

Cisco Finesse Desktop APIs
User APIs

202: Success

400: Bad Request (for example, malformed or incomplete request, invalid extension)

400: Parameter Missing

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID is not known)

503: Service Unavailable (for example, the Notification Service is not running)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>User Not Found</ErrorType>
<ErrorMessage>UNKNOWN_USER</ErrorMessage>
<ErrorData>4023</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User notificationNotifications
Triggered:

Platform-Based API Differences

Stand-alone Finesse with Unified CCE:

Finesse does not support agent sign-in with an E.164 extension when Finesse is deployed with Unified CCE.
However, agents can make calls to and receive calls from E.164 phone numbers.

Coresident Finesse with Unified CCX:

Finesse supports agent sign-in with an E.164 extension when Finesse is deployed with Unified CCX. The
maximum number of characters supported for an E.164 extension is 15 (a single plus sign followed by 14
digits).

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

AllAttempt to sign in an agent with a multiline device without
the correct Unified CM configuration for maximum calls and
busy trigger for these devices.

Invalid Device

AllAttempt to sign in an agent with a device that does not exist.Invalid Device

AllAttempt to sign in an agent with a device that is offline.Invalid Device

AllAttempt to sign in an agent with an extension that is not
associatedwith the Unified CCXResourceManager provider.

Invalid Device

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
30

Cisco Finesse Desktop APIs
User—Sign In to Finesse

Deployment TypeReasonErrorType

AllAttempt to sign in an agent with a device that is already in
use.

Device Busy

AllAttempt to sign in an agent without an active device, when
multiple devices are associated with the extension supplied,
while agent is enabled for shared ACD line usage.

Parameter Missing

AllAttempt to sign in an agent with an unrecognized or invalid
state.

Invalid Input

AllAttempt to sign in an agent with an active device ID,when
the protocol version used for CTI connection is lesser than
24.

The protocol version constraint is applicable
only for Unified CCE deployments.

Note

Invalid Input

AllAttempt to sign in an unauthorized agent.Authorization Failure

AllAttempt to make a request by an agent to an unauthorized
user.

Invalid Authorization
User Specified

AllAttempt to sign in an agent with invalid agent ID, or when
an agent record is not part of the CTI.

User Not Found

AllAttempt to sign in an agent during runtime error (CTI server
or any other component).

Internal Server Error

User—Sign In as a Mobile Agent
The User—Sign in as a mobile agent API allows a user to sign in to the CTI server as a mobile agent. This
API uses the existing User object with a LOGIN state only. The user must be authenticated to use this API
successfully.

If five consecutive sign-ins fail due to an incorrect password, Finesse blocks access to the user account for a
period of 5 minutes.

Additional configuration is required on Unified CCE and Unified Communications Manager before a mobile
agent can sign in. After using this API, you may need to perform additional steps to complete the sign-in. For
more information, see the Cisco Unified Contact Center Enterprise Features Guide.

Note

Cisco Unified Mobile Agent (Unified MA) enables an agent using an PSTN phone and a broadband VPN
connection (for agent desktop communications) to function just like a Unified CCE agent.

https://<FQDN>/finesse/api/User/<id>URI:

https://finesse1.xyz.com/finesse/api/User/1234Example URI:

Users can only act on their own User objects.Security Constraints:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
31

Cisco Finesse Desktop APIs
User—Sign In as a Mobile Agent

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<User>
<state>LOGIN</state>
<extension>1001001</extension>
<mobileAgent>

<mode>CALL_BY_CALL</mode>
<dialNumber>4085551234</dialNumber>

</mobileAgent>
</User>

HTTP Request:

id (required): The ID of the user

state (required): The new state that the user wants to be in (for this API, the state
must be set to LOGIN)

extension (required): The extension with which to sign in the user

mobileAgent (required): Indicates that the user is a mobile agent

mode (required): The connection mode for the call

dialNumber (required): The phone number that the system calls to connect with
the mobile agent

Request Parameters:

202: Success

This response only indicates the successful completion of the request. The request
is processed and the actual response is sent as part of a User notification.

400: Invalid Input (for example, the mode provided is invalid)

400: Parameter Missing (for example the mode or dialNumber was not provided)

400: Generic Error

401: Unauthorized (for example, the user is not authenticated in the Web Session)

401: Invalid User Authorization Specified (an authenticated user tried to make a
request for another user)

404: User Not Found (for example, the agent is not recognized)

HTTP Response:

<ApiErrors>
<ApiError>
<ErrorType>Invalid Authorization User Specified</ErrorType>
<ErrorData>4321</ErrorData>
<ErrorMessage>The user specified in the authentication
credentials and the uri don't match</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

User notificationNotifications
Triggered:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
32

Cisco Finesse Desktop APIs
User—Sign In as a Mobile Agent

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

Unified CCEAttempt to sign in an agent as a mobile agent when that agent
is not configured as a mobile agent.

Mode Not Allowed

User—Sign Out of Finesse Desktop
This API allows a user to sign out of Cisco Finesse desktop.

When signing out of the desktop, the user can either sign out of all Media Routing Channels or sign out of
configured media channels. Cisco Finesse sends separate sign-out requests to CCE for each MRD.

Administrators can use the CLI utils finesse user_signout_channel to configure the media channels from
which the users are signed out.

Note

For nonvoiceMRDs only, users can sign out with active tasks. The user's tasks are either transferred or closed,
depending on the way the MRD was configured when the user signed in through the Media - Sign In API.

The desktop sign out fails only if the voice MRD LOGOUT fails; it is not impacted by nonvoice MRD
LOGOUT failure.

To sign out of nonvoice Media Routing Domains only, see Media—Change State or Sign Out, on page 193.Note

https://<FQDN>/finesse/api/User/<id>URI:

https://finesse1.xyz.com/finesse/api/User/1234Example URI:

Agents and Supervisors can use this API.

Users can only act on their own User objects.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<User>
<state>LOGOUT</state>

</User>

HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
33

Cisco Finesse Desktop APIs
User—Sign Out of Finesse Desktop

id (required): The ID of the user

state (required): The new state that the user wants to be in (LOGOUT)

logoutAllMedia (optional): Determines if the the logout request is for all media
channels (true) or only from the channels configured by the Administrator.

Request Parameters:

202: Success

400: Bad Request (for example, malformed or incomplete request, invalid extension)

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID is not known)

503: Service Unavailable (for example, the Notification Service is not running)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Invalid Input</ErrorType>
<ErrorData>state</ErrorData>

<ErrorMessage>Invalid State specified for user</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

User notification

Media notification (for nonvoice MRDs)

Notifications
Triggered:

If a nonvoice MRD signout operation results in an asynchronous error, the error is returned in a Media
notification. The notification includes the error type, error code, and error constant. The ErrorMedia parameter
indicates the Media RoutingDomain to which the error applies.

Note

User—Get User
The User—Get User API allows a user to get a copy of the User object. For a mobile agent, this operation
returns the full User object, including the mobile agent node.

Mobile agent information is available to the Cisco Finesse node on which the mobile agent is signed in.
However, the other Cisco Finesse node in the cluster does not have the mobile agent information. If the mobile
agent signs in to the other node (for example, during a client failover), the mobile agent information is lost
and the User object does not return any mobile agent data fields. As a result, the Cisco Finesse desktop
inaccurately represents the mobile agent as a regular agent (including all related features). Any other type of
CTI failover also results in Cisco Finesse losing the current mobile agent information. However, the Unified
Mobile Agent feature behaves as usual whether Cisco Finesse knows that the agent is a mobile agent or not.

As a workaround, the mobile agent can sign out and sign back in as a mobile agent.

Note

https://<FQDN>/finesse/api/User/<id>

For more information on supported characters, see the section "Sign In to Cisco
Finesse Desktop" in the Cisco Finesse Agent and Supervisor Desktop User Guide.

URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
34

Cisco Finesse Desktop APIs
User—Get User

https://finesse1.xyz.com/finesse/api/User/1234Example URI:

Agents can only get their own User object. Administrators can get any User object.

To get the User object, a user must be signed in, or provide valid authorization
credentials when challenged.

Security Constraints:

GETHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

—Request Parameters:

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

404: User Not Found

500: Internal Server Error

503: Service Unavailable

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
35

Cisco Finesse Desktop APIs
User—Get User

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
36

Cisco Finesse Desktop APIs
User—Get User

<User>
<uri>/finesse/api/User/1234</uri>
<roles>

<role>Agent</role>
<role>Supervisor</role>

</roles>
<loginId>1234</loginId>
<loginName>csmith</loginName>
<state>NOT_READY</state>
<stateChangeTime>2012-03-01T17:58:21.234Z</stateChangeTime>
<pendingState></pendingState>
<reasonCodeId>16</reasonCodeId>
<ReasonCode>

<category>NOT_READY</category>
<uri>/finesse/api/ReasonCode/16</uri>
<code>10</code>
<label>Team Meeting</label>
<forAll>true</forAll>
<id16</id>

</ReasonCode>
<settings>

<wrapUpOnIncoming>OPTIONAL</wrapUpOnIncoming>
<wrapUpOnOutgoing>REQUIRED</wrapUpOnOutgoing>
<deviceSelection>enabled</deviceSelection>

</settings>
<extension>1001001</extension>
<mobileAgent>

<mode>CALL_BY_CALL</mode>
<dialNumber>4085551234</dialNumber>

</mobileAgent>
<firstName>Chris</firstName>
<lastName>Smith</lastName>
<teamId>500</teamId>
<teamName>Sales</teamName>
<skillTargetId>6067</skillTargetId>
<dialogs>/finesse/api/User/1234/Dialogs</dialogs>
<teams>

<Team>
<uri>/finesse/api/Team/2001</uri>
<id>2001</id>
<name>First Line Support</name>

</Team>
<Team>

<uri>/finesse/api/Team/2002</uri>
<id>2002</id>
<name>Second Line Support</name>

</Team>
<Team>

<uri>/finesse/api/Team/2003</uri>
<id>2003</id>
<name>Third Line Support</name>

</Team>
... other teams ...

</teams>
<activeDeviceId>SEP0019305D8EC1</activeDeviceId>
<Devices>

<Device>
<deviceId>SEP0019305D8EC1</deviceId>
<deviceType>30018</deviceType>
<deviceTypeName>Cisco 7961</deviceTypeName>

</Device>
<Device>

<deviceId>CSFJP5550016</deviceId>
<deviceType>503</deviceType>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
37

Cisco Finesse Desktop APIs
User—Get User

<deviceTypeName>Cisco Unified Client Services
Framework</deviceTypeName>

</Device>
</Devices>

</User>

<User>
... Full User Object ...
<mobileAgent>

<mode>CALL_BY_CALL</mode>
<dialNumber>4085551234</dialNumber>

</mobileAgent>
</User>

Example Response
(Mobile Agent):

Mobile agent
only applies
to Unified
CCE
deployments).

Note

<ApiErrors>
<ApiError>

<ErrorType>User Not Found</ErrorType>
<ErrorMessage>UNKNOWN_USER</ErrorMessage>
<ErrorData>4023</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get User Id from loginName
The User—Get User Id from loginName API accepts the loginName in the URI and authentication for both
SSO and non-SSO deployments. This API is only supported for Unified CCE deployments.

In Unified CCE, an agent is assigned with an AgentID (peripheral number) and a Login name, but they are
different from one another.

Use the User—Get User Id from loginName API to retrieve the agent's peripheral ID from the LoginName.

Clients in Unified CCE SSO deployments can use the User—Get API request to retrieve the peripheralID
using the username obtained from the Cisco Identity Service (IdS) token. The userName has to be URL
encoded with UTF-8.

For Unified CCE: https://<FQDN>/finesse/api/User/<loginName>

For more information on supported characters, see the section "Sign In to Cisco
Finesse Desktop" in the Cisco Finesse Agent and Supervisor Desktop User Guide.

URI:

https://finesse1.xyz.com/finesse/api/User/csmithExample URI:

Agents can only get their own User object. Administrators can get any User object.

To get the User object, a user must be signed in, or provide valid authorization
credentials when challenged.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

—Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
38

Cisco Finesse Desktop APIs
User—Get User Id from loginName

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

404: User Not Found

500: Internal Server Error

503: Service Unavailable

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
39

Cisco Finesse Desktop APIs
User—Get User Id from loginName

<User>
<uri>/finesse/api/User/1234</uri>
<roles>

<role>Agent</role>
<role>Supervisor</role>

</roles>
<loginId>1234</loginId>
<loginName>csmith</loginName>
<state>NOT_READY</state>
<stateChangeTime>2012-03-01T17:58:21.234Z</stateChangeTime>
<pendingState></pendingState>
<reasonCodeId>16</reasonCodeId>
<ReasonCode>

<category>NOT_READY</category>
<uri>/finesse/api/ReasonCode/16</uri>
<code>10</code>
<label>Team Meeting</label>
<forAll>true</forAll>
<id16</id>

</ReasonCode>
<settings>

<wrapUpOnIncoming>OPTIONAL</wrapUpOnIncoming>
<wrapUpOnOutgoing>REQUIRED</wrapUpOnOutgoing>

</settings>
<extension>1001001</extension>
<mobileAgent>

<mode>CALL_BY_CALL</mode>
<dialNumber>4085551234</dialNumber>

</mobileAgent>
<firstName>Chris</firstName>
<lastName>Smith</lastName>
<teamId>500</teamId>
<teamName>Sales</teamName>
<dialogs>/finesse/api/User/1234/Dialogs</dialogs>
<teams>

<Team>
<uri>/finesse/api/Team/2001</uri>
<id>2001</id>
<name>First Line Support</name>

</Team>
<Team>

<uri>/finesse/api/Team/2002</uri>
<id>2002</id>
<name>Second Line Support</name>

</Team>
<Team>

<uri>/finesse/api/Team/2003</uri>
<id>2003</id>
<name>Third Line Support</name>

</Team>
... other teams ...

</teams>
</User>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>User Not Found</ErrorType>
<ErrorMessage>UNKNOWN_USER</ErrorMessage>
<ErrorData>4023</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
40

Cisco Finesse Desktop APIs
User—Get User Id from loginName

User—Get List
This API allows an administrator to get a list of users.

https://<FQDN>/finesse/api/UsersURI:

https://finesse1.xyz.com/finesse/api/UsersExample URI:

Only administrators can get a list of users.

To get a list of users, the administrator must be signed in or provide valid
authorization credentials when challenged.

If this API is accessed through a reverse-proxy, the response is provided without
any authentication.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<Users>
<User>

... Full User Object ...
</User>
<User>

... Full User Object ...
</User>
<User>

... Full User Object ...
</User>
<User>

... Full User Object ...
</User>
<User>

... Full User Object ...
</User>

... Additional Users...
</Users>

Example Response:

<ApiErrors>
<ApiError>
<ErrorType>Unauthorized</ErrorType>
<ErrorMessage>The user is not authorized to perform
this operation</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
41

Cisco Finesse Desktop APIs
User—Get List

User—Get List of Dialogs (Voice Only by Default)
This API allows an agent or administrator to get a list of dialogs associated with a particular user. By default,
this API returns voice dialogs only. You can use the query parameters to include nonvoice dialogs.

The URI for this API contains two query parameters:

• type: (optional) Set the type to return voice or nonvoice dialogs for a user. You can include both types
to return all dialogs for a user (type=voice&type=non-voice). If you do not include the type query
parameter, only voice dialogs are returned.

• media: (optional) Use this parameter to filter nonvoice dialog results by a specific media id. This parameter
is only applicable when the "type=non-voice" query parameter is used.

https://<FQDN>/finesse/api/User/<id>/Dialogs?type={voice|non-voice}&media={id}URI:

https://finesse1.xyz.com/finesse/api/User/1234/DialogsExample URI:

Agents can only get a list of their own dialogs, supervisors can get a list of dialogs
associated to the agents in their teams, and administrators can get a list of dialogs
associated with any user.

To get a list of dialogs, a user must be signed in or provide valid authorization
credentials when challenged.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<Dialogs>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>

... Additional Dialogs...
</Dialogs>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
42

Cisco Finesse Desktop APIs
User—Get List of Dialogs (Voice Only by Default)

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get List of Dialogs (Nonvoice Only)
This API allows an agent or administrator to get a list of nonvoice dialogs associated with a particular user
for a specific Media Routing Domain (MRD).

https://<FQDN>/finesse/api/User/<id>/Media/<mrdId>/DialogsURI:

https://finesse1.xyz.com/finesse/api/User/1234/Media/5001/DialogsExample URI:

Agents can only get a list of their own dialogs. Administrators can get a list of
dialogs associated with any user.

To get a list of dialogs, a user must be signed in or provide valid authorization
credentials when challenged.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<Dialogs>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>
<Dialog>

... Full Dialog Object ...
</Dialog>

... Additional Dialogs...
</Dialogs>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
43

Cisco Finesse Desktop APIs
User—Get List of Dialogs (Nonvoice Only)

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get List of Reservation Dialogs
This API allows an agent or administrator to get a list of reservation dialogs and is applicable for progressive
and predictive outbound reservation calls.

https://<FQDN>/finesse/api/User/<id>/ReservationDialogsURI:

https://finesse1.xyz.com/finesse/api/User/1234/ReservationDialogsExample URI:

Agents can get a list of their outbound reservation dialogs.

Administrators can get a list of outbound reservation dialogs for all the users.

To get a list of outbound reservation dialogs, a user must be signed in or must have the
valid authorization credentials.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Invalid Authorization

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Change Agent State
This API allows a user to change the state of an agent on the CTI server. Agents can change their own states

To change user state in a nonvoice Media Routing Domain, see Media—Change State or Sign Out, on page
193.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
44

Cisco Finesse Desktop APIs
User—Get List of Reservation Dialogs

If the request to change an agent's state is successful, the response is sent as part of a User notification.

The following figure illustrates the supported state transitions by Unified CCE agents.

The following diagram contains only logical state transitions. Because the underlying system determines the
state, an agent can transition from any state to any state, especially under failover conditions. The diagram
describes the typical state changes that occur in the system.

Note

Figure 10: Supported State Transitions by Agent (Unified CCE)

In the preceding diagram, RESERVED_OUTBOUND can represent RESERVED_OUTBOUND or
RESERVED_OUTBOUND_PREVIEW state.

Note

The following table describes supported agent state transitions for Unified CCE.

DescriptionToFrom

If the agent state is unknown, the state is UNKNOWN.
This scenario is unlikely.

UNKNOWN*

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
45

Cisco Finesse Desktop APIs
User—Change Agent State

DescriptionToFrom

To sign in to Finesse, the agent sets the state to LOGIN.
LOGIN is a transient state and transitions to
NOT_READY.

LOGINLOGOUT

After a successful LOGIN, the agent transitions to
NOT_READY.

NOT_READYLOGIN

To sign out of Finesse, the agent sets the state to
LOGOUT. An agent can set the state to LOGOUT only
if that agent is in NOT_READY state.

LOGOUTNOT_READY

To change their Not Ready reason code, agents can set a
NOT_READY state from NOT_READY.

NOT_READYNOT_READY

To become available for incoming or Outbound Option
calls, agents set their state to READY.

READYNOT_READY

An agent who places a call while in NOT_READY state
transitions to TALKING.

TALKINGNOT_READY

An incoming call arrives at an agent.RESERVEDREADY

An outbound agent becomes reserved to handle an
Outbound Option Progressive or Predictive call.

RESERVED
_OUTBOUND

READY

An outbound agent becomes reserved to handle an
Outbound Option Preview call.

RESERVED_OUTBOUND
_PREVIEW

READY

Agents can change to NOT_READY to make themselves
unavailable for incoming calls.

NOT_READYREADY

An agent can become RESERVED but never take a call.READYRESERVED

When an agent answers an incoming call, the agent
transitions to TALKING.

TALKINGRESERVED

An agent can change to READY state to leave
RESERVED_OUTBOUND. If the system deems it
necessary, that agent may transition back to
RESERVED_OUTBOUND.

READYRESERVED
_OUTBOUND

An agent can change to NOT_READY state to leave
RESERVED_OUTBOUND.

NOT_READYRESERVED
_OUTBOUND

An agent transitions to TALKING when an Outbound
Option call arrives at the agent.

TALKINGRESERVED
_OUTBOUND

An agent transitions to READY if the agent was in
READY state before being reserved in an Outbound
Option Preview campaign.

READYRESERVED_OUTBOUND
_PREVIEW

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
46

Cisco Finesse Desktop APIs
User—Change Agent State

DescriptionToFrom

An agent transitions to NOT_READY if that agent
changes state to NOT_READY while reserved in an
Outbound Option Preview campaign. This state change
is a pending state change. The agent does not transition
to NOT_READY until the call is complete or the
OutboundOption Preview reservation is closed or rejected.

NOT_READYRESERVED_OUTBOUND
_PREVIEW

An agent transitions to TALKING when an Outbound
Option call arrives at the agent.

TALKINGRESERVED_OUTBOUND
_PREVIEW

If an agent is on a call that is dropped, the agent transitions
to READY (if the agent was in READY state before the
call).

READYTALKING

If an agent is on a call that is dropped, the agent transitions
to NOT_READY if that agent was in NOT_READY state
before the call.

NOT_READYTALKING

If wrap-up is enabled, and the agent chooses
NOT_READY while on a call, that agent enters WORK
state after the call is dropped.

WORKTALKING

If wrap-up is enabled, an agent enters WORK_READY
state after a call is dropped.

WORK_READYTALKING

An agent puts a call on hold and transitions to HOLD
state.

HOLDTALKING

If an agent is connected to a held call and the call is
dropped, the agent transitions to READY state (if the agent
was in READY state before the call).

READYHOLD

If an agent is connected to a held call and the call is
dropped, the agent transitions to NOT_READY state (if
the agent was in NOT_READY state before the call).

NOT_READYHOLD

If wrap-up is enabled and an agent is connected to a held
call that is dropped, the agent transitions to WORK state
if the agent chose to go NOT_READY during the call.

WORKHOLD

If wrap-up is enabled and an agent is connected to a held
call that is dropped, the agent transitions to
WORK_READY state.

WORK_READYHOLD

When an agent retrieves a held call, the agent transitions
to TALKING state.

TALKINGHOLD

To leave WORK state, agents can set their state to
READY.

READYWORK

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
47

Cisco Finesse Desktop APIs
User—Change Agent State

DescriptionToFrom

To leave WORK state, agents can set their state to
NOT_READY. Agents automatically transition to
NOT_READY after the wrap-up timer expires.

NOT_READYWORK

To leave WORK_READY state, agents can set their state
to READY. Agents automatically transition to READY
after the wrap-up timer expires.

READYWORK_READY

To leave WORK_READY state, agents can set their state
to NOT_READY.

NOT_READYWORK_READY

The following table describes supported agent state transitions for Unified CCX.

DescriptionToFrom

After a successful LOGIN, the agent transitions to
NOT_READY.

NOT_READYLOGIN

To sign out of Finesse, the agent sets the state to
LOGOUT.

LOGOUTNOT_READY

To change their Not Ready reason code, agents can set a
NOT_READY state from NOT_READY.

NOT_READYNOT_READY

To become available for incoming calls, agents set their
state to READY.

READYNOT_READY

Agents can change their state to NOT_READY to make
themselves unavailable for incoming calls.

NOT_READYREADY

To sign out of Finesse, agents set their state to LOGOUT.LOGOUTREADY

An outbound agent becomes reserved to handle an
Outbound Option Direct Preview call.

RESERVED_

OUTBOUND_

PREVIEW

READY

An outbound agent accepts a direct preview call and the
call is active.

TALKINGRESERVED_

OUTBOUND_

PREVIEW

Users can set the following states with this API:

• READY

• NOT_READY

• LOGOUT

The LOGIN state is a transitive state. That is, when set, LOGIN triggers a change that results in a new state.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
48

Cisco Finesse Desktop APIs
User—Change Agent State

Users can be in the following states while on a call. However, users cannot place themselves in these states.
For example, agents cannot change their state to TALKING. Agents enter TALKING state when they answer
a call.

• RESERVED

• RESERVED_OUTBOUND

• RESERVED_OUTBOUND_PREVIEW

• TALKING

• HOLD

• WORK

• WORK_READY

RESERVED_OUTBOUND user state:

Users who belong toOutboundOption skill groups transition fromREADY state to RESERVED_OUTBOUND
state when those users are reserved for Progressive or Predictive Outbound Option calls.

In a Unified CCE deployment, users can change their state to READY or NOT_READY to exit this state. If
not ready reason codes are configured, users must specify a reason code to transition to NOT_READY state.
If the user does nothing and then the call is transferred to the user, the user transitions to TALKING state. If
the call is not transferred to the user, the user transitions back to READY state.

In a Unified CCX deployment, users cannot change their state to exit RESERVED_OUTBOUND state. If
auto-answer for the predictive or progressive call is not enabled and the agent does not answer the call, the
agent transitions to NOT_READY state. If the call does not reach a voice contact or if the reservation timer
on Unified CCX expires, the agent transitions to READY state.

RESERVED_OUTBOUND_PREVIEW user state:

Users who belong to Outbound Option skill groups transition from READY state to
RESERVED_OUTBOUND_PREVIEW state when they are reserved for Outbound Option Preview or Direct
Preview calls. Users cannot set their state to RESERVED_OUTBOUND_PREVIEW.

In a Unified CCE deployment, users can click Close or Reject on the Outbound Option dialog. Changing the
user's state to READY or NOT_READY does not generate a state change notification but does affect the user
state when the call is complete. For example, if the user selects NOT_READY state while in
RESERVED_OUTBOUND_PREVIEW state, the user transitions to NOT_READY state after clicking Close
or Reject.

In a Unified CCX deployment, users cannot change their state directly when in
RESERVED_OUTBOUND_PREVIEW state. The state can only be changed by issuing a Dialog Accept,
Close, or Reject request or when the reservation call times out.

WORK and WORK_READY user states:

A user is in WORK or WORK_READY state during wrap-up. A user is placed in WORK state when the user
is set to transition to NOT_READY state when wrap-up ends. A user is in WORK_READY state when the
user is set to transition to READY state when wrap-up ends.

A user transitions to WORK state for the following reasons:

• The user was in NOT_READY state before taking a call.

• The user set a state of NOT_READY while in TALKING state.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
49

Cisco Finesse Desktop APIs
User—Change Agent State

When the wrap-up timer expires, the user transitions to NOT_READY state.

WORK_READY state applies only to Unified CCE deployments. A user transitions toWORK_READY state
for the following reasons:

• The user was in READY state before taking a call.

• The user set a state of READY while in TALKING state.

When the wrap-up timer expires, the user transitions to READY state.

The following statements apply to a supervisor using this API to change the state of an agent or other supervisor:

• A supervisor can only change the state of a user who is assigned to that supervisor's team.

• A supervisor can only set the state of another user to NOT_READY, READY, or LOGOUT.

• A supervisor can set the state of a user to LOGOUT only if that user is in READY, NOT_READY,
RESERVED,RESERVED_OUTBOUND,RESERVED_OUTBOUND_PREVIEW, TALKING,HOLD,
WORK, or WORK_READY state.

• A supervisor can set the state of a user to NOT_READY only if that user is in READY, WORK, or
WORK_READY state.

• When a supervisor uses this API to set the state of a user to NOT_READY, a reason code must not be
used. If a reason code is provided, Finesse rejects it and returns a 400 Invalid Input error. Finesse sends
a hard-coded reason code to indicate that the state change was performed by the supervisor.

Note

https://<FQDN>/finesse/api/User/<id>URI:

https://finesse1.xyz.com/finesse/api/User/1234Example URI:

Agents can only act on their own User objects. Supervisors can act on the User
objects of agents who belong to their team.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<User>
<state>READY</state>

</User>

HTTP Request:

id (required): The ID of the user

state (required): The new state the user wants to be in (for example, LOGOUT,
READY, NOT_READY)

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
50

Cisco Finesse Desktop APIs
User—Change Agent State

200: Success

400: Bad Request

401: Invalid Supervisor

401: Unauthorized

404: Not Found

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<ApiErrors>
<ApiError>
<ErrorType>Parameter Missing</ErrorType>
<ErrorData>state</ErrorData>
<ErrorMessage>State Parameter missing</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

User notificationNotifications
Triggered:

Platform-Based API Differences

The following table describes API differences between a stand-alone Finesse deployment with Unified CCE
and a coresident Finesse deployment with Unified CCX.

ResponseScenario

Stand-alone Finesse with Unified CCE:

<data>
<apiErrors>

<apiError>
<errorData>257</errorData>

<errorMessage>CF_INVALID_PASSWORD_SPECIFIED</errorMessage>

<errorType>Invalid State</errorType>
</apiError>

</apiErrors>
</data>

Coresident Finesse with Unified CCX:

<data>
<apiErrors>

<apiError>
<errorData>1010</errorData>
<errorMessage>CF_INVALID_PARAMETER</errorMessage>
<errorType>Invalid State</errorType>

</apiError>
</apiErrors>

</data>

Change from LOGOUT
to NOT_READY.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
51

Cisco Finesse Desktop APIs
User—Change Agent State

ResponseScenario

Stand-alone Finesse with Unified CCE:

Finesse sends a User notification with state=TALKING.

Coresident Finesse with Unified CCX:

Finesse does not send a User notification. The agent remains in NOT_READY
state.

Agent receives and
answers a non-ICD call.

Stand-alone Finesse with Unified CCE:

Finesse sends a User notification with state=HOLD.

Coresident Finesse with Unified CCX:

Finesse does not send a User notification. The agent remains in TALKING state.

Agent puts an ICD call
on hold.

Stand-alone Finesse with Unified CCE:

Agent transitions to READY state after the call ends.

Coresident Finesse with Unified CCX:

Unified CCX does not allow an agent to set a pending state of READY while that
agent is talking on an ICD call.
<data>

<apiErrors>
<apiError>

<errorData>265</errorData>
<errorMessage>CF_INVALID_AGENT_WORKMODE</errorMessage>
<errorType>Invalid State</errorType>

</apiError>
</apiErrors>

</data>

While talking on an ICD
call, the agent sets a
pending state of
READY.

Stand-alone Finesse with Unified CCE:

Agent transitions to READY state after the call ends.

Coresident Finesse with Unified CCX:

Unified CCX does not allow an agent to set a pending state of READY while that
agent is talking on a non-ICD call.
<data>

<apiErrors>
<apiError>

<errorData>33</errorData>
<errorMessage>CF_RESOURCE_BUSY</errorMessage>
<errorType>Invalid State</errorType>

</apiError>
</apiErrors>

</data>

While talking on a
non-ICD call (agent
state can be TALKING
in Unified CCE or
NOT_READY in
Unified CCX), the agent
sets a pending state of
READY.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
52

Cisco Finesse Desktop APIs
User—Change Agent State

ResponseScenario

Stand-alone Finesse with Unified CCE:

Agent transitions to NOT_READY state with reason code 2 after the call ends.

Coresident Finesse with Unified CCX:

Unified CCX allows an agent to set a pending state of NOT_READY only once
during a call. Unified CCX does not allow an agent to change from one Not Ready
reason code to another.
<data>

<apiErrors>
<apiError>

<errorData>265</errorData>
<errorMessage>CF_INVALID_AGENT_WORKMODE</errorMessage>
<errorType>Invalid State</errorType>

</apiError>
</apiErrors>

</data>

While talking on an ICD
call, the agent attempts
to change from a
pending state of
NOT_READY with
reason code 1 to a
pending state of
NOT_READY with
reason code 2.

Stand-alone Finesse with Unified CCE:

Finesse sends a hard-coded reason code of 999 to indicate the forced state change.

Coresident Finesse with Unified CCX:

Finesse sends a hard-coded reason code of 33 to indicate the forced state change.

A supervisor changes
the state of an agent on
that supervisor's team to
NOT_READY.

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

AllInvalid state transition requested.

For example, attempt to set Wrap-Up state on an agent that
is not allowed to go to Wrap-Up, or attempt to change an
agent's state from READY state toWrap-up orWORK state.

Invalid State

Unified CCXAttempt to change an agent's state from
RESERVED_OUTBOUND to any other state.

Internal Server Error

User—Agent State Change With Reason Code
This API allows a user to change the agent state in the CTI server and pass along the code value of a
corresponding reason code. Users can use this API only when changing state to NOT_READY or LOGOUT.

If the user is changing state to LOGOUT and is signing out of all Media Routing Domains, the same reason
code is applied to all the Media Routing Domains.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
53

Cisco Finesse Desktop APIs
User—Agent State Change With Reason Code

To change state with a reason code in a nonvoice Media Routing Domain only, see Media—Change Agent
State with Reason Code, on page 194.

Note

https://<FQDN>/finesse/api/User/<id>URI:

https://finesse1.xyz.com/finesse/api/User/1234Example URI:

Users can only act on their own User objects.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<User>
<state>LOGOUT</state>
<reasonCodeId>10</reasonCodeId>

</User>

HTTP Request:

id (required): The ID of the user

reasonCodeID (required if reason codes are configured for the given state): The
database ID for the reason code

state (required): The new state the user wants to be in (NOT_READY, LOGOUT)

logoutAllMedia (optional): This parameter can be included if changing the state to
LOGOUT. When the user signs out of Cisco Finesse desktop, the parameter
LogoutAllMedia determines whether the user signs out from all Media Routing
Domains or only from the configured domains. If the parameter LogoutallMedia
is set to true, then users are signed from all the media channels. If set to false or
the value is not specified, then based on the values configured by the Administrator
for the CLI utils finesse user_signout_channel users are signed out from respective
channels.

Request Parameters:

202: Successfully Accepted

400: Parameter Missing

400: Invalid Input

400: Invalid State

401: Authorization Failure (for example, the user is not authenticated in the Web
Session)

401: Invalid Authorization Specified (for example, the authenticated user tried to
make a request for another user)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Parameter Missing</ErrorType>
<ErrorData>state</ErrorData>
<ErrorMessage>State Parameter missing</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
54

Cisco Finesse Desktop APIs
User—Agent State Change With Reason Code

User notification

Media notification (for nonvoice MRDS, when changing state to LOGOUT)

Notifications
Triggered:

If a nonvoice MRD sign out operation results in an asynchronous error, the error is returned in a Media
notification. The notification includes the error type, error code, and error constant. The ErrorMedia parameter
indicates the Media RoutingDomain to which the error applies.

Note

User—Get Reason Code
This API allows an agent or supervisor to get an individual Not Ready or Sign Out reason code, which is
already defined and stored in the Finesse database (and that is applicable to the agent or supervisor).

Users can select the reason code to display on their desktops when they change their state to NOT_READY
or LOGOUT.

For more information about the ReasonCode object, see section on ReasonCode.

https://<FQDN>/finesse/api/User/<id>/ReasonCode/<reasonCodeId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/ReasonCode/12Example URI:

Administrators, agents, and supervisors can use this API.

To get a reason code, a user must be signed in or provide valid authorization
credentials when challenged.

The reason code must be global (forAll parameter set to true) or be assigned to a
team to which the user belongs.

Only an administrator can get another user's reason codes.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error (for example, the object does not exist, the object is stale,
or violation of DB constraint)

401: Authorization Failure

401: Invalid Authorization User Specified

404: Not Found (for example, the reason code does not exist or has been deleted)

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
55

Cisco Finesse Desktop APIs
User—Get Reason Code

<ReasonCode>
<uri>finesse/api/ReasonCode/1</uri>
<category>NOT_READY</category>
<code>12</code>
<label>Lunch</label>
<forAll>true</forAll>

</ReasonCode>

Example Response:

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get Reason Code List
This API allows an agent or supervisor to get a list of Not Ready or Sign Out reason codes (that are applicable
to that agent or supervisor), which are defined and stored in the Finesse database. Users can assign one of the
reason codes on the desktop when they change their state to NOT_READY or LOGOUT. Cisco Finesse
Release 12.5(1) onward, this API is deprecated.

The ReasonCode list can be empty (for example, if no reason codes for the specified category exist in the
Finesse configuration database).

Reason codes that have the forAll parameter set to true apply to any user.

The category parameter is required when making a request to get a list of reason codes.

For information about the ReasonCode object, see section on ReasonCode.

Note

https://<FQDN>/finesse/api/User/<id>/ReasonCodes?category=NOT_READY|LOGOUTURI:

https://finesse1.xyz.com/finesse/api/User/1234/ReasonCodes?category=NOT_READYExample URI:

Administrators, agents and supervisors can use this API.

To get a list of reason codes, a user must be signed in or provide valid authorization
credentials when challenged.

Only an administrator can get another user's list of reason codes.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
56

Cisco Finesse Desktop APIs
User—Get Reason Code List

200: Success

400: Bad Request

400: Finesse API Error (for example, the object does not exist, the object is stale,
or violation of DB constraint)

401: Authorization Failure

401: Invalid Authorization User Specified

404: Not Found

500: Internal Server Error

HTTP Response:

<ReasonCodes category="NOT_READY">
<ReasonCode>

<uri>/finesse/api/ReasonCode/1</uri>
<category>NOT_READY</category>
<code>12</code>
<label>Lunch</label>
<forAll>true</forAll>

</ReasonCode>
<ReasonCode>
...Full ReasonCode Object...

</ReasonCode>
<ReasonCode>
...Full ReasonCode Object...

</ReasonCode>
</ReasonCodes>

Example Response:

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get Wrap-Up Reason
This API allows a user to get a WrapUpReason object.

For more information about the WrapUpReason object, see WrapUpReason, on page 267.

https://<FQDN>/finesse/api/User/<id>/WrapUpReason/<wrapUpReasonId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/WrapUpReason/1001Example URI:

Administrators, agents, and supervisors can use this API.

To get a wrap-up reason, a user must be signed in, or provide valid authorization
credentials when challenged.

Only an administrator can get another user's wrap-up reasons.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
57

Cisco Finesse Desktop APIs
User—Get Wrap-Up Reason

—HTTP Request:

200: Success

400: Bad Request (the request body is invalid)

400: Finesse API Error (for example, the object does not exist, the object is stale,
or violation of DB constraint)

401: Authorization Failure

401: Invalid Authorization User Specified

404: Not Found (for example, the wrap-up reason does not exist or has been deleted)

500: Internal Server Error

HTTP Response:

<WrapUpReason>
<uri>finesse/api/User/1234/WrapUpReason/205</uri>
<label>Product Question</label>
<forAll>true</forAll>

</WrapUpReason>

Example Response:

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get Wrap-Up Reason List
This API allows a user to get a list of all wrap-up reasons applicable for that user. Cisco Finesse Release
12.5(1) onward, this API is deprecated.

For more information about the WrapUpReason object, see WrapUpReason, on page 267.

https://<FQDN>/finesse/api/User/<id>/WrapUpReasonsURI:

https://finesse1.xyz.com/finesse/api/User/1234/WrapUpReasonsExample URI:

Administrators, agents, and supervisors can use this API.

To get a list of wrap-up reasons, a user must be signed in or provide valid
authorization credentials when challenged.

Only an administrator can get another user's list of wrap-up reasons.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
58

Cisco Finesse Desktop APIs
User—Get Wrap-Up Reason List

200: Success

400: Finesse API Error (for example, the object does not exist, the object is stale,
or violation of DB constraint)

401: Authorization Failure

401: Invalid Authorization User Specified

404: User Not Found

500: Internal Server Error

HTTP Response:

<WrapUpReasons>
<WrapUpReason>
<label>Successful tech support call</label>
<forAll>true</forAll>
<uri>/finesse/api/User/1234/WrapUpReason/12</uri>

</WrapUpReason>
... more wrap-up reasons ...

</WrapUpReasons>

Example Response:

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get Default Media Properties Layout
This API allows a user to get a copy of the default MediaPropertiesLayout object. TheMediaPropertiesLayout
object determines how call variables and ECC variables appear on the Finesse desktop.

https://<FQDN>/finesse/api/User/<id>/MediaPropertiesLayoutURI:

https://finesse1.xyz.com/finesse/api/User/1234/MediaPropertiesLayoutExample URI:

Agents and supervisors can use this API.

To get the default MediaPropertiesLayout object, a user must be signed in or provide
valid authorization credentials when challenged.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
59

Cisco Finesse Desktop APIs
User—Get Default Media Properties Layout

Example
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
60

Cisco Finesse Desktop APIs
User—Get Default Media Properties Layout

<MediaPropertiesLayout>
<header>
<entry>
<displayName>Call Variable 1</displayName>
<mediaProperty>callVariable1</mediaProperty>

</entry>
</header>
<column>
<entry>
<displayName>BA AccountNumber</displayName>
<mediaProperty>BAAccountNumber</mediaProperty>

</entry>
<entry>
<displayName>BA Campaign</displayName>
<mediaProperty>BACampaign</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 1</displayName>
<mediaProperty>callVariable1</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 2</displayName>
<mediaProperty>callVariable2</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 3</displayName>
<mediaProperty>callVariable3</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 4</displayName>
<mediaProperty>callVariable4</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 5</displayName>
<mediaProperty>callVariable5</mediaProperty>

</entry>
</column>
<column>
<entry>
<displayName>BA Status</displayName>
<mediaProperty>BAStatus</mediaProperty>

</entry>
<entry>
<displayName>BA Response</displayName>
<mediaProperty>BAResponse</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 6</displayName>
<mediaProperty>callVariable6</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 7</displayName>
<mediaProperty>callVariable7</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 8</displayName>
<mediaProperty>callVariable8</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 9</displayName>
<mediaProperty>callVariable9</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 10</displayName>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
61

Cisco Finesse Desktop APIs
User—Get Default Media Properties Layout

<mediaProperty>callVariable10</mediaProperty>
</entry>

</column>
<uri>/finesse/api/MediaPropertiesLayout/1</uri>
<name>Default Layout</name>
<description>Layout used when no other layout matches the user layout

Custom/ECC Variable</description>
<type>DEFAULT</type>

</MediaPropertiesLayout>
<MediaPropertiesLayout>
<header>
<entry>
<displayName>Call Variable 1</displayName>
<mediaProperty>callVariable1</mediaProperty>

</entry>
</header>
<column>
<entry>
<displayName>BA AccountNumber</displayName>
<mediaProperty>BAAccountNumber</mediaProperty>

</entry>
<entry>
<displayName>BA Campaign</displayName>
<mediaProperty>BACampaign</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 1</displayName>
<mediaProperty>callVariable1</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 2</displayName>
<mediaProperty>callVariable2</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 3</displayName>
<mediaProperty>callVariable3</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 4</displayName>
<mediaProperty>callVariable4</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 5</displayName>
<mediaProperty>callVariable5</mediaProperty>

</entry>
</column>
<column>
<entry>
<displayName>BA Status</displayName>
<mediaProperty>BAStatus</mediaProperty>

</entry>
<entry>
<displayName>BA Response</displayName>
<mediaProperty>BAResponse</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 6</displayName>
<mediaProperty>callVariable6</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 7</displayName>
<mediaProperty>callVariable7</mediaProperty>

</entry>
<entry>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
62

Cisco Finesse Desktop APIs
User—Get Default Media Properties Layout

<displayName>Call Variable 8</displayName>
<mediaProperty>callVariable8</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 9</displayName>
<mediaProperty>callVariable9</mediaProperty>

</entry>
<entry>
<displayName>Call Variable 10</displayName>
<mediaProperty>callVariable10</mediaProperty>

</entry>
</column>
<uri>/finesse/api/MediaPropertiesLayout/1</uri>
<name>Default Layout</name>
<description>Layout used when no other layout matches the user layout

Custom/ECC Variable</description>
<type>DEFAULT</type>

</MediaPropertiesLayout>

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get Media Properties Layout List
This API allows a user to get a list of all media properties layouts configured on the system, including the
default media properties layout. Cisco Finesse Release 12.5(1) onward, this API is deprecated.

https://<FQDN>/finesse/api/User/<UserId>/MediaPropertiesLayoutsURI:

https://finesse1.xyz.com/finesse/api/User/<UserId>/MediaPropertiesLayoutsExample URI:

Agents and supervisors can use this API.

Any user can get a list of media properties layouts if they are signed in or they provide
valid authorization credentials when challenged.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
63

Cisco Finesse Desktop APIs
User—Get Media Properties Layout List

200: Success

400: Bad Request

400: Finesse API error (for example, the object does not exist, the object is stale, or
violation of DB constraint)

401: Authorization Failure

401: Invalid Authorization User Specified

500: Internal Server Error

HTTP Response:

<MediaPropertiesLayouts>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>

</MediaPropertiesLayouts>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

User—Get List of Phone Books
This API allows a user to get a list of phone books and the first list of associated contacts for that user, based
on the defined range (1 to 6000). Contacts are retrieved from the global phone books first, followed by the
team phone books, up to the maximum limit of 6000. Cisco Finesse Release 12.5(1) onward, this API is
deprecated.

For more information about the PhoneBook object, see PhoneBook, on page 297.

https://<FQDN>/finesse/api/User/<id>/PhoneBooksURI:

https://finesse1.xyz.com/finesse/api/User/1234/PhoneBooksExample URI:

Agents and supervisors can use this API.

Any user can get a list of their own phone books if they are signed in or they provide
valid authorization credentials when challenged.

Security Constraints:

"Range: objects=1-6000"

The range of contacts to retrieve.

Additional Headers:

GETHTTP Method:

—Content Type:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
64

Cisco Finesse Desktop APIs
User—Get List of Phone Books

XMLInput/Output Format:

—HTTP Request:

200: Success

206: Partial Content

400: Bad Request (the request body is invalid)

400: Finesse API Error (for example, the object does not exist or the object is stale)

401: Authorization Failure

404: User Not Found

416: Invalid Range Specified. Range must be 1– 6000 objects

500: Internal Server Error

HTTP Response:

<PhoneBooks>
<PhoneBook>

<name>PhoneBook1</name>
<type>GLOBAL</type>
<Contacts>

<Contact>
...Full Contact Object...

</Contact>
...Full Contact Object...

</Contact>
</Contacts>

</PhoneBook>
<PhoneBook>

<name>PhoneBook2</name>
<type>TEAM</type>
<Contacts>

<Contact>
...Full Contact Object...

</Contact>
<Contact>

...Full Contact Object...
</Contact>

</Contacts>
</PhoneBook>

</PhoneBooks>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
65

Cisco Finesse Desktop APIs
User—Get List of Phone Books

Example

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example

<ApiErrors>
<ApiError>
<ErrorType>Invalid Input</ErrorType>
<ErrorData></ErrorData>
<ErrorMessage>Invalid range header format. Format:

objects=1-6000</ErrorMessage>
</ApiError>

</ApiErrors>>

Example

<ApiErrors>
<ApiError>
<ErrorType>Invalid Input</ErrorType>
<ErrorData></ErrorData>
<ErrorMessage>Maximum number of contacts cannot exceed

6000</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

User—Get List of Workflows
This API allows a user to get a list of workflows and workflow actions assigned to that user. Cisco Finesse
Release 12.5(1) onward, this API is deprecated.

For more information about the Workflow object, see Workflow, on page 313.

https://<FQDN>/finesse/api/User/<id>/WorkflowsURI:

https://finesse1.xyz.com/finesse/api/User/1234/WorkflowsExample URI:

Any user can get their own workflows if they are signed in or they provide valid
authorization credentials when challenged.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
66

Cisco Finesse Desktop APIs
User—Get List of Workflows

200: Success

400: Bad Request (the request body is invalid)

400: Finesse API Error (for example, the object is stale or there is a violation of database
constraints)

401: Authorization Failure

404: Not Found (the resource is not found)

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
67

Cisco Finesse Desktop APIs
User—Get List of Workflows

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
68

Cisco Finesse Desktop APIs
User—Get List of Workflows

<Workflows>
<Workflow>

<name>google ring pop</name>
<description> Pops a Google web page when an agent phone

rings</description>
<TriggerSet>

<type>SYSTEM</type>
<name>CALL_ARRIVES</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>
<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ACT_IN,PREROUTE_ACD_IN,PREROUTE_DIRECT_AGENT,
TRANSFER,OVERFLOW_IN,OTHER_IN,AGENT_OUT,AGENT_INSIDE,
OFFERED,CONSULT,CONSULT_OFFERED,CONSULT_CONFERENCE,
CONFERENCE,TASK_ROUTED_BY_ICM,TASK_ROUTED_BY_
APPLICATION</value>

</Trigger>
<Trigger>

<Variable>
<name>state</name>

<node>//Dialog/participants/Participant/mediaAddress[.=${userExtension}]/../state</node>

<type>CUSTOM</type>
</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ALERTING,ACTIVE,HELD</value>

</Trigger>
<Trigger>

<Variable>
<name>fromAddress</name>
<node>//Dialog/fromAddress</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_NOT_EQUAL</comparator>
<Variable>

<name>userExtension</name>
<type>SYSTEM</type>

</Variable>
</Trigger>

</triggers>
</TriggerSet>
<ConditionSet>

<applyMethod>ALL</applyMethod>
<conditions>

<Condition>
<Variable>

<name>callVariable1</name>
<type>SYSTEM</type>

</Variable>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
69

Cisco Finesse Desktop APIs
User—Get List of Workflows

<comparator>CONTAINS</comparator>
<value>1234</value>

</Condition>
<Condition>

<Variable>
<name>user.foo.bar[1]</name>

<node>//Dialog/mediaProperties/callvariables/CallVariable/name[.="user.foo.bar[1]"]/../value</node>

<type>CUSTOM</type>
</Variable>
<comparator>IS_NOT_EMPTY</comparator>

</Condition>
</conditions>

</ConditionSet>
<workflowActions>

<WorkflowAction>
<name>Google ring pop</name>
<type>BROWSER_POP</type>
<params>

<Param>
<name>windowName</name>
<value>google</value>

</Param>
<Param>

<name>path</name>

<value>http://www.google.com?a=${CallVariable1}&c=cat&${DNIS}&d=${user.foo.bar[1]}</value>

</Param>
</params>
<actionVariables>

<ActionVariable>
<name>callVariable1</name>
<type>SYSTEM</type>
<testValue>apple</testValue>

</ActionVariable>
<ActionVariable>

<name>user.foo.bar[1]</name>

<node>//Dialog/mediaProperties/callvariables/CallVariable/name[.="user.foo.bar[1]"]/../value</node>

<type>CUSTOM</type>
<testValue>1234</testValue>

</ActionVariable>
</actionVariables>

</WorkflowAction>
<WorkflowAction>

<name>My Delay</name>
<type>DELAY</type>
<params>

<Param>
<name>time</name>
<value>10</value>

</Param>
</params>

</WorkflowAction>
</workflowActions>

</Workflow>
</Workflows>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
70

Cisco Finesse Desktop APIs
User—Get List of Workflows

<ApiErrors>
<ApiError>
<ErrorType>Unauthorized</ErrorType>
<ErrorMessage>The user is not authorized to perform
this operation</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

User API Parameters
NotesPossible ValuesDescriptionTypeParameter

If the user is
configured in
Unified CCE, size
is determined by
Unified CCE.

If the user is
configured in
Unified CCX, the
size is determined
by Unified
Communications
Manager.

—The ID of the user.Stringid

——The URI to get a new copy
of the object.

Stringuri

—Agent, SupervisorList of roles for this user.Collectionroles

—Agent, SupervisorOne of the roles assigned to
this user.

String-->role

——The login ID of the user.StringloginId

——The login name of the user.StringloginName

—LOGOUT,
NOT_READY, READY,
RESERVED,
RESERVED_OUTBOUND,
RESERVED_OUTBOUND_
PREVIEW, TALKING,
HOLD, WORK,
WORK_READY,
UNKNOWN

The state for this user.Stringstate

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
71

Cisco Finesse Desktop APIs
User API Parameters

NotesPossible ValuesDescriptionTypeParameter

This parameter is
empty if the time of
the state change is
not available (if no
agent state change
notification was
received yet).

—The time at which the state
of the user changed to the
current state. The format for
this parameter is
YYYY-MM-DDThh:MM:ss.
SSSZ.

StringstateChangeTime

——The type of media under
which the dialog is
classified.

StringmediaType

For Unified CCX
deployments, when
an agent is in
TALKING state
and a Finesse
failover or
reconnect occurs,
this parameter is set
to LOGOUT. The
pendingState
parameter indicates
that the agent
transitions to
LOGOUT state
when the call ends.

LOGOUTThe state to which the user
will transition next.

StringpendingState

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
72

Cisco Finesse Desktop APIs
User API Parameters

NotesPossible ValuesDescriptionTypeParameter

The value of the
reasonCodeId may
be -1 in the
following cases:

• No reason
codes are
configured for
the category.

• The agent has
just signed in
(transitioned
from LOGIN
to
NOT_READY)

• A failover
occurred. The
agent is in
NOT_READY
state but
Finesse could
not recover the
reasonCode
used before
failover.

If the user has not
selected the reason code,
this parameter is empty.
Otherwise, the value of
this parameter is the
database ID for the
selected reason code.

The database ID for the
reason code that indicates
why the user is in the current
state.

IntegerreasonCodeId

——Information about the reason
code currently associated
with this user.

CollectionReasonCode

—NOT_READY,LOGOUTThe category of the reason
code.

String-->category

——The full URI for the reason
code.

String-->uri

——CTI code associated with
this reason code.

Integer-->code

——The label associated with
this reason code.

String-->label

—true, falseWhether the reason code is
global (true) or non-global
(false).

Boolean-->forAll

—true, falseThe reserved status of the
reason code

BooleansystemCode

——The ID of the reason code.Integer-->id

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
73

Cisco Finesse Desktop APIs
User API Parameters

NotesPossible ValuesDescriptionTypeParameter

The settings
parameter is only
present for Unified
CCE deployments.

—The settings for this user.Collectionsettings

This parameter
applies only to
Unified CCE
deployments.

REQUIRED,
OPTIONAL,
NOT_ALLOWED,
REQUIRED_WITH_
WRAP_UP_DATA

Indicates whether this user
required or allowed to enter
wrap-up data on an incoming
call.

String-->wrapUpOn
Incoming

This parameter
applies only to
Unified CCE
deployments.

REQUIRED,
OPTIONAL,
NOT_ALLOWED

Indicates whether this user
required or allowed to enter
wrap-up data on an outgoing
call.

String-->wrapUpOn
Outgoing

The login request
must contain
activeDeviceId
when the device
selection is enabled,
and when the
multiple devices are
configured for the
extension selected
by the agent.

enabled, disabledIndicates whether the CTI
device selection is enabled
for the agent.

For more information about
CTI device selection, see
Device Selection for Shared
ACD Line chapter in Cisco
Finesse Administration
Guide and Select Active
Device chapter in Cisco
Finesse Agent and
Supervisor Desktop User
Guide.

String-->deviceSelection

The extension must
exist in Unified
Communications
Manager.

If the user is
configured in
Unified CCE, size
is determined by
Unified
Communications
Manager.

If the user is
configured in
Unified CCX, the
size is determined
by Unified CCX.

—The extension that this user
is currently using.

Stringextension

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
74

Cisco Finesse Desktop APIs
User API Parameters

NotesPossible ValuesDescriptionTypeParameter

This parameter is
returned for mobile
agents only. Finesse
supports mobile
agents only in
Unified CCE
deployments.

—Indicates that the user is a
mobile agent.

CollectionmobileAgent

This parameter is
returned for mobile
agents only. Finesse
supports mobile
agents only in
Unified CCE
deployments.

CALL_BY_CALL,
NAILED_CONNECTION

The work mode for the
mobile agent

String-->mode

This parameter is
returned for mobile
agents only. Finesse
supports mobile
agents only in
Unified CCE
deployments.

Validated by the
Unified
Communications
Manager dial plan.

—The external number that the
system calls to connect to
the mobile agent.

String-->dialNumber

—The first name of this user.StringfirstName

——The last name of this user.StringlastName

——The ID of the team to which
this user belongs.

StringteamId

——The name of the team to
which this user belongs.

StringteamName

This parameter
applies only to
Unified CCE
deployments.

—Unique identifier for the skill
target assigned to the agent
in the Unified CCE database.
This is supported fromCisco
Finesse, Release 12.5(1) ES2
onwards.

StringskillTargetId

—URI to the collection of
dialogs that the user is a part
of.

Stringdialogs

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
75

Cisco Finesse Desktop APIs
User API Parameters

NotesPossible ValuesDescriptionTypeParameter

—If the user has a role of
Supervisor, a list of teams
that the user supervises.

Collectionteams

—Set of information for a
team.

Collection-->Team

—The URI to get a new copy
of the Team object.

String--->uri

—The ID for the team.String--->id

—The name of the team.String--->name

This parameter is
returned for Team
API only and not
for User API.

This parameter
applies only to
Unified CCX
deployments.

BUSY, IDLEThe state of the user on a
manual outbound call from
NOT_READY state.

—mediaState

This parameter
applies only to
Unified CCE
deployments, and is
used only when
signing out.

Administartor can
configure the
signout channels
with the CLI utils
finesse
user_signout_channel

true, falseDetermines if the the logout
request is for all media
channels (true) or only from
the channels configured by
the Administrator.

BooleanlogoutAllMedia

This parameter is
mandatory in the
request payload if
multiple devices are
associated with the
extension, and
device selection is
enabled for the
agent.

—A unique ID of the active
device associated with the
extension to which the agent
is signed in.

StringactiveDeviceId

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
76

Cisco Finesse Desktop APIs
User API Parameters

NotesPossible ValuesDescriptionTypeParameter

——Information about the list of
devices associated with the
extension agent has signed
in.

For more information, see
Devices API Parameters, on
page 79.

CollectionDevices

User API Errors
DescriptionError TypeStatus

The request is malformed or incomplete or the
extension provided is invalid.

Bad Request400

An unaccounted for error occurred. The root cause
could not be determined.

Generic Error400

One of the parameters provided as part of the user
input is invalid or not recognized (for example, the
mode for a mobile agent or the state for a user)

Invalid Input400

The requested state change is not allowed (for
example, a user in LOGOUT state requests a state
change to LOGOUT or a supervisor tries to change
an agent's state to something other than READY or
LOGOUT).

Invalid State400

The extension, state, or requestedAction is not
provided.

If signing in a mobile agent, the mode or dialNumber
is not provided.

Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (for example,
an agent tries to use an API that only a supervisor or
administrator is authorized to use).

Authorization Failure401

The authenticated user tried to make a request for
another user.

Invalid Authorization User
Specified

401

A user tried to change to a state that is not supported
in the scenario.

Invalid State401

A supervisor tried to change the state of an agent who
does not belong to that supervisor's team.

Invalid Supervisor401

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
77

Cisco Finesse Desktop APIs
User API Errors

DescriptionError TypeStatus

The resource specified is invalid or does not exist.Not Found404

The user ID provided is invalid or is not recongnized.
No such user exists in CTI.

User Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

A dependent service is down (for example, the Cisco
Finesse Notification Service or Cisco Finesse
Database). Finesse is OUT_OF_SERVICE.

Service Unavailable503

Devices
The Devices object represents the list of devices associated with the given extension and includes information
about the deviceId, deviceType, and deviceTypeName. The Devices object is structured as follows:
<Devices>

<Device>
<deviceId>SEP0019305D8EC1</deviceId>
<deviceType>30018</deviceType>
<deviceTypeName>Cisco 7961</deviceTypeName>

</Device>
<Device>

<deviceId>CSFJP5550016</deviceId>
<deviceType>503</deviceType>
<deviceTypeName>Cisco Unified Client Services Framework</deviceTypeName>

</Device>
</Devices>

Devices API

Devices—Get List of Devices for Extension
This API allows a user to retrieve the list of devices associated with an extension.

https://<FQDN>/finesse/api/Devices?extension={ext}URI:

https://finesse1.xyz.com/finesse/api/Devices?extension={1001001}Example URI:

Any user with valid authorization credentials can access the devices for any valid
extension.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
78

Cisco Finesse Desktop APIs
Devices

200: Success

400: Bad Request

401: Authorization Failure

404: Not Found

500: Internal Server Error

HTTP Response:

<Devices>
<Device>

<deviceId>SEP0019305D8EC1</deviceId>
<deviceType>30018</deviceType>
<deviceTypeName>Cisco 7961</deviceTypeName>

</Device>
<Device>

<deviceId>CSFJP5550016</deviceId>
<deviceType>503</deviceType>
<deviceTypeName>Cisco Unified Client Services

Framework</deviceTypeName>
</Device>

</Devices>

Example Response:

For Bad Request:

<ApiError>
<ErrorType>DEVICES_APIS_NOT_ALLOWED</ErrorType>
<ErrorMessage>Devices APIs are available only on Finesse servers

connected with CTI protocol version 24 or higher</ErrorMessage>
</ApiError>

This error is applicable only for Unified CCE deployments.Note

For Not Found:

<ApiError>
<ErrorType>DEVICES_NOT_FOUND</ErrorType>
<ErrorMessage>No devices found for the extension

1001001</ErrorMessage>
</ApiError>

Example Failure
Response:

Devices API Parameters
NotesPossible ValuesDescriptionTypeParameter

——Information about the list of
devices associated with an
extension.

CollectionDevices

——Information about a single device.CollectionDevice

——A unique ID of the device.String-->deviceId

——The device type as defined in the
CiscoTerminal.getType() in JTAPI
specifications.

Integer-->deviceType

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
79

Cisco Finesse Desktop APIs
Devices API Parameters

NotesPossible ValuesDescriptionTypeParameter

——The display name of the device
type as defined in the
CiscoTerminal.getTypeName() in
JTAPI specifications.

For more information about JTAPI
specifications, refer to Cisco
Unified JTAPI Developers Guide.

String-->deviceTypeName

Devices API Errors
DescriptionError TypeStatus

• The request is malformed or incomplete or the extension
provided is invalid.

• The API is denied as it is applicable only for Cisco
Finesse with connected CTI protocol version 24 and
above only for Unified CCE deployments.

Bad Request400

Unauthorized (for example, the user is not yet authenticated
in the Web Session).

Authorization Failure401

If the extension has no devices associated or extension is not
valid.

Not Found404

Any runtime exception is caught and responded with this
error. For example, when connection is not established with
CTI server or any other component.

Internal Server Error500

Dialog
The Dialog object represents a dialog with participants.

Dialog Object for Voice Calls

For the media type “voice”, this object represents a call. A participant represents an internal or external user's
CallConnection, or that user's leg of the call.

The Dialog object is structured as follows for voice calls:
<Dialog>

<associatedDialogUri>/finesse/api/Dialog/321654</associatedDialogUri>
<id>12345678</id>
<secondaryId>12345679</secondaryId>
<mediaType>Voice</mediaType>
<fromAddress>2002</fromAddress>
<toAddress>2000</toAddress>
<mediaProperties>

<dialedNumber>2000</dialedNumber>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
80

Cisco Finesse Desktop APIs
Devices API Errors

https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-programming-reference-guides-list.html
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-programming-reference-guides-list.html

<callType>AGENT_INSIDE</callType>
<DNIS>2000</DNIS>
<queueNumber>5022</queueNumber>
<queueName>UCM_PIM.Func.Agents.SG</queueName>
<callKeyCallId>217</callKeyCallId>
<callKeySequenceNum>1</callKeySequenceNum>
<callKeyPrefix>152018</callKeyPrefix>
<wrapUpReason>Sales Call</wrapUpReason>
<wrapUpItems>

<wrapUpItem>Wrong number</wrapUpItem>
<wrapUpItem>Satisfied Customer</wrapUpItem>

</wrapUpItems>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value>Chuck Smith</value>

</CallVariable>
<CallVariable>

<name>callVariable2</name>
<value>Cisco Systems, Inc.</value>

</CallVariable>
...Other CallVariables ...

</callvariables>
</mediaProperties>
<participants>

<Participant>
<actions>

<action>HOLD</action>
<action>DROP</action>

</actions>
<mediaAddress>2002</mediaAddress>
<mediaAddressType>AGENT_DEVICE</mediaAddressType>
<startTime>2014-02-11T16:10:23.121Z</startTime>
<state>ACTIVE</state>
<stateCause></stateCause>
<stateChangeTime>2014-02-11T16:10:23.121Z</stateChangeTime>

</Participant>
<Participant>

<actions>
<action>RETRIEVE</action>
<action>DROP</action>

</actions>
<mediaAddress>2000</mediaAddress>
<mediaAddressType>AGENT_DEVICE</mediaAddressType>
<startTime>2014-02-11T16:10:23.121Z</startTime>
<state>HELD</state>
<stateCause></stateCause>
<stateChangeTime>2014-02-11T16:10:36.543Z</stateChangeTime>

</Participant>
</participants>
<state>ACTIVE</state>
<uri>/finesse/api/Dialog/12345678</uri>
<scheduledCallbackInfo>

<callbackTime>2014-03-07T14:30</callbackTime>
<callbackNumber>9785551212</callbackNumber>

</scheduledCallbackTime>
<services>

<service>AgentAnswers</service>
... other services ...

</services>
<serviceConfigId>AXVKhwtrnNQBVJR2n4uq</serviceConfigId>
<callGUID>FMEMBLAAAAABAAAAAAAAAAHMFMAKAKAK</callGUID>

</Dialog>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
81

Cisco Finesse Desktop APIs
Dialog

The <callGUID>, <services> and <serviceConfigId> elements only apply to Unfied CCE deployments.

The <wrapUpItems> element applies only to Unified CCX deployments.

Note

Dialog Object for Nonvoice Tasks

For nonvoice media types, this object represents a task. A participant represents an internal or external user's
leg of the task.

The Dialog object is structured as follows for nonvoice tasks:

Several Dialog parameters do not apply for nonvoice tasks, and are returned empty.Note

<Dialog>
<associatedDialogUri>/finesse/api/Dialog/3216_5432_1</associatedDialogUri>
<id>1234_5423_1</id>
<mediaType>Cisco_Chat_MRD</mediaType>
<mediaProperties>

<mediaId>5002</mediaId>
<dialedNumber></dialedNumber>
<queueNumber>5022</queueNumber>
<queueName>UCM_PIM.Func.Agents.SG</queueName>
<callKeyCallId>217</callKeyCallId>
<callKeySequenceNum>1</callKeySequenceNum>
<callKeyPrefix>152018</callKeyPrefix>
<wrapUpReason>Sales Call</wrapUpReason>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value>Chuck Smith</value>

</CallVariable>
<CallVariable>

<name>callVariable2</name>
<value>Cisco Systems, Inc.</value>

</CallVariable>
...Other CallVariables ...

</callvariables>
</mediaProperties>
<participants>

<Participant>
<actions>

<action>ACCEPT</action>
</actions>
<mediaAddress>1001001</mediaAddress>
<startTime>2015-11-19T06:04:27.864Z</startTime>
<state>OFFERED</state>
<stateChangeTime>2015-11-19T06:04:27.864Z</stateChangeTime>

</Participant>
</participants>
<state>OFFERED</state>
<uri>/finesse/api/Dialog/1234_5423_1</uri>

</Dialog>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
82

Cisco Finesse Desktop APIs
Dialog

callKeyCallId, CallKeySequenceNum, and callKeyPrefix parameters apply only to Unified CCE deployments.Note

Dialog APIs

Finesse obtains the dialogId value from the CallID value defined for the calls by the CTI Server. With some
call flows, the messaging between Finesse and the CTI Server refers to an updated CallID value. In most
cases, the updated CallID value maintains a relationship to the original CallID value, and therefore Finesse
maintains the same dialogId value for the duration of the call flows. However, there are some call flows in
which the CallID and dialogId change permanently (for example, in a conference). If you require a better
understanding of the relationship between the CallID and dialogId values, you can perform some test call
flows and view the webservices logs.

Note

Dialog—Get Dialog
This API allows a user to get a copy of a Dialog object.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/12345678Example URI:

Agents and administrators can use this API.

Agents can only get their own Dialog object. Administrators can get any Dialog object.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

401: Invalid Authorization

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
83

Cisco Finesse Desktop APIs
Dialog APIs

Example
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
84

Cisco Finesse Desktop APIs
Dialog—Get Dialog

<Dialog>
<uri>/finesse/api/Dialog/12345678</uri>
<mediaType>Voice</mediaType>
<state>ACTIVE</state>
<fromAddress>2002</fromAddress>
<toAddress>2000</toAddress>
<mediaProperties>

<mediaId>1</mediaId>
<dialedNumber>2000</dialedNumber>
<callType>AGENT_INSIDE</callType>
<DNIS>2000</DNIS>
<queueNumber>5022</queueNumber>
<queueName>UCM_PIM.Func.Agents.SG</queueName>
<callKeyCallId>217</callKeyCallId>
<callKeySequenceNum>1</callKeySequenceNum>
<callKeyPrefix>152018</callKeyPrefix>
<wrapUpReason>Another satisfied customer</wrapUpReason>
<wrapUpItems>

<wrapUpItem>Wrong number</wrapUpItem>
<wrapUpItem>Satisfied customer</wrapUpItem>

</wrapUpItems>
<callbackNumber>14567</callbackNumber>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value>Chuck Smith</value>

</CallVariable>
<CallVariable>

<name>callVariable2</name>
<value>Cisco Systems, Inc</value>

</CallVariable>
<CallVariable>

<name>callVariable3</name>
<value>chucksmith@cisco.com</value>

</CallVariable>
...Other Call Variables (up to 10)
<CallVariable>

<name>ecc.user</name>
<value>csmith</value>

</CallVariable>
<CallVariable>

<name>ecc.years[0]</name>
<value>1985</value>

</CallVariable>
<CallVariable>

<name>ecc.years[1]</name>
<value>1995</value>

</CallVariable>
</mediaProperties>
<participants>

<Participant>
<actions>

<action>HOLD</action>
<action>DROP</action>

</actions>
<mediaAddress>1081001</mediaAddress>
<mediaAddressType>AGENT_DEVICE<mediaAddressType>
<startTime>2014-02-04T15:33:16.653Z</startTime>
<state>ACTIVE</state>
<stateCause></stateCause>
<stateChangeTime>2014-02-04T15:33:26.653Z</stateChangeTime>

</Participant>
<Participant>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
85

Cisco Finesse Desktop APIs
Dialog—Get Dialog

<actions>
<action>RETRIEVE</action>
<action>DROP</action>

</actions>
<mediaAddress>1081002</mediaAddress>
<mediaAddressType>AGENT_DEVICE<mediaAddressType>
<startTime>2014-02-04T15:33:16.653Z</startTime>
<state>HELD</state>
<stateCause></stateCause>
<stateChangeTime>2014-02-04T15:33:27.584Z</stateChangeTime>

</Participant>
</participants>

</Dialog

<ApiErrors>
<ApiError>

<ErrorType>Not Found</ErrorType>
<ErrorMessage>Invalid dialogId specified for dialog/ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

The <wrapUpItems> element applies only to Unified CCX deployments.Note

Dialog—Create a New Dialog (Make a Call)
This API allows a user to make a call. To make a call, a new Dialog object is created that specifies the
fromAddress (the caller's extension) and the toAddress (the destination target). The new Dialog object is
posted to the Dialog collection for that user.

In a Unified CCE deployment, you can also use this API to pass call variables with theMAKE_CALL request.
The API supports call variable 1 through call variable 10 and ECC variables. You cannot pass BA variables
or wrap-up reasons with the request.

In a Unified CCE Release 12.5(1) deployment onward, you can make a call from Ready state. When the agent
goes off-hook to place a call, the Unified CCE changes the agent status to Not Ready with 50006 reason code.
The Not Ready state prevents the agent from receiving an inbound call while the outbound call placed by the
agent is in progress.

This API supports the use of any ASCII character in the toAddress. Finesse does not convert any entered
letters into numbers, nor does it remove non-numeric characters (including parentheses and hyphens) from
the toAddress.

In a Unified CCX deployment, you cannot use this API to pass call variables. If you supply the mediaProperties
parameter with a MAKE_CALL request in a Unified CCX deployment, Finesse returns a 400 Invalid Input
error.

Note

https://<FQDN>/finesse/api/User/<id>/DialogsURI:

https://finesse1.xyz.com/finesse/api/User/1234/DialogsExample URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
86

Cisco Finesse Desktop APIs
Dialog—Create a New Dialog (Make a Call)

All users can use this API.

Users can only create dialogs using a fromAddress to which they are currently
signed in.

Users with only agent or supervisor permission can make calls.

Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>MAKE_CALL</requestedAction>
<fromAddress>1001001</fromAddress>
<toAddress>1002002</toAddress>

</Dialog>

HTTP Request:

<Dialog>
<requestedAction>MAKE_CALL</requestedAction>
<fromAddress>1001001</fromAddress>
<toAddress>1002002</toAddress>
<mediaProperties>

<callvariables>
<CallVariable>

<name>callVariable1</name>
<value>testcallvar1</value>

</CallVariable>
<CallVariable>

<name>user.Finesse_ecc2</name>
<value>A</value>

</CallVariable>
<CallVariable>

<name>user.finesse_array[0]</name>
<value>array_val_0</value>

</CallVariable>
<CallVariable>

<name>user.finesse_array[1]</name>
<value>array_val_1</value>

</CallVariable>
<CallVariable>

<name>user.finesse_array[2]</name>
<value>array_val_2</value>

</CallVariable>
<CallVariable>

<name>user.finesse_array[3]</name>
<value>array_val_3</value>

</CallVariable>
<CallVariable>

<name>user.finesse_array[4]</name>
<value>array_val_4</value>

</CallVariable>
</callvariables>

</mediaProperties>
</Dialog>

HTTP Request with
Call Variables
(Unified CCE only):

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
87

Cisco Finesse Desktop APIs
Dialog—Create a New Dialog (Make a Call)

id (required): The ID of the user

requestedAction (required): Theway in which the dialog is created (MAKE_CALL)

fromAddress (required): The extension with which the user is currently signed in

toAddress (required): The destination for the call

mediaProperties (optional): Collection of media-specific properties related to the
dialog

callvariables (optional): Collection of call variables to include as part of the initial
call

CallVariable (optional): Name and value pair for a call variable

Request Parameters:

202: Successfully Accepted

This response only indicates successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Bad Request (the request body is invalid)

400: Parameter Missing

400: Invalid Input (a request in a Unified CCX deployment includes
mediaProperties)

400: Invalid Destination (the toAddress and fromAddress are the same)

401: Authorization Failure

401: Invalid Authorization

500: Internal Server Error

HTTP Response:

Authorization error returned when a user has no permission:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>Unauthorized</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Authorization error returned when users with only administrator permission makes
a call:

<ApiErrors>
<ApiError>
<ErrorType>Invalid Authorization User Specified</ErrorType>
<ErrorData>The user is not authorized to perform this

operation</ErrorData>
<ErrorMessage>User (administrator) is not an authorizied

supervisor.</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
88

Cisco Finesse Desktop APIs
Dialog—Create a New Dialog (Make a Call)

Dialog notificationNotifications
Triggered:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

AllAttempt to POST a Dialog when the agent is in an invalid
state to make a call.

Invalid State

AllSupervisor attempts to POST a Dialog when that supervisor
is silently monitoring another agent.

Invalid State

AllAttempt to POST a Dialog to a route point when there are
no agents in Ready state in the queue corresponding to that
route point.

Generic Error

Unified CCEAttempt to POST a Dialog in which the toAddress is an E164
extension.

Generic Error

Dialog—Take Action on Participant
This API allows a user to take action on a participant within a dialog. Agents must be the participant they are
targeting with an action.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

Agents can only act on a participant of a dialog when they are that participant.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
89

Cisco Finesse Desktop APIs
Dialog—Take Action on Participant

For voice dialogs:

<Dialog>
<targetMediaAddress>1001001</targetMediaAddress>
<requestedAction>ANSWER</requestedAction>

</Dialog>

voice dialog TRANSFER example:
<Dialog>

<requestedAction>TRANSFER</requestedAction>
<toAddress>1001002</toAddress>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

voice dialog CONFERENCE example:
<Dialog>

<requestedAction>CONFERENCE</requestedAction>
<toAddress>1001002</toAddress>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

For nonvoice dialogs:

Nonvoice dialog CLOSE example:
<Dialog>

<requestedAction>CLOSE</requestedAction>
<mediaProperties>

<wrapUpReason>Happy customer!</wrapUpReason>
</mediaProperties>

</Dialog>

Nonvoice dialog TRANSFER example:
<Dialog>

<requestedAction>TRANSFER</requestedAction>
<target>scriptSelector</target>

</Dialog>

HTTP Request:

For voice dialogs:

dialogId (required): The ID of the dialog

targetMediaAddress(required): The extension with which the user is currently
signed in (used to locate the participant to target with the action request).

requestedAction (required): The action to take on the targeted participant

For nonvoice dialogs:

dialogId (required): The ID of the dialog

requestedAction (required): The action to take on the targeted participant

mediaProperties (optional): A collection of media-specific properties for the dialog.
This parameter can be used only when the action is CLOSE in order to set the
wrapUpReason parameter.

wrapUpReason (optional): A description of the task. This parameter can be used
only when the action is CLOSE.

target (required for TRANSFER): The Script Selector/dialed number to which the
dialog is being transferred.

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
90

Cisco Finesse Desktop APIs
Dialog—Take Action on Participant

202: Successfully Accepted

400: ParameterMissing (the targetMediaAddress or requestedAction is not provided)

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

404: Dialog Not Found

500: Internal Server Error

503: Service Unavailable (for example, the Notification Service is not running).

HTTP Response:

For voice dialogs:

<ApiErrors>
<ApiError>

<ErrorType>Invalid Input</ErrorType>
<ErrorData>requestedAction</ErrorData>
<ErrorMessage>Invalid 'requestedAction' specified for

dialog</ErrorMessage>
</ApiError>

</ApiErrors>

For nonvoice dialogs:

<ApiErrors>
<ApiError>

<ErrorType>Agent is not logged in</ErrorType>
<ErrorMessage>E_ARM_STAT_AGENT_NOT_LOGGED_IN</ErrorMessage>

<ErrorData>6</ErrorData>
<ErrorMedia>5001</ErrorMedia>

</ApiError>
</ApiErrors>

Example Failure
Response:

For voice dialogs:

Dialog notification

Dialog CTI error notification (if a CTI error occurs)

For nonvoice dialogs:

Dialogs/Media notification

Dialogs/Media asynchronous error notifications including CTI errors

Notifications
Triggered:

Platform-Based API Differences

The following table describes API differences between a stand-alone Finesse deployment with Unified CCE
or a coresident Finesse deployment with Unified CCX.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
91

Cisco Finesse Desktop APIs
Dialog—Take Action on Participant

ResponseScenario

Stand-alone Finesse with Unified CCE:

<data>
<apiErrors>
<apiError>
<errorData>20999</errorData>
<errorMessage><ConferenceCallCommand>: Conference
failed...causes include agent already has a consult call
or conferencing a non-conference controller.
</errorMessage>
<errorType>Generic Error</errorType>

</apiError>
</apiErrors>

</data>

Coresident Finesse with Unified CCX:

<data>
<apiErrors>
<apiError>
<errorData>22</errorData>
<errorMessage>CF_INVALID_OBJECT_STATE</errorMessage>
<errorType>Invalid State</errorType>

</apiError>
</apiErrors>

</data>

A participant who is
not the conference
controller tries to
conference in another
participant.

Asynchronous Errors for Voice Dialogs

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

AllAttempt a call transfer without an existing consult call.Generic Error

AllAttempt a call transfer on the original call (a direct call) after
the original call has already been retrieved.

Generic Error

AllAttempt to complete a conference on the original call after
retrieving the original call.

Generic Error

AllAttempt to exceed the maximum allowed conference
participants.

Generic Error

AllAttempt to RETRIEVE an incoming OutBoundPreview
campaign call when the allowed actions are ACCEPT,
CLOSE, and REJECT.

Generic Error

Unified CCENon-conference-controller attempts to conference in another
party.

Generic Error

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
92

Cisco Finesse Desktop APIs
Dialog—Take Action on Participant

Deployment TypeReasonErrorType

AllAttempt to put the held call (a direct call) on hold again.Generic Error

Unified CCXNon-conference-controller attempts to conference in another
party.

Invalid State

Asynchronous Errors for Nonvoice Dialogs

If an error occurs after the initial validation of a nonvoice dialog is complete, the API send an error notification
over XMPP to the Dialogs/Media notification. The error message has the format described in "Media and
Dialogs/Media Asynchronous Error Notification.". The requestId is included in the response XML. The
ErrorMedia parameter in the ApiError information indicates the Media Routing Domain to which the error
applies.

For transfers, Finesse communicates asynchronously with Customer Collaboration Platform to initiate task
resubmission requests. The following types of errors can occur, and are returned asynchronously:

• Customer Collaboration Platform can respond to the Finesse transfer request with an HTTP error response
(for example 4XX or 5XX).

• The Finesse request to Customer Collaboration Platform may time-out due to network issues.

If the request to Customer Collaboration Platform fails, the API send an error notification over XMPP to the
Dialogs/Media notification, and Finesse retains the dialog.

Dialog—Update Call Variable Data
This API allows a user to set or change call variables (including named variables or ECC variables) of a dialog.
If the user is an agent, the user must be a participant to invoke this action. A corresponding notification is
published if there is an update to any of the values of the call variables or named variables.

With Unified CCE, Cisco Finesse does not support the use of extended ASCII characters required for additional
alphabets in the ECC variables and call variables 1-10. You must use only ASCII characters in the 0-127
range. For example, if you set call variable 2 to contain the character à (ASCII 133), it does not appear correctly
on the agent desktop.

Note

With Unified CCX, Cisco Finesse only supports Latin1 characters for ECC variables. Other Unicode characters
are not supported. For example, if a user tries to use this API to update an ECC variable that contains Chinese
characters, Finesse may not return the correct value in the subsequent dialog update it sends to the client.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

Agents can only act on a participant of a dialog when they are that participant.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
93

Cisco Finesse Desktop APIs
Dialog—Update Call Variable Data

XMLInput/Output Format:

For voice dialogs:
<Dialog>

<requestedAction>UPDATE_CALL_DATA</requestedAction>
<mediaProperties>

<wrapUpReason>Happy customer!</wrapUpReason>
<wrapUpItems>

<wrapUpItem>Wrong number</wrapUpItem>
<wrapUpItem>Satisfied customer</wrapUpItem>

</wrapUpItems>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value>123456789</value>

</CallVariable>
<CallVariable>
... Other call variables to be modified ...
</CallVariable>

</callvariables>
</callvariables>

</mediaProperties>
</Dialog>

For nonvoice dialogs:
<Dialog>
<requestedAction>UPDATE_CALL_DATA</requestedAction>
<mediaProperties>
<callvariables>
<CallVariable>
<name>{name of the call variable/named variable}</name>
<value>{value to be changed}</value>
</CallVariable>
<CallVariable>
... Other call variables to be modified ...
</CallVariable>
</callvariables>
</mediaProperties>
</Dialog>

HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
94

Cisco Finesse Desktop APIs
Dialog—Update Call Variable Data

For voice dialogs:

dialogId (required): The ID of the dialog

mediaProperties (required): Collection of media-specific properties related to the
dialog to be modified

wrapUpReason (optional): A description of the call

wrapUpItems (required if multiple wrap-up item parameter is present): Contains
the list of wrap-up items belonging to this dialog (CCX deployments only).

wrapUpItem (optional): A description of the call (CCX deployments only).

callvariables (optional): A list of call variables to modify (either wrapUpReason
or callvariables must be present in the request)

CallVariable (required if the callvariables parameter is present): Contains the name
and value of a call variable belonging to this dialog. The name must be present and
cannot be empty. Duplicate names cannot exist. The value tag must be specified
but can be empty.

For nonvoice dialogs:

dialogid (required) - The ID of the Task

requestedAction (required): The action to take

Request Parameters:

202: Successfully Accepted

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

404: Dialog Not Found

500: Internal Server Error

503: Service Unavailable (for example, the Notification Service is not running)

HTTP Response:

For voice dialogs:
<ApiErrors>

<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

For nonvoice dialogs:
<apiErrors>

<apiError>
<errorData>XXX</errorData>
<errorMedia>5001</errorMedia>
<errorMessage>XXXXXXXX</errorMessage>
<errorType>XXXXXXXXXXXXXXX</errorType>

</apiError>
</apiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
95

Cisco Finesse Desktop APIs
Dialog—Update Call Variable Data

Dialog notification

Dialog CTI error notification (if a CTI error occurs)

Notifications
Triggered:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

AllThe value of a call variable or ECC variable is longer than
what is either allowed or configured as the maximum length
for that variable.

Invalid Input

AllThe value of an ECC variable that is configured as a scalar
is set as an array.

Invalid Input

AllThe value of an ECC variable that is configured as an array
is set as a scalar.

Invalid Input

AllThe value of an ECC variable that is configured as an array
is set as an array but with an index greater than what is
configured.

Invalid Input

AllAttempt to set call variables on a non-routed (direct) call.Call Variable is
protected

ECC and Call Variable Error Handling

When a client makes an invalid update request for a ECC or call variable, that request is sent to Finesse and
then to the CTI server. The CTI server logs certain errors but does not return events for them. In these cases,
Finesse does not return an error. Clients must be aware of this behavior and follow the appropriate Unified
CCE/Unified CCX documentation.

A client can also send an update request for an ECC or call variable that contains both valid and invalid data
(that is, some of the ECC or call variable updates in the request payload are valid while others are invalid).
See the following table to determine the response from Finesse in these error scenarios.

Finesse ResponseCTI Server ResponseError Scenario

Finesse forwards the error to
the client.

The CTI server sends an error to
Finesse.

1. A request was sent that generates an
error from the CTI server to Finesse.

2. The request payload contained no
valid ECC or call variables.

1. Finesse forwards the
error to the client.

1. The CTI server sends an error
to Finesse.

1. A request was sent that generates an
error from the CTI server to Finesse.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
96

Cisco Finesse Desktop APIs
ECC and Call Variable Error Handling

2. 2.2.The request payload contained a mix
of valid and invalid ECC or call
variables.

The client does not
receive an
UPDATE_CALL_DATA
event.

The CTI server does not send
an UPDATE_CALL_DATA
event to Finesse (that is, the
CTI server fails the entire
request).

Finesse does not respond.The CTI server does not respond.1. A request was sent that does not
generate an error from the CTI server
to Finesse.

2. The request payload contained no
valid ECC or call variables.

1. Finesse does not forward
an error to the client.

1. The CTI server does not send
an error to Finesse.

1. A request was sent that does not
generate an error from the CTI
serverto Finesse. 2.2. Finesse forwards the

UPDATE_CALL_DATA
event to the client.

The CTI server sends an
UPDATE_CALL_DATA
event to Finesse for the valid
ECC and call variables.

2. The request payload contained a mix
of valid and invalid ECC or call
variables.

When the size of the value of an ECC variable name exceeds its maximum length, the CTI server silently
truncates the value and updates the variable. As a result, Finesse does not receive a maximum length error.

Note

Users of this API must ensure that the variables they are trying to update exist. Users must follow the exact
format of each variable and ensure that the maximum size is not exceeded.

Dialog—Send DTMF String
This API allows a user to send a dual-tone multifrequency (DTMF) string during a call.

CTI communication architecture has been optimized in Cisco Finesse Release 12.5(1), which has introduced
changes in the Finesse API behavior. As a result of this change, it is suggested that call control requests for
the same device should not be sent to the Finesse server until the response to a previous call control request
has been received. Multiple DTMF requests can however be send one after another, and the server queues
them up for you without any error.

To prevent CTI errors, the Finesse desktop disablesWrap-Up button and call control buttonsHold,Transfer,
Consult, and End across all calls when the DTMF Keypad is opened until the responses to all of the DTMF
requests have been completed or timed out. It is suggested that third-party clients follow the same design. The
number of outstanding DTMF requests and the timeout duration can be configured using the Finesse CLI.
For more information on CLIs, see the Desktop Properties section in Cisco Finesse Administration Guide at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

An agent must be a participant in the dialog to perform this action.

Security Constraints:

PUTHTTP Method:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
97

Cisco Finesse Desktop APIs
Dialog—Send DTMF String

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>SEND_DTMF</requestedAction>
<targetMediaAddress>1001001</targetMediaAddress>
<actionParams>

<ActionParam>
<name>dtmfString</name>
<value>777</value>

</ActionParam>
</actionParams>

</Dialog>

HTTP Request:

dialogId (required): The ID of the dialog

requestedAction (required): The way in which the dialog is created (SEND_DTMF)

targetMediaAddress (required): The extension of the agent

actionParams (required): A collection of objects called ActionParam, which contain
name/value pairs. The name must be dtmfString. The value is the DTMF string to
submit and can contain 0-9, *, #, or A-D for Unified CCE. For Unified CCX, the
value can only contain 0-9, *, or #.

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

401: Invalid State (the targetMediaAddress specifies an extension of a participant
in HELD state)

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Platform-Based API Differences

The following table describes API differences between a stand-alone Finesse deployment with Unified CCE
or a coresident Finesse deployment with Unified CCX.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
98

Cisco Finesse Desktop APIs
Dialog—Send DTMF String

ResponseScenario

Stand-alone Finesse with Unified CCE:

Unified CCE accepts the alphanumeric dtmfString.

Coresident Finesse with Unified CCX:

Unified CCX allows only 0-9, *, or # in the dtmfString. Using any other
values results in the following error:
<apiError>

<errorData>3</errorData>
<errorMessage>CF_VALUE_OUT_OF_RANGE</errorMessage>
<errorType>Generic Error</errorType>

</apiError>

Send a DTMF request with an
alphanumeric dtmfString.

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

Unified CCXAttempt to send a DTMF request with a valid
requestedAction, a valid targetMediaAddress (agent's
extension), and an alphanumeric dtmfString.

Unified CCX allows only 0-9, *, and # for the dtmfString.
Any other values result in the error.

Generic Error

ALLAttempt to send a DTMF request for a call when the
participant in the dialog whose extension is the
targetMediaAddress is in a HELD state.

Generic Error

ALLAttempt a PUT request to send DTMFwhile a call is alerting.Generic Error

Dialog—Make a Consult Call Request
This API allows an agent to make a consult call request. After the request succeeds, the agent can complete
the call as a conference or transfer. The requestedAction for a consult call is CONSULT_CALL. The request
is sent to the Dialog URL of an existing active call, from where the call is initiated.

Finesse supports the transfer or conference of any held call to the current active call, as long as the agent
performing the transfer or conference is a participant in both the held and active call. Finesse does not support
blind conference through the API or the desktop.

Blind conference is defined as follows:

An agent has an active call and initiates a consult call to a destination. The agent starts a conference while the
call is ringing at the destination.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
99

Cisco Finesse Desktop APIs
Dialog—Make a Consult Call Request

Only the conference controller (the agent who initiates the conference) can add parties to that conference. For
example, Agent 1 is on a call with a customer. Agent 1 consults with Agent 2 and then conferences Agent 2
into the call. Agent 2 then consults with Agent 3. If Agent 2 tries to add Agent 3 to the conference, the request
fails.

Note

Finesse maintains a copy of the call variables (including call peripheral variables and ECC variables) for each
call in the system. When Unified CCE or Unified CCX sets the call variables to values that are not NULL
(through CTI events, such as CALL_DATA_UPDATE_EVENT), the call variables maintained by Finesse
are updated with these values. In this way, Finesse ensures that a client always receives the latest data for call
variables sent by Unified CCE/Unified CCX. Because an empty string is considered a valid value, when call
values are set to empty strings, Finesse updates its version of the same call variables to empty strings and then
updates the clients.

An agent or supervisor who signs in after being on an active conference call with other devices (which are
not associated with any other agent or supervisor) may experience unpredictable behavior with the Finesse
Desktop due to incorrect Dialog notification payloads. These limitations also encompass failover scenarios
where failover occurs while the agent or supervisor is participating in a conference call. For example, an agent
is on a conference call when the Finesse server fails. When that agent is redirected to the other Finesse server,
that agent could see unpredictable behavior on the desktop. Examples of unpredictable behavior include, but
are not limited to, the following:

• The desktop does not reflect all participants in a conference call.

• The desktop does not reflect that the signed-in agent or supervisor is in an active call.

• Dialog updates contain inconsistent payloads.

Despite these caveats, users may continue to perform usual operations on their phones. Desktop behavior will
return to usual after the agent or supervisor drops off the conference call.

Note

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

An agent must be a participant in the dialog and the agent's extension must match
the targetMediaAddress.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
100

Cisco Finesse Desktop APIs
Dialog—Make a Consult Call Request

CONSULT_CALL Example
<Dialog>

<requestedAction>CONSULT_CALL</requestedAction>
<toAddress>1001002</toAddress>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

HTTP Request:

dialogId (required): The ID of the dialog

requestedAction (required): The way in which the dialog is created
(CONSULT_CALL)

toAddress (required): The destination for the call

targetMediaAddress (required): The extension of the agent, used to locate the
participant to target with the requestedAction

Request Parameters:

202: Successfully Accepted

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notification

Dialog CTI error notification (if a CTI error occurs)

Notifications
Triggered:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

ALLAttempt a CONSULT_CALL on an incoming
OutBoundPreview campaign call while the allowed actions
are ACCEPT, CLOSE, and REJECT.

Generic Error

ALLAttempt a CONSULT_CALL while the call is alerting.Generic Error

ALLAttempt a CONSULT_CALL while the call is on HOLD.Generic Error

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
101

Cisco Finesse Desktop APIs
Dialog—Make a Consult Call Request

Dialog—Initiate a Single Step Transfer
This API allows a user to make a single-step transfer request. After a user makes a successful request, that
user's active call is transferred to the destination provided in the toAddress parameter.

The requestedAction for a single-step transfer is TRANSFER_SST. This request is sent on the Dialog URL
of an existing active call, from where the call is initiated. Therefore, the dialogId in the URL represents the
dialogId of the active call.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

An agent must be a participant in the dialog and the agent's extension must match
the targetMediaAddress.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>TRANSFER_SST</requestedAction>
<toAddress>1001002</toAddress>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

HTTP Request:

dialogId (required): The ID of the dialog

requestedAction (required): The way in which the dialog is created
(TRANSFER_SST)

toAddress (required): The destination to which to transfer the call

targetMediaAddress (required): The extension of the agent who is making the
request

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

400: Invalid Destination

401: Authorization Failure

401: Invalid Authorization User Specified

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
102

Cisco Finesse Desktop APIs
Dialog—Initiate a Single Step Transfer

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

Unified CCEAttempt a TRANSFER_SST before the call gets answered.Generic Error

Unified CCEAttempt a TRANSFER_SST on an incoming
OutBoundPreview campaign call while the allowed actions
are ACCEPT, CLOSE, and REJECT.

Generic Error

Dialog—Make a Silent Monitor Call
This API allows a supervisor to silently monitor an agent who is on an active call and in TALKING state. A
new dialog is created, specifying the fromAddress (the supervisor's extension) and the toAddress (the agent's
extension). The dialog is posted to the supervisor's dialog collection.

Agent phones to be monitored must support silent monitoring and must be configured in Cisco Unified
Communications Manager as follows:

• The correct device type must be configured.

• The device must have Bridge Monitoring enabled.

• The correct permissions must be configured (under User Management > End User > PG User, in the
Permissions area, select Standard CTI Allow Call Recording, and then click Add to User Group).

Note

https://<FQDN>/finesse/api/User/<id>/DialogsURI:

https://finesse1.xyz.com/finesse/api/User/1234/DialogsExample URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
103

Cisco Finesse Desktop APIs
Dialog—Make a Silent Monitor Call

Supervisors can use this API.

A supervisor must be signed in to the fromAddress (extension) being used to create
the silent monitor call. Agent to be monitored must be assigned to a team that the
supervisor is responsible for. A supervisor can silently monitor any call except a
silent monitor call.

If an agent drops from or transfers the call that the supervisor is monitoring, the
silent monitoring session ends.

Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>SILENT_MONITOR</requestedAction>
<fromAddress>1001002</fromAddress>
<toAddress>1001001</toAddress>

</Dialog>

HTTP Request:

id (required): The ID of the user

requestedAction (required): The way in which the dialog is created
(SILENT_MONITOR)

fromAddress (required): The extension of the supervisor who initiated the silent
monitor request

toAddress (required): The extension of the agent that the supervisor wants to monitor

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

400: Invalid Destination

400: Invalid State

401: Authorization Failure

401: Invalid Authorization User Specified

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
104

Cisco Finesse Desktop APIs
Dialog—Make a Silent Monitor Call

Dialog notificationNotifications
Triggered:

Platform-Based API Differences

Stand-alone Finesse with Unified CCE:

In a stand-alone Finesse deployment with Unified CCE, supervisors can silently monitor agents who are on
ICD calls or non-ICD calls (for example a call to another agent). The supervisor must be in NOT_READY
state to start a silent monitoring session and the agent must be in TALKING state. After the supervisor starts
the silent monitoring session, the supervisor transitions to TALKING state.

Coresident Finesse with Unified CCX:

In a coresident Finesse deployment with Unified CCX, supervisors can silently monitor agents who are on
ICD calls or non-ICD calls (for example, calls to another agent). The supervisor must be in NOT_READY
state to start a silent monitoring state. The agent can be in TALKING state (on an ICD call) or NOT_READY
state (on a non-ICD call). After the supervisor starts the silent monitoring call, the supervisor remains in
NOT_READY state.

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

Unified CCXAttempt to POST Silent Monitor for an agent who is in
Ready, Wrap-Up, Hold, or Not Ready state.

88049

Unified CCEAttempt to POST SilentMonitor for an agent who is in Hold
or Not Ready state.

13145

Unified CCEAttempt to POST Silent Monitor for an agent who is in
Ready or Wrap-Up State.

Invalid State

Dialog—End a Silent Monitor Call
This API allows a supervisor to drop a silent monitor call that was initiated by that supervisor. The Dialog
object is updated by specifying a requestedAction of DROP and the targetMediaAddress of the extension of
the supervisor who initiated the silent monitor call.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/32458Example URI:

Supervisors and administrators can use this API.

A supervisor can only end a silent monitor call that was initiated by that supervisor.
An administrator can end any silent monitor call.

Security Constraints:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
105

Cisco Finesse Desktop APIs
Dialog—End a Silent Monitor Call

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>DROP</requestedAction>
<targetMediaAddress>1001002</targetMediaAddress>

</Dialog>

HTTP Request:

dialogId (required): The ID of the dialog

requestedAction (required): The action to take on the targeted participant (DROP)

targetMediaAddress (required): The extension of the supervisor who initiated the
silent monitor call

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

404: Not Found (the dialog specified by the dialogId does not exist)

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Dialog—Make a Barge Call
This API allows a supervisor to barge in to an agent call that the supervisor is silently monitoring. The request
specifies the fromAddress (supervisor's extension), the toAddress (agent's extension), and the associatedDialog
(the URI of the silent monitor dialog that the supervisor initiated). When the barge request succeeds, the
agent's original Dialog object is updated and is posted to the supervisor's dialog collection. The supervisor's
silent monitor call is dropped. After the barge request succeeds, the original silent monitor call becomes a
conference call with the supervisor, agent, and caller as participants.

The call must meet certain conditions for the barge request to succeed:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
106

Cisco Finesse Desktop APIs
Dialog—Make a Barge Call

• Unified Communications Manager may limit the number of phone devices that can join a conference
call (a configurable parameter). When a supervisor makes a barge call, the supervisor is added as a new
party to the conference. If the resource limit has already been reached, the supervisor's barge request
fails.

• Both Unified CCE and Unified CCX allow a barge request only through the conference controller (the
agent who initiates the conference call). In case of CVP routed calls, the barge request is also possible
for agents other than the conference controller. If the original call is not a conference call, after the barge
request succeeds, the call becomes a conference call and the agent is the conference controller. If the
original call is a conference call and the agent is not the conference controller, the supervisor's barge
request fails.

https://<FQDN>/finesse/api/User/<id>/DialogsURI:

https://finesse1.xyz.com/finesse/api/User/1234/DialogsExample URI:

Supervisors can use this API.

Supervisors can only make barge call requests using the fromAddress that they are
currently signed in to and can only barge in to calls they are already silent
monitoring.

Administrators cannot barge in to any calls because they are not associated with a
phone device.

Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>BARGE_CALL</requestedAction>
<fromAddress>1001002</fromAddress>
<toAddress>1001001</toAddress>

<associatedDialogUri>/finesse/api/Dialog/6873122</associatedDialogUri>
</Dialog>

HTTP Request:

requestedAction (required): The way in which to create the dialog (BARGE_CALL)

fromAddress (required): The extension of the supervisor who initiated the barge
request

toAddress (required): The extension of the agent whose call the supervisor wants
to barge in on

associatedDialogUri (required): The relative URI of the silent monitor dialog on
which the supervisor wants to barge in

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
107

Cisco Finesse Desktop APIs
Dialog—Make a Barge Call

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

400: Invalid Destination

400: Invalid State

400: 20700 (Conference resource limit violation)

400: 20999 (Barge via non-conference-controller or the agent already has an
outstanding consult call)

401: Authorization Failure

401: Invalid Authorization User Specified

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Platform-Based API Differences

Stand-alone Finesse with Unified CCE:

A supervisor must be silently monitoring a call before making a request to barge in to that call. In a Finesse
deployment with Unified CCE, the supervisor's state during the silent monitoring session is TALKING.When
the supervisor barges in to the call, the supervisor's state remains TALKING. The agent's state is TALKING
before the silent monitoring request, during the silent monitoring session, and after the barge request succeeds.

Coresident Finesse with Unified CCX:

A supervisor must be silently monitoring a call before making a request to barge into that call. In a coresident
Finesse deployment with Unified CCX, the supervisor is in NOT_READY state during the silent monitoring
session. If the agent is on an ICD call, the supervisor's state transitions to TALKING after barging in to the
call. The agent's state is TALKING before the silent monitoring request, during the silent monitoring session,
and after the barge request succeeds.

If the agent is on a non-ICD call (for example, a call to another agent), both the supervisor and the agent
remain in NOT_READY state during the silent monitoring session and after the barge request succeeds.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
108

Cisco Finesse Desktop APIs
Dialog—Make a Barge Call

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

ALLSupervisor attempts a barge call on an agent who is not the
conference controller.

Generic Error

ALLSupervisor attempts a barge call on an agent who is on a
Consult call.

Generic Error

Dialog—End a Barge Call
This API allows a supervisor to leave a barge call that was initiated by that supervisor. The Dialog object is
updated, specifying a requestedAction of DROP and a targetMediaAddress of the extension of the supervisor
who made the barge call.

The agent can remain on the call unless the total number of participants becomes less than two when the
supervisor leaves (like the drop operation of a conference call).

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/32458Example URI:

Supervisors can use this API.

A supervisor can only drop barge call if that supervisor is a participant in the call.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>DROP</requestedAction>
<targetMediaAddress>1001002</targetMediaAddress>

</Dialog>

HTTP Request:

requestedAction (required): The way in which to create the dialog (DROP)

targetMediaAddress (required): The extension of the supervisor who initiated the
barge call

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
109

Cisco Finesse Desktop APIs
Dialog—End a Barge Call

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

404: Not Found (the dialog specified by the dialogId does not exist)

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Dialog—Drop Participant from Conference
This API allows an agent or supervisor to make a request to drop other participants from a conference based
on the permission set by the administrator. By default, this API is only available for supervisors, but the
administrator can use the Finesse CLI to expand access to conference controllers or even all agents. This
setting is reflected in the enableDropParticipantFor property. This API is only supported for Unified CCE
deployments.

The possible values for the enableDropParticipantFor property are:

• supervisor_only—(default value) Only the supervisor, who is a participant of the conference call, can
drop other agents in the conference call.

• conference_controller_and_supervisor—The supervisor who is a participant of the conference call or
an agent who initiated the conference call (conference controller) can drop other participants including
CTI Route points and IVR ports.

• all—Any agent or supervisor who is a participant of the conference call can drop other participants
including CTI Route points and IVR ports.

For example, if the permission is set to be supervisor_only, when the supervisor barges in to a call between
an agent and a customer, the supervisor is the only one who can make a request to drop the agent from the
call, leaving the supervisor on the call with the customer.

For more information, see the Service Properties section in Cisco Finesse Administration Guide at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

After the participant is dropped from the conference, the call may become a two-party call or remain a
conference call (if more than two parties remain on the call).

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
110

Cisco Finesse Desktop APIs
Dialog—Drop Participant from Conference

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

When the CLI property is set to a default value (supervisor_only), the supervisor can drop only an extension
that corresponds to a signed-in agent or supervisor. The supervisor cannot drop a CTI Route Point, IVR port,
a device to which no agent is signed in, a caller device, or other agents for whom SILENT_MONITOR is not
initiated by the supervisor. In conference calls, the application (CTI softphone) is able to drop only its own
connection from the conference and is not able to drop other participants from the conference call.

For more information, see the Enable Dropping Call Participants from a Conference Call section in Cisco
Contact Center Gateway Deployment Guide for Cisco Unified ICM/CCE at https://www.cisco.com/c/en/us/
support/customer-collaboration/unified-contact-center-enterprise/
products-programming-reference-guides-list.html

If wrap-up is enabled for the agent who is dropped, that agent can perform wrap-up after being dropped.

Note

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

The Agents and the supervisor who are the participants in the conference call can
use this API.

By default, this API is only available for supervisors, but the
administrator can use the Finesse CLI to expand access to conference
controllers or even all agents.

Note

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>PARTICIPANT_DROP</requestedAction>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

HTTP Request:

requestedAction (required): The action to be performed on the dialog.

targetMediaAddress (required): The extension to drop from the conference call.

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
111

Cisco Finesse Desktop APIs
Dialog—Drop Participant from Conference

https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-programming-reference-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-programming-reference-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-programming-reference-guides-list.html

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

400: Invalid Destination (the targetMediaAddress is not one of the parties in the
dialog or is not an agent extension)

400: Invalid State (the dialog is not a conference call)

401: Authorization Failure

401: Invalid Authorization User Specified

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

ALLSupervisor barges in and attempts to drop a participant in a
two-party call scenario.

Generic Error

Dialog—Start Recording
This API allows a user to start recording an active call.

This API applies to Unified CCX deployments only. If you attempt to use this API on a Finesse deployment
with Unified CCE, Finesse returns a “Not Implemented” error.

Note

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
112

Cisco Finesse Desktop APIs
Dialog—Start Recording

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents and supervisors can use this API.

A user must be a participant in the call to perform this action.

An agent cannot record the call of another agent. A supervisor cannot record an
agent's call if the supervisor is not a participant in the call. If a supervisor wants to
record an agent's call, the supervisor must first start a silent monitoring session on
the call.

A supervisor can only silently monitor (and therefore record) agents who belong
to teams assigned to that supervisor.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>START_RECORDING</requestedAction>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

HTTP Request:

requestedAction (required): The way in which to create the dialog
(START_RECORDING)

targetMediaAddress (required): The extension of the agent whose call to record

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

401: Invalid State (the targetMediaAddress specifies an extension of a participant
in HELD state)

500: Internal Server Error

501: Not Implemented (a recording attempt wasmade in a Unified CCE deployment)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
113

Cisco Finesse Desktop APIs
Dialog—Start Recording

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

Unified CCXAttempt to PUT a START_RECORDING when the only
allowable action is TRANSFER_SST.

Generic Error

Unified CCXAttempt to PUT a START_RECORDING when the only
allowable action is ANSWER.

Generic Error

Unified CCEAttempt to PUT a START_RECORDING on a Unified CCE
deployment type.

This API is only supported with Unified CCX deployment
type.

Generic Error

Dialog—Accept, Close, or Reject an Outbound Option Preview Reservation
This API allows a user to accept, close, or reject a reservation in an Outbound Option Preview campaign.
Finesse signals an Outbound Option Preview reservation by posting a dialog notification of type
OUTBOUND_PREVIEW to the reserved user.

This API applies to Unified CCE only. If you attempt to use this API on a Finesse deployment with Unified
CCX, Finesse returns a “Not Implemented” error.

Note

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

An agent must be a participant in the dialog to perform this action.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>{ACCEPT|CLOSE|REJECT}</requestedAction>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
114

Cisco Finesse Desktop APIs
Dialog—Accept, Close, or Reject an Outbound Option Preview Reservation

dialogId (required): The ID of the dialog

requestedAction (required): The action to take on the Outbound Option Preview
reservation (ACCEPT, CLOSE, or REJECT)

targetMediaAddress (required): The extension of the agent

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

404: Dialog Not Found

500: Internal Server Error

501: Not Implemented

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

AllAttempt to PUT a Dialog object using an action that is not
allowed. For example, attempting a HOLD call when allowed
actions are ACCEPT, REJECT, and CLOSE.

Generic Error

Dialog—Accept, Close, or Reject a Direct Preview Outbound Reservation
This API allows a user to accept, close, or reject an Direct Preview Outbound reservation . Finesse signals a
Direct Preview reservation by posting a dialog notification of type OUTBOUND_PREVIEW to the reserved
user.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
115

Cisco Finesse Desktop APIs
Dialog—Accept, Close, or Reject a Direct Preview Outbound Reservation

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

An agent must be a participant in the dialog to perform this action.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>{ACCEPT|CLOSE|REJECT}</requestedAction>
<targetMediaAddress>1001001</targetMediaAddress>

</Dialog>

HTTP Request:

dialogId (required): The ID of the dialog

requestedAction (required): The action to take on the Direct Preview reservation
(ACCEPT, CLOSE, or REJECT)

targetMediaAddress (required): The extension of the agent

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

404: Dialog Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
116

Cisco Finesse Desktop APIs
Dialog—Accept, Close, or Reject a Direct Preview Outbound Reservation

Dialog—Reclassify a Direct Preview Call
This API allows a user to reclassify an Outbound Option Direct Preview call. A call can be reclassified as
VOICE, FAX, ANS_MACHINE, INVALID, DO_NOT_CALL, or BUSY. The call type is then sent back to
Unified CCX for processing.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Agents can use this API.

Agents can only act on their own Dialog object.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output
Format:

<Dialog>
<requestedAction>RECLASSIFY</requestedAction>
<targetMediaAddress>1001001</targetMediaAddress>
<actionParams>

<ActionParam>
<name>outboundClassification</name>
<value>FAX</value>

</ActionParam>
</actionParams>

</Dialog>

HTTP Request:

dialogId (required): The ID of the dialog

requestedAction (required): The action to perform (RECLASSIFY)

targetMediaAddress (required): The extension of the agent who is making the request

actionParams (required): A collection of objects called ActionParam, which contain
name/value pairs. The name must be outboundClassification. The value can be
VOICE, FAX, ANS_MACHINE, INVALID, DO_NOT_CALL, or BUSY. A single
parameter must be specified for the value. Any additional parameters are ignored.

The BUSY parameter is not supported in a Finesse deployment with
Unified CCE. If used, it returns an invalid input error.

Note

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
117

Cisco Finesse Desktop APIs
Dialog—Reclassify a Direct Preview Call

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed asynchronously and the state change is sent
as part of and updated to the Dialog object. The response is in the
BAResponse call variable, which contains the value sent to the CTI
server for the reclassify action. No confirmation is returned, other than
the value in the BAResponse.

Note

400: Bad Request

400: Finesse API Error (for example, the object does not exist or is stale)

400: Parameter Missing

401: Authorization Failure

401: Invalid Authorization User Specified

404: Dialog Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in "Dialog CTI Error Notification."

Note

Deployment TypeReasonErrorType

AllAttempt to reclassify a dialog that is not generated by the
outbound campaign.

Generic error

Dialog—Schedule or Cancel a Callback
This API allows a user to schedule or cancel a callback. The dialog action
UPDATE_SCHEDULED_CALLBACK is used to schedule or update a callback. The dialog action
CANCEL_SCHEDULED_CALLBACK is used to cancel a previously scheduled callback.

https://<FQDN>/finesse/api/Dialog/<dialogId>URI:

https://finesse1.xyz.com/finesse/api/Dialog/54321Example URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
118

Cisco Finesse Desktop APIs
Dialog—Schedule or Cancel a Callback

Agents can use this API.

Agents can only act on their own Dialog object.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Dialog>
<requestedAction>UPDATE_SCHEDULED_CALLBACK</requestedAction>
<targetMediaAddress>1001001</targetMediaAddress>
<actionParams>

<ActionParam>
<name>callbackTime</name>
<value>2013-12-07T14:30</value>

</ActionParam>
</actionParams>

</Dialog>

HTTP Request
(Update Scheduled
Callback):

<Dialog>
<requestedAction>CANCEL_SCHEDULED_CALLBACK</requestedAction>
<targetMediaAddress>100100</targetMediaAddress>

</Dialog>

HTTP Request
(Cancel Scheduled
Callback):

dialogId (required): The ID of the dialog

requestedAction (required): The action to perform
(UPDATE_SCHEDULED_CALLBACK,CANCEL_SCHEDULED_CALLBACK)

targetMediaAddress (required): The extension of the agent who is making the
request

actionParams (required): A collection of objects called ActionParam, which contain
name/value pairs. The namemust be UPDATE_SCHEDULED_CALLBACK. The
value can be callbackTime or callbackNumber. A single parameter must be specified
for the value. Any additional parameters are ignored.

Request Parameters:

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
dialog notification.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

404: Dialog Not Found

500: Internal Server Error

501: Not Implemented

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
119

Cisco Finesse Desktop APIs
Dialog—Schedule or Cancel a Callback

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Dialog notificationNotifications
Triggered:

Dialog API Parameters
NotesParameter

Provided
Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

YesYes—The URI to get a
new copy of the
object.

Stringuri

YesYes/finesse/api/Dialog/dialogIdThe URI to a
Dialog object that
is associated with
this Dialog object.

StringassociatedDialog
Uri

NoYes—The call ID value
assigned to the
secondary call.

NumericsecondaryId

YesYesThe enterprise name of the Media
Routing Domain (MRD).

The type of media
under which this
dialog is
classified.

StringmediaType

YesYesFor a list of possible values, see State
(Dialog) Parameter Values, on page
131.

The last state of
this dialog.

Stringstate

NoYes—The calling line
ID of the caller.

StringfromAddress

NoYes—The destination
for the call.

StringtoAddress

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
120

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

This is applicable for
CCE direct preview
outbound calls.

NoYes—In outbound calls,
the customer
number received
by agent may
contain the prefix
added by dialer.
This value
indicates the
actual number
without any
prefix.

StringcallbackNumber

YesYes—A collection of
media-specific
properties for the
dialog.

CollectionmediaProperties

YesYesFor voice, this value is always 1.The ID of the
MRD.

String-->mediaId

This parameter is
empty for nonvoice
tasks.

YesYes—The number
dialed.

String-->dialedNumber

YesYes—The queue ID of
the call.

NumericqueueNumber

YesYes—The queue name
of the call.

StringqueueName

Unified CCE only.YesYes—The unique
number of the call
routed on a
particular day.

NumericcallKeyCallId

Unified CCE only.YesYes—Represents the
call sequence
number.

NumericCallKeySequenceNum

Unified CCE only.YesYes—Represents the
day when the call
is routed.

NumericcallKeyPrefix

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
121

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

NoYesACD_IN, PREROUTE_ACD_IN,
PREROUTE_DIRECT_ AGENT,
TRANSFER, OTHER_IN, OUT,
OVERFLOW_IN, AUTO_OUT,
AGENT_OUT, AGENT_INSIDE,
ASSIST_CALL,
BARGE_IN_CONSULT,
CONSULT, CONFERENCE,
EMERGENCY,
SUPERVISOR_MONITOR,
SUPERVISOR_WHISPER,
SUPERVISOR_BARGE_IN,
SUPERVISOR_INTERCEPT,
OFFERED,CONSULT_OFFERED,
CONSULT_CONFERENCE,
NON_ACD, OUTBOUND,
OUTBOUND_PREVIEW,
OUTBOUND_CALLBACK,
OUTBOUND_CALLBACK_
PREVIEW,
OUTBOUND_PERSONAL_
CALLBACK,
OUTBOUND_PERSONAL_
CALLBACK_PREVIEW,
OUTBOUND_DIRECT_
PREVIEW,
OO_RESERVATION_PREDICTIVE,
OO_CUSTOMER_IVR,
PLAY_AGENT_GREETING,
RECORD_AGENT_GREETING,
TASK_ROUTED_BY_ICM,
TASK_ROUTED_BY_APPLICATION,
UNMONITORED,
VOICE_CALL_BACK.

The type of call.String-->callType

NoYes—The DNIS
provided with the
call.

For routed calls,
the DNIS is the
route point.

String-->DNIS

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
122

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

The maximum size
of this parameter is
39 bytes (which
equals 39 US
English characters).

YesYes—A description of
the call.

String-->wrapUpReason

Unified CCX only.NoYes—A list of multiple
wrap-up reasons
associated with
this dailog.

CollectionwrapUpItems

Unified CCX only.NoYes—A description of
the call.

StringwrapUpItem

YesYes—A list of call
variables
associated with
this dialog.

Collection-->callVariables

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
123

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

Size:

• Call variable:
40 bytes

• ECC/named
variable: Sum
of all names,
values, and
index (if array)
must be less
than or equal to
2000 bytes.
Each ECC
variable value
cannot exceed
the length
defined in the
CTI server
administration
user interface.

YesYescallvariable1 through callvariable10

ECC variables

The following Outbound variables:

• BACampaign

• BAAccountNumber

• BAResponse

• BAStatus

• BADialedListID

• BATimeZone

• BABuddyName

• BACustomerNumber (Unified
CCX only)

For information about possible
values for BAStatus, see Outbound
Call Types and BAStatus, on page
147.

Contains the name
and value of a call
variable belonging
to this dialog. The
name indicates
whether the
variable is a call
variable or an
ECC variable

Call variable
names start with
callVariable#,
where # is 1-10.

ECC variable
names (both scalar
and array) are
prepended with
“user”. ECC
variable arrays
include an index
enclosed within
square brackets
located at the end
of the ECC array
name (for
example,
user.myarray[2]).

Outbound Option
call variables
provide additional
details about an
Outbound Option
call.

String--->CallVariable

YesYes—A list of all
participants (both
internal and
external) involved
in the dialog.

Collectionparticipants

YesYes—Information about
one participant in
the dialog.

Collection-->Participant

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
124

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

YesYesFor a list of possible values, see
Actions Parameter Values, on page
134.

A list of actions
that are allowed
for a participant.

Collection--->actions

YesYesPossible values include the extension
of an agent or ANI for a caller who
are participants in the call.

For nonvoice dialogs, the value is the
agent's id.

Point of contact
for the participant.

String--->mediaAddress

NoYesAGENT_DEVICE or empty stringThe device type
specified by the
mediaAddress.

Collection--->mediaAddressType

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
125

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

NoYesThe start time in the format
YYYY-MM-DDThh:MM:ss.SSSZ
or an empty string

The UTC time
when the
participant
initiated the call
or the first time
the participant call
state becomes
active.

Finesse uses the
Finesse server
timestamp (not the
CTI even
timestamp) to
determine the
startTime.

A time difference
may exist between
the Finesse server
on side A and side
B. Although they
are synchronized
using an NTP
server, a few
milliseconds of
drift may exist.
Therefore, the
startTime may be
different for a
participant if
Finesse fails over
from side A to
side B.

String--->startTime

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
126

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

When an agent signs
in with an extension
that has an active
call, Finesse does
not have a call object
tracking the call and
sets the startTime for
this participant as an
empty string. If the
call does have a
participant who is an
agent, Finesse can
reuse the call object
for the extension and
the startTime is
available For
example, if an agent
is on a call with a
customer and then
signs in, Finesse
does not have the
call object. If the
agent is on a call
with another agent
and then signs in,
Finesse can reuse the
call object for the
extension.

In a Unified CCE
deployment, Finesse
on side B is in
standby and keeps
track of agent states
and calls. When
failover occurs,
Finesse can recover
the startTime for the
agent.

In a Unified CCX
deployment, Finesse
on side B does not
have the agent state
or call information.
After failover
occurs, Finesse sets

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
127

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

the startTime
parameter as an
empty string.

YesYesFor a list of possible values, see State
(Participant) Parameter Values, on
page 137.

The last
participant state in
a dialog.

String--->state

This parameter is
usually associated
with a FAILED
participant state.

NoYesBUSY, BAD_DESTINATION,
SUPERVISOR_BARGE_IN,
OTHER

The cause for the
last participant
state in a dialog.

String--->stateCause

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
128

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

When Finesse
cannot determine the
stateChangeTime,
this parameter is an
empty string. For
example, if a
participant is in
HELD state and a
failover occurs, after
failover, Finesse can
determine that the
participant is in
HELD state but
cannot determine
when the call was
put on hold.
Therefore, Finesse
sets the
stateChangeTime
parameter to an
empty string.

In a Unified CCE
deployment, Finesse
on side B is in
standby and keeps
track of agent states
and calls. When
failover occurs,
Finesse can recover
the stateChangeTime
for the agent.

In a Unified CCX
deployment, Finesse
on side B does not
have the agent state
or call information.
After failover
occurs, Finesse sets
the stateChangeTime
parameter as an
empty string.

YesYesThe state change time in the format
YYYY-MM-DDThh:MM:ss.SSSZ
or an empty string

The UTC time
when the
participant
changed to the
current state.

Finesse uses the
Finesse server
timestamp (not the
CTI even
timestamp) to
determine the
stateChangeTime.

A time difference
may exist between
the Finesse server
on side A and side
B. Although they
are synchronized
using an NTP
server, a few
milliseconds of
drift may exist.
Therefore, the
stateChangeTime
may be different
for a participant if
Finesse fails over
from side A to
side B.

String--->stateChangeTime

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
129

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

This parameters is
provided only if a
callback is scheduled
for this dialog.

NoYes—For Outbound
Option
campaigns,
provides
information about
scheduled
callbacks.

CollectionscheduledCallbackInfo

This parameter is
provided only if a
callback time has
been set.

Value returned in the
BAReponse:

Callback
MMDDYYYY
HH:MM (for
example, Callback
12072013 14:30)

NoYes—The callback time
in the format
YYYY-MM-DDThh:MM
(for example,
2013-12-15T11:45).
The time is in the
customer's
timezone.

Optionally, a full
ISO-8601 format
time string (ex.
2013-12-25T23:59:59
.9999999+03:00)
can be sent, but
everything beyond
the minutes,
including the time
zone, is ignored.

String-->callbackTime

This parameter is
provided only if a
callback number has
been set.

Value returned in the
BAResponse:

P#<callbackNumber>
(for example,
P#9780001)

NoYes—The phone
number to call for
the callback.

String-->callbackNumber

YesNoFor a list of possible values, see
Disposition Code Parameter Values
for Nonvoice Tasks, on page 150.

The reason the
dialog ended.

StringdispositionCode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
130

Cisco Finesse Desktop APIs
Dialog API Parameters

NotesParameter
Provided

Possible ValuesDescriptionTypeParameter

Nonvoice
Tasks

Voice
Calls

Unified CCE onlyNoYes—CVP Call GUID
or Cisco Call
GUID identifies
the call and is
available only
when Unified
CVP is part of the
call flow.
[Extracted from
the Protocol Call
Reference GUID
from the CTI
Agent_Pre_Call_Event
of CTI version 24]

StringcallGUID

Unified CCE onlyNoYesAgentAnswers, Transcription, and
Recording

List of services
available for this
dialog.

Collectionservices

Unified CCE onlyNoYes—This field is
configured in
Unified CCE
against a Call
Type and is
configured on the
CCEAdmin page.

It identifies the
specific project to
be used when
providing the AI
services and is
required for the
Agent Answers
functionality.

StringserviceConfigId

State (Dialog) Parameter Values
The following table describes possible values for the state (dialog) parameter for voice dialogs:

DescriptionDialog State

Indicates that the phone is off the hook at a deviceINITIATING

Indicates that the phone is dialing at the deviceINITIATED

Indicates that the call is ringing at a deviceALERTING

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
131

Cisco Finesse Desktop APIs
State (Dialog) Parameter Values

DescriptionDialog State

Indicates that the dialog has at least one active participantACTIVE

Indicates that the dialog has failedFAILED

Indicates that the dialog has no active participantsDROPPED

Indicates the user has accepted the OUTBOUND_PREVIEW dialogACCEPTED

Nonvoice States

The following table describes possible values for the state (dialog) parameter for nonvoice dialogs:

DescriptionDialog State

Indicates that the dialog has been offered to a userOFFERED

Indicates that the user has accepted the offered dialogACCEPTED

Indicates that the dialog has at least one active participant; the user
has started working on the accepted dialog

ACTIVE

Indicates that an active dialog has been pausedPAUSED

Indicates that a user is performing wrap up activity for a dialogWRAPPING_UP

Indicates that the dialog has been interrupted by a dialog from another
MRD. Dialogs can be interrupted if they are in the ACTIVE, PAUSED,
or WRAPPING UP states.

While a dialog is interrupted, all actions for that dialog are disabled.

This state is applicable only for interruptible MRDs with the Media
API interruptAction parameter set to ACCEPT.

INTERRUPTED

Indicates that the dialog ended.

The disposition code indicates the reason the dialog closed. See
Disposition Code Parameter Values for Nonvoice Tasks, on page 150.

CLOSED

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
132

Cisco Finesse Desktop APIs
State (Dialog) Parameter Values

DescriptionDialog State

After Finesse server or PG failure recovery, any dialogs in the
INTERRUPTED state change UNKNOWN state when the dialog is
no longer interrupted.

For example, the following scenario results in a dialog in the
UNKNOWN state:

1. The user accepts and starts a dialog in an interruptible media.

2. The user accepts and starts a dialog in a non-interruptible media.

3. The dialog in the interruptible media changes to the
INTERRUPTED state.

4. The PG goes out of service.

5. Both dialogs are recovered and are in the correct state.

6. The user closes the dialog in the non-interruptible media.

7. The dialog in the interruptible media changes to the UNKNOWN
state.

When a dialog is in the UNKNOWN state, the user is only allowed to
close the dialog.

UNKNOWN

The following figure illustrates these allowed state transitions for nonvoice dialogs:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
133

Cisco Finesse Desktop APIs
State (Dialog) Parameter Values

Actions Parameter Values
The following table describes possible values (allowable actions) for the Actions response parameter for voice
calls:

DescriptionEnabled Button on DesktopParticipant Allowable Action

Allows an agent to make an
outgoing call.

Make a New CallMAKE_CALL

Allows an agent to answer an
incoming call.

AnswerANSWER

Allows an agent to hold a call that
is currently active.

HoldHOLD

Allows an agent to retrieve a call
that was on hold.

RetrieveRETRIEVE

Allows an agent to drop the
participant of a call.

EndDROP

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
134

Cisco Finesse Desktop APIs
Actions Parameter Values

DescriptionEnabled Button on DesktopParticipant Allowable Action

Allows an agent to set call data for
the call.

Finesse does not
allow an agent to set
call data from the
desktop. A user can
set call data through
the API only.

Note

—UPDATE_CALL_DATA

Allows an agent to send DTMF
digits for the call.

—SEND_DTMF

Allows an agent to make a consult
call for transfer or conference.

ConsultCONSULT_CALL

Allows an agent to start a
conference between the selected
held call and the existing active call
on the desktop.

ConferenceCONFERENCE

Allows an agent to complete a
transfer between the selected held
call and the existing active call on
the desktop.

TransferTRANSFER

Allows an agent to initiate a
single-step transfer.

Direct TransferTRANSFER_SST

Allows a supervisor to silent
monitor an agent who is in
TALKING state on an active call.

Start MonitoringSILENT_MONITOR

Allows a supervisor to barge in on
an agent call that the supervisor is
silently monitoring.

Barge InBARGE_CALL

Allows an agent or a supervisor to
drop a participant from a conference
call based on the CLI set by the
administrator.

DropPARTICIPANT_DROP

Allows an agent to update the
details for a scheduled callback.

Callback, ScheduleUPDATE_SCHEDULED_CALLBACK

Allows an agent to cancel a
scheduled callback.

Callback, CancelCANCEL_SCHEDULED_CALLBACK

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
135

Cisco Finesse Desktop APIs
Actions Parameter Values

The Participant Allowable Action is present where applicable for all participants on a call, including participants
who are not agents. The actions for participants who are not agents are not needed by the client and may not
always be accurate. These actions will be removed in a subsequent release.

Note

Outbound Option Preview Actions

The following table describes the actions available to an agent who is reserved in an Outbound Option Preview
campaign, the value to which Finesse sets the BAResponse variable, and the effect it has on the customer
number in the campaign.

Performing the actions listed in this table causes Finesse to set the BAResponse variable to a corresponding
value. Each value triggers a specific action in Unified CCE.

For more information about the BAResponse variable, see the section "Outbound Option Extended Call
Variables" in the Outbound Option Guide for Unified Contact Center Enterprise.

Note

DescriptionBAResponse ValueAction

Performing the ACCEPT action while reserved in
an Outbound Option Preview campaign instructs
Unified CCE to establish a call with the customer.

AcceptACCEPT

Performing the CLOSE action while reserved in an
Outbound Option Preview campaign rejects the
current preview call and prevents the number from
being called again in the campaign.

Reject-CloseCLOSE

Performing the REJECT action while reserved in
an Outbound Option Preview campaign instructs
Unified CCE to retry the previewed number later.

RejectREJECT

Outbound Option Direct Preview Actions

The following table describes the actions available to an agent who is reserved in an Outbound Option Direct
Preview campaign, the value to which Finesse sets the BAResponse variable, and the effect it has on the
customer number in the campaign.

Performing the actions listed in this table causes Finesse to set the BAResponse variable to a corresponding
value. Each value triggers a specific action in Unified CCX.

For more information about the BAResponse variable, see the section "Outbound Option Extended Call
Variables" in the Cisco Unified Contact Center Express CTI Protocol Developer Guide.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
136

Cisco Finesse Desktop APIs
Actions Parameter Values

DescriptionBAResponse ValueAction

Performing the ACCEPT action while reserved in
an Outbound Option Direct Preview campaign
instructs Unified CCX to establish a call with the
customer.

AcceptACCEPT

Performing the CLOSE action while reserved in an
Outbound Option Direct Preview campaign rejects
the current preview call and prevents the number
from being called again in the campaign.

Reject-CloseCLOSE

Performing the REJECT action while reserved in
an Outbound Option Direct Preview campaign
instructs Unified CCX to retry the previewed
number later.

RejectREJECT

Performing theRECLASSIFY actionwhile reserved
in an Outbound Option Direct Preview campaign
instructs Unified CCX to reclassify the previewed
number as voice (successful case), a modem/fax,
answering machine, an invalid number, do not call,
or busy.

ReclassifyRECLASSIFY

Nonvoice Actions

The following table describes possible values (allowable actions) for the Actions response parameter for
nonvoice tasks:

DescriptionAction

Allows an agent to accept an incoming task.ACCEPT

Allows an agent to start work on an accepted task.START

Allows an agent to pause an active task.PAUSE

Allows an agent to resume a paused task.RESUME

Allows an agent to transfer an accepted, active, or paused task to another
Script Selector/dialed number.

TRANSFER

Allows an agent to perform wrap up work for a task.WRAP_UP

Allows an agent to end a task.CLOSE

State (Participant) Parameter Values
The following table describes possible values for the state (participant) response parameter for voice calls:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
137

Cisco Finesse Desktop APIs
State (Participant) Parameter Values

DescriptionCall State on Finesse DesktopAllowable Actions for the
Participant State

Participant State

Indicates that an
outgoing call, not yet
active, exists on the
device

Off HookDROP,
UPDATE_CALL_DATA

INITIATING

Indicates that the phone
is dialing at a device

DialingDROP,
UPDATE_CALL_DATA

INITIATED

Indicates that an
incoming call is ringing
on the device

IncomingANSWERALERTING

Indicates that the
participant is active on
the call

ActiveHOLD, DROP,
UPDATE_CALL_DATA,
CONSULT_CALL

ACTIVE

Indicates that the call
failed (BUSY)

BusyDROPFAILED

Indicates that the call
failed
(BAD_DESINATION)

ErrorDROPFAILED

Indicates that the call
failed (OTHER)

ErrorDROPFAILED

Indicates that the
participant has held
their connection to the
call

HoldRETRIEVE, DROP,
UPDATE_CALL_DATA,
TRANSFER (if active call
exists), CONFERENCE
(if active call exists)

HELD

Indicates that the
participant has dropped
from the call

--DROPPED

Indicates that the
participant is not in
active state on the call
but is wrapping up after
the participant has
dropped from the call

ActiveUPDATE_CALL_DATAWRAP_UP

Indicates that the
participant has accepted
the dialog. This state is
applicable to
OUTBOUND_PREVIEW
dialogs.

--ACCEPTED

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
138

Cisco Finesse Desktop APIs
State (Participant) Parameter Values

In Finesse Release 9.0(1) and earlier, when a dialog participant wraps up, a dialog event is sent only to the
participant who transitions to wrap-up state. In Finesse Release 9.1(1) and later, a dialog event is sent to each
participant in the dialog.

Note

Nonvoice State (Participant) Parameter Values

The following table describes possible values (allowable actions) for the Actions response parameter for
nonvoice tasks:

DescriptionDialog StateAllowable Actions for the
Participant State

Participant State

Indicates that the participant has
been offered the task.

OFFEREDACCEPTOFFERED

Indicates that the participant has
accepted a task, but has not
started working on the task.

ACCEPTEDSTART, CLOSE,
TRANSFER

ACCEPTED

Indicates that the participant is
active in the task.

ACTIVEPAUSE, WRAP_UP,
CLOSE, TRANSFER

ACTIVE

Indicates that the participant has
paused the active task.

The WRAP_UP action is not
available if the task was
PAUSED from the
WRAPPING_UP state.

PAUSEDRESUME, CLOSE,
TRANSFER, WRAP_UP

PAUSED

Indicates that the participant is
performing wrap up work for a
task.

WRAPPING_UPPAUSE, CLOSEWRAPPING_UP

Indicates that the participant has
been interrupted in this MRD by
a task from another MRD.

This state is applicable only for
interruptible MRDs with the
interruptAction parameter set to
ACCEPT.

INTERRUPTED-INTERRUPTED

Indicates that the participant
ended the task.

--CLOSED

CTI Event Mappings for Dialog and Participant States
The following table provides a list of CTI call events and the associated Dialog and Participant states for the
call. This table is specifically oriented toward the agent receiving an incoming call.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
139

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

If the caller is also an agent, the events go to the caller. If the caller is not an agent, events are not published
to the caller.

Note

Table 1: Incoming Call

Participant
State (Caller)

Participant
State (Agent)

Dialog StateEvent
Method

CTI EventScenario

INITIATINGNot a
participant yet

INITIATINGPOST
(Caller)

BEGIN_CALL_EVENTStart the call

INITIATEDALERTINGALERTINGPOST
(Agent),
PUT
(Caller)

CALL_DELIVEREDCall arrives
at agent

ACTIVEACTIVEACTIVEPUTCALL_ESTABLISHEDAgent
answers call

DROPPEDACTIVEACTIVEPUTCALL_CONNECTION_CLEAREDCaller drops
call

DROPPEDDROPPEDDROPPEDPUTCALL_CONNECTION_CLEAREDAgent is
dropped
from call

DROPPEDDROPPEDDROPPEDPUTCALL_CONNECTION_CLEAREDCall is
cleared

DROPPEDDROPPEDDROPPEDDELETEEND_CALL_EVENTCall is
removed

The following table provides a list of CTI call events and their mapping to the Dialog state and Participant
state for the call. This table is specifically oriented toward the caller making an outgoing call.

If the recipient is also an agent, then the events go to the recipient. If the recipient is not an agent, events are
not published to the recipient.

Note

Table 2: Outgoing Call

Participant
State (Recipient)

Participant
State (Caller)

Dialog StateEvent
Method

CTI EventScenario

Not a participant
yet

INITIATINGINITIATINGPOST
(Caller)

BEGIN_CALL_EVENTStart of any
call

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
140

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

Participant
State (Recipient)

Participant
State (Caller)

Dialog StateEvent
Method

CTI EventScenario

Not a participant
yet

INITIATINGINITIATINGPOST
(Caller)

CALL_SERVICE_INITIATED_EVENTCaller takes
phone
off-hook

Not a participant
yet

INITIATEDINITIATEDPUT
(Caller)

CALL_ORIGINATED_EVENTCaller dials
number

Not a participant
yet

FAILEDFAILEDPUT
(Caller)

CALL_FAILED_EVENT (BUSY)Destination
is busy

Not a participant
yet

FAILEDFAILEDPUT
(Caller)

CALL_FAILED_EVENT
(BAD_DESTINATION)

Destination
is bad

ALERTINGINITIATEDALERTINGPUT
(Caller),
POST
(Recipient)

(See the
note that
precedes
this
table.)

CALL_DELIVEREDDestination
is recipient

ACTIVEACTIVEACTIVEPUTCALL_ESTABLISHEDRecipient
answers
call

ACTIVEDROPPEDACTIVEPUTCALL_CONNECTION_CLEAREDCaller
drops call

DROPPEDDROPPEDDROPPEDPUTCALL_CONNECTION_CLEAREDRecipient is
dropped
from call

DROPPEDDROPPEDDROPPEDPUTCALL_CLEARED_EVENTCall is
cleared

DROPPEDDROPPEDDROPPEDDELETEEND_CALL_EVENTCall is
removed

If the caller is also an agent, then the events go to the caller. If the caller is not an agent, events are not published
to the caller.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
141

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

Table 3: Holding a Call

Participant State
(Caller)

Participant State
(Agent)

Dialog StateEvent MethodCTI EventScenario

-----Call arrives and
is answered

ACTIVEHELDACTIVEPUTCALL_HELDAgent holds call

HELDHELDACTIVEPUTCALL_HELDCaller holds call

HELDACTIVEACTIVEPUTCALL_RETRIEVEDAgent retrieves
call

ACTIVEACTIVEACTIVEPUTCALL_RETRIEVEDCaller retrieves
call

The following table provides a list of CTI call events and their mapping to the Dialog and Participant states
for a call transfer. In this scenario, a call exists between the caller and Agent A. The transfer occurs after
Agent B answers the consult call.

Table 4: Call Transfer

Participant
State

Dialog StateEvent
Method

CTI Event (Consult
Call)

CTI Event (Original
Call)

Scenario

Caller:
ACTIVE

Agent A:
HELD (original
call)

Agent B: Not
yet a participant

Original
call:
ACTIVE

PUT
(original
call only)

-CALL_HELDAgent A starts
consult call

Caller:
ACTIVE

Agent A:
INITIATING
(consult call)

Agent B: Not
yet a participant

Original
call:
ACTIVE

Consult call:
INITIATING

PUT
(consult
call only)

CALL_SERVICE_
INITIATED_EVENT

-Agent A takes
phone off-hook
(BEGIN_CALL_
EVENT
assumed)

Caller:
ACTIVE

Agent A:
INITIATED
(consult call)

Agent B: Not
yet a participant

Original
call:
ACTIVE

Consult call:
INITIATED

PUT
(consult
call only)

CALL_ORIGINATED_
EVENT

-Agent A dials
number

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
142

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

Participant
State

Dialog StateEvent
Method

CTI Event (Consult
Call)

CTI Event (Original
Call)

Scenario

Caller:
ACTIVE

Agent A:
INITIATED
(consult call)

Agent B:
ALERTING

Original
call:
ACTIVE

Consult call:
ALERTING

PUT
(consult
call, on
Agent A

POST
(consult
call on
Agent B

CALL_DELIVERED-Agent B
receives the call

Caller:
ACTIVE

Agent A:
ACTIVE
(consult call)

Agent B:
ACTIVE

Original
call:
ACTIVE

Consult call:
ACTIVE

PUT
(consult
call only)

CALL_ESTABLISHED-Agent B answers
the call

Caller:
ACTIVE

Agent A:
DROPPED
(original and
consult call)

Agent B:
DROPPED
(consult call),
ACTIVE
(original call)

Original
call:
DROPPED
(Agent A),
ACTIVE
(Agent B)

Consult call:
DROPPED
(both Agent
A andAgent
B)

DELETE
(original
call on
Agent A)

DELETE
(consult
call on
Agent A)

DELETE
(consult
call on
Agent B)

POST
(original
call on
Agent B)

-CALL_TRANSFERRED_
EVENT

Agent A
completes the
transfer of the
caller to Agent
B

If the caller is also an agent, that caller receives a Dialog update (PUT) with an updated participant list after
the transfer is complete.

The following table provides a list of CTI call events and their mapping to the Dialog state and Participant
state for a silent monitor call.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
143

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

For the Finesse API, a silent monitor call request only specifies the agent's extension for the supervisor to
silent monitor. Unified CCE/Unified CCX decides which of the agent's active calls to monitor. In most cases,
an agent only has one active call to be monitored. This table describes the scenario where a call already exists
between the caller and Agent A. The focus is on the silent monitor call only. In this scenario, the original
agent call is not affected. The silent monitor call is created and the agent becomes a participant with no
allowable action. The agent has two active calls: the original call and the silent monitor call. Finesse considers
the silent monitor call to be a "passive" active call of the agent.

Note

Table 5: Silent Monitor Call

Participant
State
(Supervisor)

Participant
State
(Agent A)

Participant
State (Caller)

Dialog State
(Silent
Monitor
Call)

Dialog
State
(Original
Call)

Event
Method

CTI Event (Silent
Monitor Call)

Scenario

-------Agent
call
arrives
and is
answered

INITIATING
(silent
monitor
call)

ACTIVE
(original
call)

ACTIVE
(original
call)

INITIATINGACTIVEPOST
(SILENT_
MONITOR)

BEGIN_CALLSupervisor
starts the
silent
monitor
call

INITIATING
(silent
monitor
call)

ACTIVE
(original
call)

ACTIVE
(original
call)

INITIATINGACTIVE-CALL_SERVICE_
INITIATED_EVENT

CALL_DATA_
UPDATE_EVENT

-

INITIATED
(silent
monitor
call)

ACTIVE
(original
call)

ACTIVE
(original
call)

INITIATEDACTIVE-CALL_
ORIGINATED_
EVENT

CALL_DATA_
UPDATE_EVENT

-

INITIATED
(silent
monitor
call)

ACTIVE
(original
call)

ACTIVE
(original
call)

ALERTINGACTIVE-CALL_DELIVERED_
EVENT

CALL_DELIVERED_
EVENT

-

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
144

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

Participant
State
(Supervisor)

Participant
State
(Agent A)

Participant
State (Caller)

Dialog State
(Silent
Monitor
Call)

Dialog
State
(Original
Call)

Event
Method

CTI Event (Silent
Monitor Call)

Scenario

ACTIVE
(silent
monitor
call)

ACTIVE
(original
call)

ACTIVE
(passive -
silent
monitor
call)

ACTIVE
(original
call)

ACTIVEACTIVE-CALL_
ESTABLISHED_
EVENT

-

The following table provides a list of CTI call events and their mapping to the Dialog state and Participant
state for a barge call.

This table describes a scenario where a call already exists between the caller and Agent A and the supervisor
is silently monitoring that call. The focus is on the barge only. In this scenario, the agent call is temporarily
put on hold, the silent monitor call is dropped, and a consult call is created. The agent call becomes a conference
call with the caller, agent, and supervisor as participants.

Note

Table 6: Barge Call

Participant
State
(Supervisor)

Participant
State (Agent
A)

Participant
State
(Caller)

Dialog StateEvent
Method

CTI EventScenario

------Agent call
arrives and is
answered

ACTIVE
(silent
monitor call)

ACTIVE
(original call)

ACTIVE
(passive,
silent
monitor call)

ACTIVEACTIVE
(original call)

ACTIVE
(silent
monitor call)

--Supervisor
silent monitors
the call

ACTIVE
(silent
monitor call)

ACTIVE
(original call)

ACTIVE
(passive,
silent
monitor call)

ACTIVEACTIVE
(original call)

ACTIVE
(silent
monitor call)

POST
(BARGE)

-Supervisor
starts barge
call

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
145

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

Participant
State
(Supervisor)

Participant
State (Agent
A)

Participant
State
(Caller)

Dialog StateEvent
Method

CTI EventScenario

DROPPED
(silent
monitor call)

ACTIVE
(original call)

ACTIVE
(silent
monitor call)

ACTIVE
(original
call)

ACTIVE
(original call)

DROPPED
(silent
monitor call)

-CALL_CONNECTION
_CLEARED (silent
monitor call)

CALL_CLEARED
(silent monitor call)

END_CALL (silent
monitor call)

Finesse drops
silent monitor
call through
Unified CCE

Not a
participant
yet

HELD
(original call)

ACTIVE
(original
call)

ACTIVE
(original call)

-CALL_HELD
(original call)

Unified CCE
puts original
call on hold

Not a
participant
yet

HELD
(original call)

INITIATING
(consult call)

ACTIVEACTIVE
(original call)

INITIATING
(consult call)

-BEGIN_CALL
(consult call)

CALL_SERVICE_
INITIATED_EVENT
(consult call)

Unified CCE
generates
consult call

Not a
participant
yet

HELD
(original call)

INITIATED
(consult call)

ACTIVEACTIVE
(original call)

INITIATED
(consult call)

-CALL_ORIGINATED_
EVENT (consult
call)

Unified CCE
dials
supervisor's
extension

Not a
participant
yet

HELD
(original call)

INITIATED
(consult call)

ACTIVEACTIVE
(original call)

INITIATED
(consult call)

-CALL_DELIVERED
(consult call)

Agent receives
the consult call

ALERTINGHELD
(original call)

INITIATED
(consult call)

ACTIVEACTIVE
(original call)

ALERTING
(consult call)

-CALL_DELIVERED
(consult call)

Supervisor
receives the
consult call

ALERTINGHELD
(original call)

INITIATED
(consult call)

ACTIVEACTIVE
(original call)

ALERTING
(consult call)

-CALL_
CONFERENCED

Unified CCE
answers the
consult call on
behalf of the
supervisor and
changes the
original agent
call to a
conference call

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
146

Cisco Finesse Desktop APIs
CTI Event Mappings for Dialog and Participant States

Participant
State
(Supervisor)

Participant
State (Agent
A)

Participant
State
(Caller)

Dialog StateEvent
Method

CTI EventScenario

-HELD
(original call)

DROPPED
(consult call)

ACTIVEACTIVE
(original call)

DROPPED
(consult call)

-END_CALL
(consult call)

Unified CCE
ends the
consult call

-ACTIVE
(original call,
callType=15
=Conference)

ACTIVEACTIVE
(original call)

-CALL_DATA_
UPDATE (original
call)

Unified CCE
changes the
original call
type to
conference

ACTIVEACTIVE
(original call)

ACTIVEACTIVE
(original call)

-CALL_ESTABLISHED
(original call)

Unified CCE
answers call on
behalf of
supervisor

If the caller is also an agent, the caller receives a dialog update (PUT) with an updated participant list on the
conference.

Outbound Call Types and BAStatus
The following tables list the call types for outbound calls and the associated values for BAStatus for Unified
CCE deployments and Unified CCX deployments.

For each call type, the BAStatus differs based on the outbound agent’s mode:

• Dedicated mode—Agents who only make calls for Outbound Option campaigns.

• Blended mode—Agents who receive inbound calls and Outbound Option calls.

When a user transfers or conferences an outbound call, the callType changes to TRANSFER or CONFERENCE.

In Unified CCE deployments, the BAStatus of the call remains unchanged. In Unified CCX deployments, the
BAStatus changes to TRANSFERRED or CONFERENCED for Progressive and Predictive outbound calls
and remains OUTBOUND for Direct Preview outbound calls.

When the failover occurs in a Unified CCE deployment, the callType and BAStatus remain unchanged. In
Unified CCX deployments, the callType parameter is null or empty after failover for all outbound dialing
modes. The BAStatus parameter is removed as the call no longer functions as an outbound call.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
147

Cisco Finesse Desktop APIs
Outbound Call Types and BAStatus

Table 7: Outbound Call Types and BAStatus for Finesse with Unified CCE

Direct PreviewPreviewPredictiveProgressive

callType:
OUTBOUND_
DIRECT_
PREVIEW

BAStatus:
BLENDED_DIRECT_
PREVIEW_
OUTBOUND_
RESERVATION
or DIRECT_
PREVIEW_
OUTBOUND_
RESERVATION

callType: OUTBOUND_
PREVIEW

BAStatus:
BLENDED_PREVIEW_
OUTBOUND_
RESERVATION or
PREVIEW_
OUTBOUND_
RESERVATION

——Reservation
Call

callType:
OUTBOUND

BAStatus:
BLENDED_DIRECT_
PREVIEW_
OUTBOUNDor
DIRECT_
PREVIEW_
OUTBOUND

callType: OUTBOUND

BAStatus:
BLENDED_PREVIEW_
OUTBOUND or
PREVIEW_OUTBOUND

callType: OUTBOUND

BAStatus: BLENDED_
PREDICTIVE_
OUTBOUND or
PREDICTIVE_
OUTBOUND

callType: OUTBOUND

BAStatus:
BLENDED_PROGRESSIVE_
OUTBOUND or
PROGRESSIVE_
OUTBOUND

Customer
Call

callType:
OUTBOUND_
DIRECT_
PREVIEW

BAStatus:
DIRECT_
PREVIEW_
OUTBOUND_
RESERVATION

callType: OUTBOUND_
CALLBACK_PREVIEW

BAStatus: PREVIEW_
OUTBOUND_
RESERVATION

——Callback
Reservation
Call

callType:
OUTBOUND_
CALLBACK

BAStatus:
DIRECT_
PREVIEW_
OUTBOUND

callType: OUTBOUND_
CALLBACK

BAStatus: PREVIEW_
OUTBOUND

callType: OUTBOUND_
CALLBACK

BAStatus: PREDICTIVE_
OUTBOUND

callType:
OUTBOUND_
CALLBACK

BAStatus:
PROGRESSIVE_
OUTBOUND

Callback
Customer
Call

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
148

Cisco Finesse Desktop APIs
Outbound Call Types and BAStatus

Direct PreviewPreviewPredictiveProgressive

callType:
OUTBOUND_
PERSONAL_
CALLBACK_
PREVIEW

BAStatus:
PERSONAL_
CALLBACK_
OUTBOUND_
RESERVATION

callType: OUTBOUND_
PERSONAL_
CALLBACK_PREVIEW

BAStatus: PERSONAL_
CALLBACK_
OUTBOUND_
RESERVATION

callType: OUTBOUND_
PERSONAL_
CALLBACK_PREVIEW

BAStatus: PERSONAL_
CALLBACK_
OUTBOUND_
RESERVATION

callType:
OUTBOUND_
PERSONAL_
CALLBACK_
PREVIEW

BAStatus:
PERSONAL_
CALLBACK_
OUTBOUND_
RESERVATION

Personal
Callback
Reservation
Call

callType:
OUTBOUND_
PERSONAL_
CALLBACK

BAStatus:
PERSONAL_
CALLBACK_
OUTBOUND

callType: OUTBOUND_
PERSONAL_
CALLBACK

BAStatus: PERSONAL_
CALLBACK_
OUTBOUND

callType: OUTBOUND_
PERSONAL_
CALLBACK

BAStatus: PERSONAL_
CALLBACK_
OUTBOUND

callType:
OUTBOUND_
PERSONAL_
CALLBACK

BAStatus:
PERSONAL_
CALLBACK_
OUTBOUND

Personal
Callback
Customer
Call

Table 8: Outbound Call Types and BAStatus for Finesse with Unified CCX

Direct PreviewPredictiveProgressive

callType: OUTBOUND_
DIRECT_ PREVIEW

BAStatus: DIRECT_
PREVIEW_OUTBOUND_
RESERVATION

——Reservation
Call

callType: OUTBOUND

BAStatus: DIRECT_
PREVIEW_ OUTBOUND

callType: OUTBOUND

BAStatus: OUTBOUND

callType: OUTBOUND

BAStatus: OUTBOUND

Customer
Call

callType: OUTBOUND_
DIRECT_ PREVIEW

BAStatus: DIRECT_
PREVIEW_OUTBOUND_
RESERVATION

——Callback
Reservation
Call

callType: OUTBOUND_
CALLBACK

BAStatus: DIRECT_
PREVIEW_ OUTBOUND

callType: OUTBOUND_
CALLBACK

BAStatus: OUTBOUND

callType: OUTBOUND_
CALLBACK

BAStatus: OUTBOUND

Callback
Customer
Call

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
149

Cisco Finesse Desktop APIs
Outbound Call Types and BAStatus

Direct PreviewPredictiveProgressive

———Personal
Callback
Reservation
Call

———Personal
Callback
Customer
Call

Disposition Code Parameter Values for Nonvoice Tasks
The following table describes possible values for the dispositionCode response parameter for nonvoice tasks:

DescriptionDisposition Code ValueType of Code

The task ended normally.CD_NORMAL_END_TASKNormal End

The task was transferred. The
initiating application sends a
new task request to CCE for
routing that includes the task id
of the first task.

CD_TASK_TRANSFERTransfer

The taskwas transferred because
the agent logged out during the
task.

CD_TASK_TRANSFERRED_ON_AGENT_LOGOUT

The task timed out while waiting
to be accepted by an agent. The
task was redirected to another
agent.

CD_RING_NO_ANSWERRONA

The dialog ended because it
exceeded the maximum task
duration for the MRD.

CD_MAX_DIALOG_LIFETIME_EXCEEDEDTask Lifetime
Exceeded

The customer cancelled the task
before the agent began working
on the task.

In this case, the Finesse user
sees the offered dialog but the
dialog is deleted before the user
can accept it.

CD_TASK_ABANDONED_WHILE_OFFEREDCustomerAbandoned

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
150

Cisco Finesse Desktop APIs
Disposition Code Parameter Values for Nonvoice Tasks

DescriptionDisposition Code ValueType of Code

The Agent PG could not assign
an ID to the dialog.

In this case, the Finesse user
sees the offered dialog, but it is
deleted before the user can
accept the dialog.

Contact Cisco Technical Support
for assistance.

CD_CANT_OBTAIN_DIALOG_IDOther

The agent working on the task
logged out before the task
ended.

CD_AGENT_LOGGED_OUT_DURING_DIALOG

This indicates that the dialog
was in progress when the
application path went down, and
ended before the application
path was reinitialized, but within
the task life timeout threshold.
When the application path was
reinitialized, the Agent PG
ended the dialog.

CD_TASK_ENDED_DURING_APP_INIT

One instance of an application
that is allowed to have multiple
client connections with the same
application path was
disconnected. However, the
application path is not down
because another instance of the
application is still connected.

CD_APPLICATION_DISCONNECTED

Dialog API Errors
DescriptionError TypeStatus

The barge call will cause the total number of parties
on the conference call to exceed the allowed resource
limit for the conference bridge.

20700 (conference resource limit
violation)

400

The agent specified in the toAddress is not the
controller of the conference call or the agent already
has an outstanding conference call.

20999 (Barge via a
non-conference-controller)

400

An unaccounted for error occurred. The root cause
could not be determined.

Generic Error400

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
151

Cisco Finesse Desktop APIs
Dialog API Errors

DescriptionError TypeStatus

The toAddress and fromAddress are the same (if users
attempt to call their own extension).

For the Dialog—Drop Participant from Conference
API, this error occurs if the targetMediaAddress is not
one of the parties on the call or is not an agent
extension.

For the Dialog—Make a Barge Call API, this error
occurs if the supervisor tries to barge in on an agent
call when the agent's extension is in HELD state.

Invalid Destination400

One of the parameters provided as part of the user
input is invalid or not recognized (for example, the
fromAddress, toAddress, targetMediaAddress,
requestedAction).

For the Dialog—Update Call Variable Data API, the
call variable name or action is invalid or not
recognized, or there are duplicate call variable names.

This error is also returned if a user attempts to set any
of the following Outbound Option variables:
BACampaign, BAAccountNumber, BAResponse,
BAStatus, BADialedListID, BATimeZone,
BABuddyName, BACustomerNumber (UnifiedCCX
only).

Invalid Input400

A supervisor who is already on an active call (in
TALKING or HOLD state) makes a silent monitor
request.

Invalid State400

A required parameter was not provided in the request.

For example, if creating a dialog, the fromAddess or
toAddress was not provided.

Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (for example,
an agent tries to use an API that only a supervisor or
administrator is authorized to use).

Authorization Failure401

The authenticated user tried to make a request for
another user.

The authenticated user tried to use a fromAddress that
does not belong to that user.

Invalid Authorization User
Specified

401

The targetMediaAddress in a Dialog—Start Recording
request specifies an extension of a participant in HELD
state.

Invalid State401

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
152

Cisco Finesse Desktop APIs
Dialog API Errors

DescriptionError TypeStatus

A supervisor tried to change the state of an agent who
does not belong to that supervisor's team.

Invalid Supervisor401

The resource specified is invalid or does not exist.Not Found404

The dialogId provided is invalid or no such dialog
exists.

Dialog Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

A user attempted to use the API in a deployment where
it is not supported.

For example, a recording attempt was made in a
Unified CCE deployment.

Not Implemented501

The required service is unavailable. For example, the
Notification Service is not running.

Service Unavailable503

Queue
The Queue object represents a queue (or skill group in Unified CCE) and contains the URI, name, and statistics
for that queue. Queue statistics include the number of calls in queue, the start time of the longest call in queue,
and the number of agents in each state.

The Queue object is structured as follows:
<Queue>

<uri>/finesse/api/Queue/10</uri>
<name>Sales</name>
<statistics>

<callsInQueue>3</callsInQueue>
<startTimeOfLongestCallInQueue>2012-02-15T17:58:21Z</startTimeOfLongestCallInQueue>
<agentsReady>1</agentsReady>
<agentsNotReady>2</agentsNotReady>
<agentsBusyOther>0</agentsBusyOther>
<agentsLoggedOn>1</agentsLoggedOn>
<agentsTalkingInbound>3</agentsTalkingInbound>
<agentsTalkingOutbound>2</agentsTalkingOutbound>
<agentsTalkingInternal>1</agentsTalkingInternal>
<agentsWrapUpNotReady>2</agentsWrapUpNotReady>
<agentsWrapUpReady>3</agentsWrapUpReady>

</statistics>
</Queue>

Queue APIs

Queue—Get Queue
This API allows a user to get a Queue object. Use this API to access statistics for a queue that is assigned to
agents or supervisors.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
153

Cisco Finesse Desktop APIs
Queue

If you use this API to get a queue that is not assigned to any users, the response contains a value of -1 for
numeric statistics and is empty for string statistics.

This API is only supported for a stand-alone Finesse deployment with Unified CCE and not applicable for
coresident Finesse deployment with Unified CCX.

Note

https://<FQDN>/finesse/api/Queue/<id>URI:

https://finesse1.xyz.com/finesse/api/Queue/10Example URI:

Any user can use this API to retrieve information about a specific queue. The user
does not need to belong to that queue.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

404: Not Found

500: Internal Server Error

HTTP Response:

<Queue>
<uri>/finesse/api/Queue/10</uri>
<name>Sales</name>
<statistics>

<callsInQueue>3</callsInQueue>

<startTimeOfLongestCallInQueue>2012-02-15T17:58:21Z</startTimeOfLongestCallInQueue>

<agentsReady>1</agentsReady>
<agentsNotReady>2</agentsNotReady>
<agentsBusyOther>0</agentsBusyOther>
<agentsLoggedOn>1</agentsLoggedOn>
<agentsTalkingInbound>3</agentsTalkingInbound>
<agentsTalkingOutbound>4</agentsTalkingOutbound>
<agentsTalkingInternal>5</agentsTalkingInternal>
<agentsWrapUpNotReady>6</agentsWrapUpNotReady>
<agentsWrapUpReady>7</agentsWrapUpReady>

</statistics>
</Queue>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
154

Cisco Finesse Desktop APIs
Queue—Get Queue

Platform-Based API Differences

The following statistics fields are updated only for a stand-alone Finesse deployment with Unified CCE:

• callsInQueue

• startTimeOfLongestCallInQueue

• agentsReady

• agentsNotReady

• agentsTalkingInbound

• agentsTalkingOutbound

• agentsTalkingInternal

• agentsWrapUpNotReady

• agentsWrapUpReady

• agentsLoggedOn

• agentsBusyOther

Queue—Get List of Queues for User
This API allows a user to get a list of all queues associated with that user. If the user is a supervisor, it returns
all queues assigned to all team members of the supervised teams, in addition to the teams that the supervisor
belongs to.

The list of queues does not include the system-defined queue (skill group) present in Unified CCE to which
all agents belong.

Note

https://<FQDN>/finesse/api/User/<id>/QueuesURI:

https://finesse1.xyz.com/finesse/api/User/1234/QueuesExample URI:

All users can use this API to retrieve a list of queues for any user.Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

404: User Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
155

Cisco Finesse Desktop APIs
Queue—Get List of Queues for User

<Queues>
<Queue>

<uri>/finesse/api/Queue/1234</uri>
<name>Sales</name>
<statistics>

<callsInQueue>3</callsInQueue>

<startTimeOfLongestCallInQueue>2012-02-15T17:58:21Z</startTimeOfLongestCallInQueue>

<agentsReady>1</agentsReady>
<agentsNotReady>2</agentsNotReady>
<agentsBusyOther>0</agentsBusyOther>
<agentsLoggedOn>1</agentsLoggedOn>
<agentsTalkingInbound>3</agentsTalkingInbound>
<agentsTalkingOutbound>4</agentsTalkingOutbound>
<agentsTalkingInternal>5</agentsTalkingInternal>
<agentsWrapUpNotReady>6</agentsWrapUpNotReady>
<agentsWrapUpReady>7</agentsWrapUpReady>

</statistics>
</Queue>
... more queues ...

</Queues>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Platform-Based API Differences

The following statistics fields are updated only for a stand-alone Finesse deployment with Unified CCE:

• callsInQueue

• startTimeOfLongestCallInQueue

• agentsReady

• agentsNotReady

• agentsTalkingInbound

• agentsTalkingOutbound

• agentsTalkingInternal

• agentsWrapUpNotReady

• agentsWrapUpReady

• agentsLoggedOn

• agentsBusyOther

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
156

Cisco Finesse Desktop APIs
Queue—Get List of Queues for User

Queue API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the Queue object.

Stringuri

—A unique identifier for the
queue. This identifier is the
PeripheralNumber from
t_Skill_Group in AWDB.

Stringid

—The name of the queue.Stringname

—A list of statistics for the
queue.

Collectionstatistics

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The number of calls
currently queued to this
queue.

Integer-->callsInQueue

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The start time of the longest
call in the queue.

The format for this
parameter is
YYYY-MM-DDThh:MM:ssZ.

String-->startTimeOf
LongestCallInQueue

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The number of agents
assigned to the queue who
are in READY state.

Integer-->agentsReady

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The number of agents
assigned to the queue who
are in NOT_READY state.

Integer-->agentsNotReady

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The number of agents
assigned to the queue who
are in TALKING state on
inbound calls.

Integer-->agentsTalking
Inbound

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
157

Cisco Finesse Desktop APIs
Queue API Parameters

NotesPossible ValuesDescriptionTypeParameter

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

Outbound calls
include non-routed
calls placed to
external devices that
are not monitored by
Unified
Communications
Manager or to
devices in a different
Unified
Communications
Manager cluster.
OutboundDialer calls
are not included.

—The number of agents
assigned to the queue who
are in TALKING state on
outbound calls.

Integer-->agentsTalking
Outbound

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The number of agents
assigned to the queue who
are in Talking state on
internal calls.

Internal calls are consult
calls. When an agent on a
routed call initiates an
internal consult call, this
statistic is incremented for
the queue associated with
the original call.

Integer-->agentsTalking
Internal

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The number of agents
assigned to the queue who
are in Work Not Ready
state.

Integer-->agentsWrapUp
NotReady

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—The number of agents
assigned to the queue who
are in Work Ready state.

Integer-->agentsWrapUp
Ready

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—Number of agents currently
busy with calls.

Integer-->agentsBusyOther

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
158

Cisco Finesse Desktop APIs
Queue API Parameters

NotesPossible ValuesDescriptionTypeParameter

If the queue is not
assigned to an agent
or supervisor, this
value is -1.

—Number of agents who are
currently logged in to the
system.

Integer-->agentsLoggedOn

Queue API Errors
DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

Authorization Failure401

The resource specified is invalid or does not exist.Not Found404

The user ID provided is invalid or is not recongnized.
No such user exists in CTI.

User Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Team
The Team object represents a team and contains the URI, team name, and the users associated with the team.

The Team object does not contain a full User object for each of the team's users, but a summary object that
contains the User uri, loginId, firstName, lastName, ReasonCode, and extension parameters. For more
information about these parameters, see User API Parameters.

The Team object is structured as follows:
<Team>

<uri>/finesse/api/Team/34</uri>
<id>34</id>
<name>My Team</name>
<users>

<User>
<uri>/finesse/api/User/1234/</uri>
<loginId>1234</loginId>
<firstName>Charles</firstName>
<lastName>Brown</lastName>
<dialogs>/finesse/api/User/1234/Dialogs</dialogs>
<extension>1001001</extension>
<pendingState></pendingState>
<state>LOGOUT</state>
<stateChangeTime>2012-03-01T17:58:21.345Z</stateChangeTime>

</User>
<User>

<uri>/finesse/api/User/1235/</uri>
<loginId>1235</loginId>
<firstName>Jack</firstName>
<lastName>Brawn</lastName>
<dialogs>/finesse/api/User/1235/Dialogs</dialogs>
<extension>1001002</extension>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
159

Cisco Finesse Desktop APIs
Queue API Errors

<pendingState></pendingState>
<state>NOT_READY</state>
<reasonCode>

<category>NOT_READY</category>
<code>12</code>
<label>Lunch Break</label>
<id>1</id>
<uri>/finesse/api/ReasonCode/1</uri>

</reasonCode>
<stateChangeTime>2012-03-01T18:22:25.123Z</stateChangeTime>

</User>
...Other Users...

</users>
</Team>

Team APIs

Team—Get Team
This API allows a user to get a copy of the Team object. The Team object contains the configuration information
for a specific team, which includes the URI, the team ID, the team name, and a list of agents who are members
of that team.

The URI for this API contains the parameter includeLoggedOutAgents. This parameter is optional and can
be set to:

• True or Empty: Includes all the agents of that team in the list (with the logged out agents).

• False: Includes only the logged in agents in the list.

https://<FQDN>/finesse/api/Team/<id>?includeLoggedOutAgents=trueURI:

https://finesse1.xyz.com/finesse/api/Team/10?includeLoggedOutAgents=trueExample URI:

By default, only administrators and supervisors can access this API. Supervisors
can access the information of the teams that they are asigned to and Administrators
can access all the teams.

If the enableTeamAPIAccessForAllusers is enabled, all supervisors and agents
can access this API and there will be no restriction. That is, all users can access
information of all the teams. For more information about
enableTeamAPIAccessForAllusers, see the Cisco Finesse Administration Guide.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

id (required): The ID of the user

includeLoggedOutAgents (optional): Returns the list with all the agents in that team

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
160

Cisco Finesse Desktop APIs
Team APIs

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

200: Success

401: Authorization Failure

404: Not Found

500: Internal Server Error

HTTP Response:

<Team>
<uri>/finesse/api/Team/34</uri>
<id>34</id>
<name>My Team</name>
<users>

<User>
<uri>/finesse/api/User/1234/</uri>
<loginId>1234</loginId>
<firstName>Charles</firstName>
<lastName>Brown</lastName>
<dialogs>/finesse/api/User/1234/Dialogs</dialogs>
<extension>1001001</extension>
<pendingState></pendingState>
<state>LOGOUT</state>
<stateChangeTime>2012-03-01T17:58:21.345Z</stateChangeTime>

</User>
<User>

<uri>/finesse/api/User/1235/</uri>
<loginId>1235</loginId>
<firstName>Jack</firstName>
<lastName>Brawn</lastName>
<dialogs>/finesse/api/User/1235/Dialogs</dialogs>
<extension>1001002</extension>
<pendingState></pendingState>
<state>NOT_READY</state>
<reasonCode>

<category>NOT_READY</category>
<code>12</code>
<label>Lunch Break</label>
<id>1</id>
<uri>/finesse/api/ReasonCode/1</uri>

</reasonCode>
<stateChangeTime>2012-03-01T18:22:25.123Z</stateChangeTime>

</User>
...Other Users...

</users>
</Team>

Example Response for
Unified CCE
deployment:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
161

Cisco Finesse Desktop APIs
Team—Get Team

<Team>
<uri>/finesse/api/Team/34</uri>
<id>34</id>
<name>My Team</name>
<users>

<User>
<uri>/finesse/api/User/1234/</uri>
<loginId>1234</loginId>
<firstName>Charles</firstName>
<lastName>Brown</lastName>
<mediaState>BUSY</mediaState>
<dialogs>/finesse/api/User/1234/Dialogs</dialogs>
<extension>1001001</extension>
<pendingState></pendingState>
<state>LOGOUT</state>
<stateChangeTime>2012-03-01T17:58:21.345Z</stateChangeTime>

</User>
<User>

<uri>/finesse/api/User/1235/</uri>
<loginId>1235</loginId>
<firstName>Jack</firstName>
<lastName>Brawn</lastName>
<dialogs>/finesse/api/User/1235/Dialogs</dialogs>
<extension>1001002</extension>
<pendingState></pendingState>
<state>NOT_READY</state>
<reasonCode>

<category>NOT_READY</category>
<code>12</code>
<label>Lunch Break</label>
<id>1</id>
<uri>/finesse/api/ReasonCode/1</uri>

</reasonCode>
<stateChangeTime>2012-03-01T18:22:25.123Z</stateChangeTime>

</User>
...Other Users...

</users>
</Team>

Example Response for
Unified CCX
deployment:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Get List of TeamMessages
This API allows the user to get a list of all active TeamMessages for a particular team.

https://<FQDN>/finesse/api/Team/<teamid>/TeamMessagesURI:

https://finesse1.xyz.com/finesse/api/Team/5000/TeamMessagesExample URI:

Agents and Supervisors of the team can use this API.Security Constraints:

GETHTTP Method:

—Content Type:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
162

Cisco Finesse Desktop APIs
Team—Get List of TeamMessages

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
163

Cisco Finesse Desktop APIs
Team—Get List of TeamMessages

<TeamMessages>
<TeamMessage>

<uri>/finesse/api/BroadcastMessage/be1598bb-bb2a-4dfc-8c01-91ec10b029af</uri>

<id>be1598bb-bb2a-4dfc-8c01-91ec10b029af</id>
<createdBy>

<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418173</createdAt>
<duration>100</duration>
<content>content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>
<TeamMessage>

<uri>/finesse/api/TeamMessage/c652fb4f-1f1a-48c8-bc77-2cbab3c9d231</uri>

<id>c652fb4f-1f1a-48c8-bc77-2cbab3c9d231</id>
<createdBy>

<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418172</createdAt>
<duration>100</duration>
<content>content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>
<TeamMessage>

<uri>/finesse/api/TeamMessage/ea74a0db-efcf-4651-84b1-1d2119509e9f</uri>

<id>ea74a0db-efcf-4651-84b1-1d2119509e9f</id>
<createdBy>

<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418177</createdAt>
<duration>100</duration>
<content>some content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>

</broadcastMessages>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Not Found</ErrorType>
<ErrorData>finesse.api.not_found</ErrorData>
<ErrorMessage>Team not found.</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
164

Cisco Finesse Desktop APIs
Team—Get List of TeamMessages

Team API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the Team object.

Stringuri

—The unique identifier for the
team.

Stringid

—The name of the team.Stringname

—The list of users that belong
to this team.

Collectionusers

The Team object
contains a subset of
the User parameters.
These parameters
include the uri,
loginId, firstName,
lastName, dialogs,
pendingState, state,
stateChangeTime,
extension,
ReasonCode, and
mediaState.

For information about
these parameters, see
User API
Parameters.

—Information about one
specific user on the team.

Collection-->User

Team API Errors
DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

Authorization Failure401

The team id is invalid. No such team exists.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

TeamResource
The TeamResource object represents a team configuration based on Team assignments. The object contains
the URI, team ID, and the respective configuration. The agent or supervisor uses the TeamResource APIs to

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
165

Cisco Finesse Desktop APIs
Team API Parameters

get copy of the details such as reason codes, wrap-up reasons, media properties layout, phone books, and
workflows associated to the team.

FromCisco Finesse Release 12.5(1) onwards, the following User APIs are deprecated. These APIs are available
for backward compatibility and have lower performance compared to the TeamResouce APIs.

• User—Get Reason Code List

• User—Get Wrap-Up Reason List

• User—Get Media Properties Layout List

• User—Get List of Phone Books

• User—Get List of Workflows

Responses from the TeamResource APIs are valid for all members of the team.

For more details, see Cisco Finesse REST APIs, on page 4.

TeamResource APIs

TeamResource—Get Reason Codes
This API allows an agent or supervisor to get the NOT_READY, LOGOUT, and ALL reason codes for a
team.

The ReasonCodes can be empty (for example, if no reason codes for the specified category exist in the Finesse
configuration database).

Reason codes that have forAll field set to true apply to all the teams.

The category parameter is required when making a request to get reason codes for a team.

Note

For more information about the ReasonCode object, see ReasonCode, on page 260.

https://<FQDN>/finesse/api/TeamResource/<teamId>/ReasonCodes?category=NOT_READY|LOGOUT|ALLURI:

https://finesse1.xyz.com/finesse/api/TeamResource/1234/ReasonCodes?category=NOT_READYExample URI:

Agents and supervisors who are part of the team can use this API.

To get the reason codes for the team, the user must be signed in or provide valid
authorization credentials.

Security
Constraints:

GETHTTP
Method:

—Content Type:

XMLInput/Output
Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
166

Cisco Finesse Desktop APIs
TeamResource APIs

—HTTP
Request:

200: Success

400: Bad Request (the request body is invalid)

400: Finesse API Error (for example, the object does not exist, the object is stale, or violation
of the DB constraint)

401: Authorization Failure

401: Invalid Authorization

404: Not Found (for example, the teamId does not exist or has been deleted)

500: Internal Server Error

HTTP
Response:

<ReasonCodes category="NOT_READY">
<ReasonCode>

<uri>/finesse/api/ReasonCode/1234</uri>
<category>NOT_READY</category>
<code>12</code>
<label>Lunch</label>
<forAll>true</forAll>

</ReasonCode>
<ReasonCode>
...Full ReasonCode Object...

</ReasonCode>
<ReasonCode>
...Full ReasonCode Object...

</ReasonCode>
</ReasonCodes>

Example
Response:

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example
Failure
Response:

TeamResource—Get Wrap-Up Reasons
This API allows an agent or supervisor to get all the wrap-up reasons for a team.

For more information about the WrapUpReason object, see WrapUpReason, on page 267.

https://<FQDN>/finesse/api/TeamResource/<teamId>/WrapUpReasonsURI:

https://finesse1.xyz.com/finesse/api/TeamResource/1234/WrapUpReasonsExample URI:

Agents and supervisors who are part of the team can use this API.

To get the wrap-up reason for the team, the user must be signed in or provide valid
authorization credentials.

Security Constraints:

GETHTTP Method:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
167

Cisco Finesse Desktop APIs
TeamResource—Get Wrap-Up Reasons

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

400: Bad Request (the request body is invalid)

400: Finesse API Error (for example, the object does not exist, the object is stale,
or violation of the DB constraint)

401: Authorization Failure

401: Invalid Authorization

404: Not Found (for example, the teamId does not exist or has been deleted)

500: Internal Server Error

HTTP Response:

<WrapUpReasons>
<WrapUpReason>
<label>Successful tech support call</label>
<forAll>true</forAll>
<uri>/finesse/api/WrapUpReason/1234</uri>

</WrapUpReason>
... more wrap-up reasons ...

</WrapUpReasons>

Example Response:

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

TeamResource—Get Media Properties Layouts
This API allows an agent or supervisor to get the media properties layout configured for the team.

https://<FQDN>/finesse/api/TeamResource/<teamId>/MediaPropertiesLayoutsURI:

https://finesse1.xyz.com/finesse/api/TeamResource/1234/MediaPropertiesLayoutsExample URI:

Agents and supervisors who are part of the team can use this API.

To get the media properties layout for the team, the user must be signed in or provide
valid authorization credentials.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
168

Cisco Finesse Desktop APIs
TeamResource—Get Media Properties Layouts

200: Success

400: Bad Request (the request body is invalid)

400: Finesse API error (for example, the object does not exist, the object is stale, or
violation of the DB constraint)

401: Authorization Failure

401: Invalid Authorization

404: Not Found (for example, the teamId does not exist or has been deleted)

500: Internal Server Error

HTTP Response:

<MediaPropertiesLayouts>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>

</MediaPropertiesLayouts>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

TeamResource—Get Phone Books
This API allows an agent or supervisor to get phone books and the first associated contacts for the team, based
on the defined range (1 to 6000). Contacts are retrieved from the global phone books first, followed by the
team phone books, up to the maximum limit of 6000. For more information about the PhoneBook object, see
PhoneBook, on page 297.

https://<FQDN>/finesse/api/TeamResource/<teamId>/PhoneBooksURI:

https://finesse1.xyz.com/finesse/api/TeamResource/1234/PhoneBooksExample URI:

Agents and supervisors who are part of the team can use this API.

To get the phone book for the team, the user must be signed in or provide valid
authorization credentials.

Security Constraints:

"Range: objects=16000"

The range of contacts to retrieve.

Additional Headers:

GETHTTP Method:

—Content Type:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
169

Cisco Finesse Desktop APIs
TeamResource—Get Phone Books

XMLInput/Output Format:

—HTTP Request:

200: Success

206: Partial Content

400: Bad Request (the request body is invalid)

400: Finesse API error (for example, the object does not exist, the object is stale,
or violation of the DB constraint)

401: Authorization Failure

401: Invalid Authorization

404: Not Found (for example, the teamId does not exist or has been deleted)

416: Invalid Range Specified. Range must be 1– 6000 objects

500: Internal Server Error

HTTP Response:

<PhoneBooks>
<PhoneBook>

<name>PhoneBook1</name>
<type>GLOBAL</type>
<Contacts>

<Contact>
...Full Contact Object...

</Contact>
...Full Contact Object...

</Contact>
</Contacts>

</PhoneBook>
<PhoneBook>

<name>PhoneBook2</name>
<type>TEAM</type>
<Contacts>

<Contact>
...Full Contact Object...

</Contact>
<Contact>

...Full Contact Object...
</Contact>

</Contacts>
</PhoneBook>

</PhoneBooks>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
170

Cisco Finesse Desktop APIs
TeamResource—Get Phone Books

Example

<ApiErrors>
<ApiError>
<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>1234</ErrorData>

</ApiError>
</ApiErrors>

Example

<ApiErrors>
<ApiError>
<ErrorType>Invalid Input</ErrorType>
<ErrorData></ErrorData>
<ErrorMessage>Invalid range header format. Format:

objects=1-6000</ErrorMessage>
</ApiError>

</ApiErrors>>

Example

<ApiErrors>
<ApiError>
<ErrorType>Invalid Input</ErrorType>
<ErrorData></ErrorData>
<ErrorMessage>Maximum number of contacts cannot exceed

6000</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

TeamResource—Get Workflows
This API allows an agent or supervisor to get the workflows and workflow actions that are assigned to a team.

For more information about the Workflow object, see Workflow, on page 313.

https://<FQDN>/finesse/api/TeamResource/<teamId>/WorkflowsURI:

https://finesse1.xyz.com/finesse/api/TeamResource/1234/WorkflowsExample URI:

Agents and supervisors who are part of the team can use this API.

To get the workflows for the team, the user must be signed in or provide valid
authorization credentials.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
171

Cisco Finesse Desktop APIs
TeamResource—Get Workflows

200: Success

400: Bad Request (the request body is invalid)

400: Finesse API Error (for example, the object is stale or there is a violation of database
constraints)

401: Authorization Failure

401: Invalid Authorization

404: Not Found (for example, the teamId does not exist or has been deleted)

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
172

Cisco Finesse Desktop APIs
TeamResource—Get Workflows

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
173

Cisco Finesse Desktop APIs
TeamResource—Get Workflows

<Workflows>
<Workflow>

<name>google ring pop</name>
<description> Pops a Google web page when an agent phone

rings</description>
<TriggerSet>

<type>SYSTEM</type>
<name>CALL_ARRIVES</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>
<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ACT_IN,PREROUTE_ACD_IN,PREROUTE_DIRECT_AGENT,
TRANSFER,OVERFLOW_IN,OTHER_IN,AGENT_OUT,AGENT_INSIDE,
OFFERED,CONSULT,CONSULT_OFFERED,CONSULT_CONFERENCE,
CONFERENCE,TASK_ROUTED_BY_ICM,TASK_ROUTED_BY_
APPLICATION</value>

</Trigger>
<Trigger>

<Variable>
<name>state</name>

<node>//Dialog/participants/Participant/mediaAddress[.=${teamresourceExtension}]/../state</node>

<type>CUSTOM</type>
</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ALERTING,ACTIVE,HELD</value>

</Trigger>
<Trigger>

<Variable>
<name>fromAddress</name>
<node>//Dialog/fromAddress</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_NOT_EQUAL</comparator>
<Variable>

<name>teamresourceExtension</name>
<type>SYSTEM</type>

</Variable>
</Trigger>

</triggers>
</TriggerSet>
<ConditionSet>

<applyMethod>ALL</applyMethod>
<conditions>

<Condition>
<Variable>

<name>callVariable1</name>
<type>SYSTEM</type>

</Variable>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
174

Cisco Finesse Desktop APIs
TeamResource—Get Workflows

<comparator>CONTAINS</comparator>
<value>1234</value>

</Condition>
<Condition>

<Variable>
<name>teamresource.foo.bar[1]</name>

<node>//Dialog/mediaProperties/callvariables/CallVariable/name[.="teamresource.foo.bar[1]"]/../value</node>

<type>CUSTOM</type>
</Variable>
<comparator>IS_NOT_EMPTY</comparator>

</Condition>
</conditions>

</ConditionSet>
<workflowActions>

<WorkflowAction>
<name>Google ring pop</name>
<type>BROWSER_POP</type>
<params>

<Param>
<name>windowName</name>
<value>google</value>

</Param>
<Param>

<name>path</name>

<value>http://www.google.com?a=${CallVariable1}&c=cat&${DNIS}&d=${teamresource.foo.bar[1]}</value>

</Param>
</params>
<actionVariables>

<ActionVariable>
<name>callVariable1</name>
<type>SYSTEM</type>
<testValue>apple</testValue>

</ActionVariable>
<ActionVariable>

<name>teamresource.foo.bar[1]</name>

<node>//Dialog/mediaProperties/callvariables/CallVariable/name[.="teamresource.foo.bar[1]"]/../value</node>

<type>CUSTOM</type>
<testValue>1234</testValue>

</ActionVariable>
</actionVariables>

</WorkflowAction>
<WorkflowAction>

<name>My Delay</name>
<type>DELAY</type>
<params>

<Param>
<name>time</name>
<value>10</value>

</Param>
</params>

</WorkflowAction>
</workflowActions>

</Workflow>
</Workflows>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
175

Cisco Finesse Desktop APIs
TeamResource—Get Workflows

<ApiErrors>
<ApiError>
<ErrorType>Unauthorized</ErrorType>
<ErrorMessage>The team resource is not authorized to perform
this operation</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

TeamResource—Get Layout
Returns the team's desktop layout information of an agent or supervisor requesting it. The users must be part
of a team and must request the layout according to their role (agent or supervisor) in the team.

The layout information is cached in the reverse-proxy and web-proxy and are refreshed at regular time intervals.
If the cached layout information is available users can request for layout information for which they don’t
have permission (given that the user is part of the same team). For example, an agent can request the layout
information of the supervisor role for the same team ID.

Note

https://<FQDN>/finesse/api/TeamResource/<teamID>/Layout?role=agent|supervisor&finesseLayout=false|trueURI:

https://finesse1.xyz.com/finesse/api/TeamResource/1234/Layout?role=agent&finesseLayout=falseExample URI:

Agents and supervisors who are part of a team can use this API.

To get the layout for a team, users must be signed in or provide valid authorization
credentials.

Security
Constraints:

GETHTTP Method:

—Content Type:

text/plainInput Format

JSON—Success Response

XML—Error Response

Output Format:

curl --location --request GET
'https://finesse25.autobot.cvp:8445/finesse/api/TeamResource/5000/Layout/?finesseLayout=false&role=agent'
\
--header 'Authorization: Basic MTAwMTAwMjpjaXNjbw=='

HTTP Request:

200: Success

400: Bad Request (the request body is invalid)

401: Invalid Authorization

500: Internal Server Error

501: Not implemented (if query param finesseLayout is true)

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
176

Cisco Finesse Desktop APIs
TeamResource—Get Layout

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
177

Cisco Finesse Desktop APIs
TeamResource—Get Layout

{
"assets": {
"url": null
},
"configs": [
{

"key": "title",
"value": "Cisco Finesse"

},
{

"key": "enableDropParticipantFor",
"value": "all"

},
{

"key": "dropParticipant",
"value": "all"

}
],
"header": {

"leftAlignedColumns": [
{

"gadget": null,
"component": [
{

"attributes": {
"id": "cd-logo",
"order": "1"
},
"url": "/desktop/scripts/js/logo.js",
"stylesheet": null

}
],
"width": "300px"

}
],

"rightAlignedColumns": [
{

"gadget": null,
"component": [
{

"attributes": {
"id": "broadcastmessagepopover",
"order": "4"

},
"url": "/desktop/scripts/js/teammessage.component.js",
"stylesheet": null

}
],
"width": "50px"
}
]

},
"page": {

"navstype": "overlay",
"contentarea": {

"rows": [
{

"columns": [
{

"gadget": null,
"component": [
{

"attributes": {

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
178

Cisco Finesse Desktop APIs
TeamResource—Get Layout

"id": "alert-banner",
"order": "8"

},
"url": "/desktop/scripts/js/alertmanager.component.js",
"stylesheet": null

}
],
"width": null

}
],
"height": null

}
],
"height": null
},

"navs": [
{

"url": "#/home",
"deferLoad": null,
"label": "finesse.container.tabs.agent.homeLabel",
"icon": "home",
"iconUrl": null,
"contentarea": {

"rows": [
{

"columns": [
{

"gadget": null,
"component": null,
"width": null

}
],
"height": null

}
],

"height": null
},

"navs": null
}
]

},
"footer": null

}

<?xml version="1.0" encoding="UTF-8"?>
<ApiErrors>

<ApiError>
<ErrorData>Authorization user specified is invalid</ErrorData>
<ErrorType>Invalid Authorization User Specified</ErrorType>
<ErrorMessage>HTTP Status code: 401 (Unauthorized)

Api Error Type: Invalid Authorization User Specified
Error Message: The user specified in the authentication credentials and
the uri don't match</ErrorMessage>

</ApiError>
</ApiErrors>

Example
Unauthorized
Error Response

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
179

Cisco Finesse Desktop APIs
TeamResource—Get Layout

<ApiErrors>
<ApiError>

<ErrorType>Invalid role </ErrorType>
<ErrorData>supervisor1</ErrorData>
<ErrorMessage>Exception while validating role</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

TeamResource API Parameters
NotesPossible ValuesDescriptionTypeParameter

——Information about the
reason codes that are
currently associated with
this team.

CollectionReasonCodes

—NOT_READY,
LOGOUT, ALL

The category of the reason
code.

String-->category

——The full URI for the reason
code.

String-->uri

——Numeric code associated
with this reason code.

Integer-->code

—true, falseWhether the reason code is
global (true) or non-global
(false).

Boolean-->forAll

true, falseThe reserved status of the
reason code

Boolean-->systemCode

——The label associated with
this reason code.

String-->label

——Information about the
wrap-up reasons currently
associated with this team.

StringWrapUpReasons

——The URI to get a new copy
of the WrapUpReason
object.

String-->uri

Maximum of 39
bytes (which is
equal to 39 US
English
characters).

The label must be
unique.

—The UI label for the
wrap-up reason.

String-->label

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
180

Cisco Finesse Desktop APIs
TeamResource API Parameters

NotesPossible ValuesDescriptionTypeParameter

true, falseWhether the wrap-up
reason is global (true) or
non-global (false).

Boolean-->forAll

——Information about the
media properties layouts
that are currently associated
with this team.

CollectionMediaPropertiesLayouts

——Information about the
phone books currently
associated with this team.

CollectionPhoneBooks

——The name of the phone
book.

Stringname

—GLOBAL, TEAMThe type of phone book.Stringtype

For more
information on
Workflow
parameters, see
Workflow API
Parameters, on
page 326.

—Information about the
workflows that are
currently associated with
this team.

CollectionWorkflows

——Team ID for which layout
is requested.

Stringteamid

——Agent or Supervisor for
which layout is requested.

Stringrole

For now, the
default value is
false. If true, the
api returns 501
HTTP Status code.

true, falseLayout information of the
requested user.

BooleanfineseLayout

TeamResource API Errors
DescriptionError TypeStatus

The request is malformed or incomplete or the
extension that is provided is invalid.

Bad Request400

An unaccounted error occurred. The root cause could
not be determined.

Generic Error400

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
181

Cisco Finesse Desktop APIs
TeamResource API Errors

DescriptionError TypeStatus

One of the parameters provided as part of the input is
invalid or not recognized (for example, the state for a
team)

Invalid Input400

The requested state change is not allowed (for
example, a team in LOGOUT state requests a state
change to LOGOUT or a supervisor tries to change
an agent's state to something other than READY or
LOGOUT).

Invalid State400

The extension, state, or requestedAction is not
provided.

Parameter Missing400

Unauthorized (for example, the team is not yet
authenticated in the Web Session).

Authorization Failure401

The authenticated team tried to make a request for
another team.

Invalid Authorization401

Team tried to change to the state that is not supported
in the scenario.

Invalid State401

The team that is specified is invalid or does not exist.Not Found404

The team details provided is invalid or is not
recognized. No such team exists in CTI.

TeamId Not Found404

The range that is specified is invalid or does not exist.
For example, the maximum number of contacts cannot
exceed 6000.

Range Not Satisfiable416

Any run-time exception is caught and responded with
this error.

Internal Server Error500

The dependent service is down (for example, the Cisco
Finesse Notification Service or Cisco Finesse
Database). Finesse is OUT_OF_SERVICE.

Service Unavailable503

Get Script Selectors
This API allows you to get all the available script selectors. You can get the script selectors based on theMRD
type (mrdType). The "mrdType" can be voice, digitalchannel, or all. If you do not specify any "mrdType",
the all option is considered.

https://<FQDN>/finesse/api/ScriptSelectors?mrdType=<parameter>URI:

https://finesse1.xyz.com/finesse/api/ScriptSelectors?mrdType=allExample URI:

Administrators, agents, and supervisors can use this API.Security Constraints:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
182

Cisco Finesse Desktop APIs
Get Script Selectors

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Unauthorized

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
183

Cisco Finesse Desktop APIs
Get Script Selectors

Example HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
184

Cisco Finesse Desktop APIs
Get Script Selectors

mrdType is all

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ScriptSelectors>
<ScriptSelector>
<MrdID>1</MrdID>
<Name>CVP_VRU_RC1.7000200000</Name>
<DialedNumber>7000200000</DialedNumber>
<Description>SIP, Direct, CVPCS20A Dialed Number</Description>

</ScriptSelector>
<ScriptSelector>
<MrdID>1</MrdID>
<Name>CVP_VRU_RC1.7000202001</Name>
<DialedNumber>7000202001</DialedNumber>

</ScriptSelector>
...
<ScriptSelector>
<MrdID>1</MrdID>
<Name>MR_PIM1_Voice.PersonalCallback</Name>
<DialedNumber>PersonalCallback</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>5000</MrdID>
<Name>MR_PIM1_Voice.mark_test_dn</Name>
<DialedNumber>mark_test_dn</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>5000</MrdID>
<Name>mrsim.mark_test_dn</Name>
<DialedNumber>mark_test_dn</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>5003</MrdID>
<Name>MR_PIM1_Voice.uq_script_dn</Name>
<DialedNumber>uq_script_dn</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>5003</MrdID>
<Name>mrsim.uq_script_dn</Name>
<DialedNumber>uq_script_dn</DialedNumber>

</ScriptSelector>
</ScriptSelectors>

mrdType is voice

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ScriptSelectors>
<ScriptSelector>
<MrdID>1</MrdID>
<Name>CVP_VRU_RC1.7000200000</Name>
<DialedNumber>7000200000</DialedNumber>
<Description>SIP, Direct, CVPCS20A Dialed Number</Description>

</ScriptSelector>
<ScriptSelector>
<MrdID>1</MrdID>
<Name>CVP_VRU_RC1.7000202001</Name>
<DialedNumber>7000202001</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>1</MrdID>
<Name>CVP_VRU_RC1.7000202002</Name>
<DialedNumber>7000202002</DialedNumber>

</ScriptSelector>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
185

Cisco Finesse Desktop APIs
Get Script Selectors

...
</ScriptSelector>
<ScriptSelector>
<MrdID>1</MrdID>
<Name>UCM_RC.218022</Name>
<DialedNumber>218022</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>1</MrdID>
<Name>MR_PIM1_Voice.PersonalCallback</Name>
<DialedNumber>PersonalCallback</DialedNumber>

</ScriptSelector>
</ScriptSelectors>

mrdType is digitalChannels

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ScriptSelectors>
<ScriptSelector>
<MrdID>5000</MrdID>
<Name>MR_PIM1_Voice.mark_test_dn</Name>
<DialedNumber>mark_test_dn</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>5000</MrdID>
<Name>mrsim.mark_test_dn</Name>
<DialedNumber>mark_test_dn</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>5003</MrdID>
<Name>MR_PIM1_Voice.uq_script_dn</Name>
<DialedNumber>uq_script_dn</DialedNumber>

</ScriptSelector>
<ScriptSelector>
<MrdID>5003</MrdID>
<Name>mrsim.uq_script_dn</Name>
<DialedNumber>uq_script_dn</DialedNumber>

</ScriptSelector>
</ScriptSelectors>

<ApiErrors>
<ApiError>

<ErrorType>Unauthorized</ErrorType>
<ErrorMessage>Not authorized to access this

resource.</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Table 9: Field Details

DescriptionField

A unique media routing domain (MRD) ID to map with digital
routing media channels.

MrdID

The name of the media channel configured in Unified CCE.Name

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
186

Cisco Finesse Desktop APIs
Get Script Selectors

DescriptionField

Dialed numbers, also called as script selectors, are the strings or
numbers submitted with Task Routing task requests through
Customer Collaboration Platform. Each dialed number is
associated with a call type, and determines which routing script
the Unified CCE uses to route the request to an agent.

DialedNumber

Additional information about the dialed number.Description

ClientLog
The ClientLog object is a container element that holds client log data to post to the Finesse server. This object
supports a POST operation only.

The ClientLog object is structured as follows:
<ClientLog>

<logData>
...client logs...

</logData>
</ClientLog>

ClientLog APIs

ClientLog—Post to Finesse
This API is backward compatible with earlier versions of Finesse, it allows a user to submit client-side logs
to the Finesse server. Cisco Finesse Release 12.5(1) onwards, use the CompressedClientLog—Post Compressed
Log to Finesse, on page 188

https://<FQDN>/finesse/api/User/<id>/ClientLogURI:

https://finesse1.xyz.com/finesse/api/User/1234/ClientLogExample URI:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<ClientLog>
<logData>

xxxxxxxxxxxxxxx\n
xxxxxxxxxxxxxxx\n

</logData>
</ClientLog>

HTTP Request:

id (required): The ID of the user

logData (required): The log data that the client sends to the server

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
187

Cisco Finesse Desktop APIs
ClientLog

202: Successfully Accepted

This response only indicates a successful completion of the request.
The request is processed and the actual response is sent as part of a
CLIENT_LOG_EVENT that contains empty data elements and a
matching requestId.

Note

400: Parameter Missing

400: Invalid Input

400: Operation Failure

401: Authorization Failure

401: Invalid Authorization User Specified

405: Method Not Available

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>User Not Found</ErrorType>
<ErrorMessage>UNKNOWN_USER</ErrorMessage>
<ErrorData>4023</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

CompressedClientLog—Post Compressed Log to Finesse
This API allows a user to submit compressed logs to the Cisco Finesse server. The server saves the compressed
data in a zip file format.

https://<FQDN>/finesse/api/User/<id>/CompressedClientLogURI:

https://finesse1.xyz.com/finesse/api/ User/1234/CompressedClientLogExample URI:

POSTHTTP Method:

multipart/form-data

When you send zip files, select Content Type as form-data.Note

Content Type:

Binary/XMLInput/Output
Format:

HTTP Clients have to construct HTTP multipart requests to upload a zip file. The
zip file size cannot exceed 1 megabyte.

HTTP Request:

201: Created

400: Bad Request

401: Authorization Failure

HTTP Response:

—Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
188

Cisco Finesse Desktop APIs
CompressedClientLog—Post Compressed Log to Finesse

400 (BAD REQUEST)
<ApiErrors>

<ApiError>
<ErrorType>Invalid Input</ErrorType>
<ErrorData>LOG_DATA</ErrorData>
<ErrorMessage>Compressed File Size exceeds max allowed

size</ErrorMessage>
</ApiError>

</ApiErrors>

401(Unauthorized)
<ApiErrors>

<ApiError>
<ErrorType>Unauthorized</ErrorType>
<ErrorMessage>Unauthorized to scheduled client log

collection.</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

ClientLog API Parameters
NotesPossible ValuesDescriptionTypeParameter

Maximum of 12
characters.

The user must be
configured in Unified
CCE or Unified
CCX.

—The ID of the user.

The ClientLogAPI uses the
id in the name of the log file
created on the Finesse
server.

Stringid

Must not exceed
1,048,576 characters.

The user must be
authorized to perform
the POST operation.

—The log data that the client
sends to the Finesse server
to be stored as a log file.

StringlogData

ClientLog API Errors
DescriptionError TypeStatus

The logData parameter is not present.Parameter Missing400

The size of the logData exceeds 1,048,576 characters.Invalid Input400

The POST client log operation failed.Operation Failure400

The user is not yet authenticated in the Web Session.Authorization Failure401

The authenticated user tried to make a request for
another user.

Invalid Authorization User
Specified

401

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
189

Cisco Finesse Desktop APIs
ClientLog API Parameters

DescriptionError TypeStatus

GET or PUTHTTPmethod not allowed for client-side
log collection.

Method Not Allowed405

Task Routing APIs
Task Routing APIs provide a standard way to request, queue, route, and handle third-party multichannel tasks
in CCE.

Contact Center customers or partners can develop applications using Customer Collaboration Platform and
Finesse APIs in order to use Task Routing. The Customer Collaboration Platform Task API enables applications
to submit nonvoice task requests to CCE. The Finesse APIs enable agents to sign into different types of media
and handle the tasks. Agents sign into and manage their state in each media independently.

Cisco partners can use the sample code available on Cisco DevNet as a guide for building these applications
(https://developer.cisco.com/site/task-routing/).

For Finesse, the APIs used for Task Routing include the Media APIs and some of the Dialog and User APIs.

This API is only supported for a stand-alone Finesse deployment with Unified CCE and not applicable for
coresident Finesse deployment with Unified CCX.

Note

Media
TheMedia object represents a user's state in a Media Routing Domain (MRD). TheMedia object is structured
as follows:
<Media>

<uri>/finesse/api/User/1001004/Media/5000</uri>
<description>Chat MRD</description>
<dialogLogoutAction>CLOSE</dialogLogoutAction>
<id>5000</id>
<interruptible>true</interruptible>
<maxDialogLimit>10</maxDialogLimit>
<name>Cisco_Chat_MRD</name>
<ReasonCode>

<category>NOT_READY</category>
<code>10</code>
<forAll>true</forAll/>
<id>16</id>
<label>Team Meeting</label>
<uri>/finesse/api/ReasonCode/16</uri>

</ReasonCode>
<reasonCodeId>16</reasonCodeId>
<routable>true</routable>
<state>NOT_READY</state>
<stateChangeTime>2015-09-11T06:55:14.782Z</stateChangeTime>

</Media>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
190

Cisco Finesse Desktop APIs
Task Routing APIs

https://developer.cisco.com/site/task-routing/

Media APIs

Media—Sign In

The Media—Sign In API allows a user to sign in to an individual non-voice Media Routing Domain (MRD)
on CCE. If the response is successful, the user is signed in to Finesse and is automatically placed in
NOT_READY state and made routable for that MRD. Routablemeans that CCE is allowed to assign an agent
tasks in the MRD.

If five consecutive sign-ins fail due to an incorrect password, Finesse blocks access to the user account for a
period of 5 minutes.

If a user is already signed in and attempts to sign in again, the user receives an error.

Some parameters used in this API are only known to the Finesse side on which the user signed in. If the user
switches sides, the user must sign in again to have this functionality work correctly.

Finesse does not support a user staying signed in to both Finesse servers at the same time, through either the
REST API or XMPP subscriptions.

The user XMPP presence determines which side a user is signed into, in order to perform actions on the user's
behalf. These actions include transferring nonvoice dialogs automatically and either accepting or ignoring
interrupts. Finesse transfers nonvoice dialogs automatically if an agent does not accept a dialog within the
StartTimeout threshold for the MRD, and if the agent is set to transfer dialogs on sign out in the MRD.

Important

https://<FQDN>/finesse/api/User/<id>/Media/<mrdId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/Media/5001Example URI:

Users can only act on their own Media objects.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Media>
<maxDialogLimit>10</maxDialogLimit>
<state>LOGIN</state>
<interruptAction>ACCEPT</interruptAction>
<dialogLogoutAction>CLOSE</dialogLogoutAction>

</Media>

HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
191

Cisco Finesse Desktop APIs
Media APIs

id (required): The ID of the user

mrdId (required): The ID of the MRD

maxDialogLimit (required): The maximum number of concurrent dialogs this user
is allowed to handle in the MRD. Each dialog represents a task.

state (required): The new state that the user wants to be in (LOGIN)

interruptAction (required): Defines the behavior when an agent is handling a task
in an interruptibleMRD and is interrupted by a task or call from a non-interruptible
MRD. Finesse can ACCEPT the interrupt; the agent is put into INTERRUPTED
state and cannot work on dialogs in the interrupted MRD. Finesse can IGNORE
the interrupt; the agent's state does not change and the agent can continue to work
on the dialogs in the MRD.

dialogLogoutAction(optional): Determines whether to TRANSFER or CLOSE
active tasks when an agent logs out of the MRD. If not specified, this parameter is
set to CLOSE.

Request Parameters:

requestId: A user provided unique string used to correlate originating request with
the resulting HTTP response or asynchronous error. This parameter is not part of
the resulting event/events.

Header Parameters:

202: Successfully Accepted

The requestId is included in the response header if provided.

This response only indicates successful completion of the request.
The request is processed and the actual response is sent as part of a
media notification.

Note

400: Bad Request (for example, malformed or incomplete request)

400: Parameter Missing

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID or mrdId is not known)

503: Service Unavailable (for example, the Notification Service is not running)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>1</ErrorData>
<ErrorMedia>5001</ErrorMedia>

<ErrorMessage>E_ARM_STAT_AGENT_ALREADY_LOGGED_IN</ErrorMessage>

<ErrorType>Agent already logged into MRD</ErrorType>
</ApiError>

</ApiErrors>

Example Failure
Response:

Media notificationNotifications
Triggered:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
192

Cisco Finesse Desktop APIs
Media—Sign In

Asynchronous Errors

If an error occurs after the initial validation is complete, an error notification is sent over XMPP to the Media
notification. The requestId is included in the response XML. The ErrorMedia parameter in the ApiError
information indicates the Media Routing Domain to which the error applies.

Media—Change State or Sign Out

This API allows a user to change state in or sign out of an individual nonvoice Media Routing Domain.

See Agent States for NonvoiceMedia, on page 201 for information about the agent states you can set with this
API.

Users can sign out with active tasks. The user's tasks are either automatically transferred or closed, depending
on the way the MRD was configured when the user signed in through the Media - Sign In API. To transfer
tasks, Finesse resubmits the tasks into the system as new tasks.

https://<FQDN>/finesse/api/User/<id>/Media/<mrdId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/Media/5001Example URI:

Agents and supervisors can use this API.

Users can only act on their own Media objects.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Media>
<state>LOGOUT</state>

</Media>

HTTP Request:

id (required): The ID of the user

mrdId (required): The ID of the MRD

state (required): The new state that the user wants to be in (READY, NOT_READY,
LOGIN, or LOGOUT)

Request Parameters:

requestId: A user provided unique string used to correlate originating request with
the resulting HTTP response or asynchronous error. This parameter is not part of
the resulting event/events.

Header Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
193

Cisco Finesse Desktop APIs
Media—Change State or Sign Out

202: Successfully Accepted

The requestId is included in the response header if provided.

This response only indicates successful completion of the request.
The request is processed and the actual response is sent as part of a
media notification.

Note

400: Bad Request (for example, malformed or incomplete request)

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID or mrdId is not known)

503: Service Unavailable (for example, the Notification Service is not running)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>6</ErrorData>
<ErrorMedia>5001</ErrorMedia>
<ErrorMessage>E_ARM_STAT_AGENT_NOT_LOGGED_IN</ErrorMessage>

<ErrorType>Agent is not logged in</ErrorType>
</ApiError>

</ApiErrors>

Example Failure
Response:

Media notification

The system ignores requests to change agent state from READY to
READY; these requests do not trigger a notification.

Note

Notifications
Triggered:

Asynchronous Errors

If an error occurs after the initial validation is complete, an error notification is sent over XMPP to the Media
notification. The requestId is included in the response XML. The ErrorMedia parameter in the ApiError
information indicates the Media Routing Domain to which the error applies.

Media—Change Agent State with Reason Code

This API allows a user to change the agent state in an individual non-voice Media Routing Domain, and pass
along the code value of a corresponding reason code. Users can use this API only when changing state to
NOT_READY or LOGOUT.

https://<FQDN>/finesse/api/User/<id>/Media/<mrdId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/Media/5001Example URI:

Agents and supervisors can use this API.

Users can only act on their own Media objects.

Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
194

Cisco Finesse Desktop APIs
Media—Change Agent State with Reason Code

<Media>
<state>NOT_READY</state>
<reasonCodeId>1001</reaasonCodeId>

</Media>

HTTP Request:

id (required): The ID of the user

mrdId (required): The ID of the Media Routing Domain

reasonCodeId (required if reason codes are configured for the given state): The
database ID for the reason code

state (required): The new state that the user wants to be in (NOT_READY or
LOGOUT)

Request Parameters:

requestId: A user provided unique string used to correlate originating request with
the resulting HTTP response or asynchronous error. This parameter is not part of
the resulting event/events.

Header Parameters:

202: Successfully Accepted

The requestId is included in the response header if provided.

This response only indicates successful completion of the request.
The request is processed and the actual response is sent as part of a
media notification.

Note

400: Bad Request (for example, malformed or incomplete request)

400: Parameter Missing

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID or mrdId is not known)

503: Service Unavailable (for example, the Notification Service is not running)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>1</ErrorData>
<ErrorMedia>5001</ErrorMedia>

<ErrorMessage>E_ARM_STAT_AGENT_ALREADY_LOGGED_IN</ErrorMessage>

<ErrorType>Agent already logged into MRD</ErrorType>
</ApiError>

</ApiErrors>

Example Failure
Response:

Media notificationNotifications
Triggered:

Asynchronous Errors

If an error occurs after the initial validation is complete, an error notification is sent over XMPP to the Media
notification. The requestId is included in the response XML. The ErrorMedia parameter in the ApiError
information indicates the Media Routing Domain to which the error applies.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
195

Cisco Finesse Desktop APIs
Media—Change Agent State with Reason Code

Media—Change Agent to Routable/Not Routable

The Media—Change Agent to Routable/Not Routable API allows a user to set an agent's routable mode in a
Media Routing Domain. Routable mode determines whether CCE can route tasks to an agent in a Media
Routing Domain.

When the routable parameter is set to true, the agent is routable. CCE can assign task to the agent in that
MRD.

When the routable parameter is set to false, the agent is not routable. CCE cannot assign tasks to the agent
in that MRD.

Make the agent not routable to stop sending tasks to the agent without changing the agent's state to
NOT_READY. If an agent changes to NOT_READY state while still working on tasks, those tasks appear
ended in CCE reports; time spent working on the tasks after going Not Ready is not counted. You may want
to make the agent not routable near the end of the agent's shift, to allow the agent to finish final tasks without
being assigned more tasks and to report accurately on those final tasks.

In a RONA situation, in which a task is resubmitted because an agent does not accept a task within the MRD's
Start Timeout threshold, Finesse automatically makes the agent not routable.

If a user sets the agent's mode to not routable when an agent has pending incoming tasks or has not started an
accepted task, the agent's mode does not change until the agent has started these tasks.

The agent's mode is set to routable automatically when the agent signs in, and when the agent changes to
READY state.

https://<FQDN>/finesse/api/User/<id>/Media/<mrdId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/Media/5001Example URI:

Users can only act on their own Media objects.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Media>
<routable>true</routable>

</Media>

HTTP Request:

id (required): The ID of the user

mrdId (required): The ID of the MRD

routable(required): Indicates whether CCE can route tasks to the user in the MRD.

Request Parameters:

requestId: A user provided unique string used to correlate originating request with
the resulting HTTP response or asynchronous error. This parameter is not part of
the resulting event/events.

Header Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
196

Cisco Finesse Desktop APIs
Media—Change Agent to Routable/Not Routable

202: Successfully Accepted

The requestId is included in the response header if provided.

This response only indicates successful completion of the request.
The request is processed and the actual response is sent as part of a
media notification.

Note

400: Bad Request (for example, invalid input for parameters)

400: Parameter Missing

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID or mrdId is not known)

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>1</ErrorData>
<ErrorMedia>5001</ErrorMedia>

<ErrorMessage>E_ARM_STAT_ALREADY_IN_REQUESTED_AGENT_MODE</ErrorMessage>

<ErrorType>Agent already in requested mode</ErrorType>
</ApiError>

</ApiErrors>

Example Failure
Response:

Media notificationNotifications
Triggered:

Asynchronous Errors

If an error occurs after the initial validation is complete, an error notification is sent over XMPP to the Media
notification. The requestId is included in the response XML. The ErrorMedia parameter in the ApiError
information indicates the Media Routing Domain to which the error applies.

Media—Change Agent from Work State to Active

This API allows a user to change the agent state from WORK state to active (READY or NOT_READY),
which is automatically computed by Unified CCE. Users can only use this API when an agent state is WORK.

For more information on preventing non-voice task RONAs during CTI reconnect, see CTI Failover section
in Cisco Finesse Administration Guide at https://www.cisco.com/c/en/us/support/customer-collaboration/
finesse/products-maintenance-guides-list.html.

https://<FQDN>/finesse/api/User/<id>/Media/<mrdId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/Media/5001Example URI:

Agents and supervisors can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
197

Cisco Finesse Desktop APIs
Media—Change Agent from Work State to Active

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

<Media>
<mediaConnected>true</mediaConnected>

</Media>

HTTP Request:

id (required): The ID of the user

mrdId (required): The ID of the MRD

mediaConnected (required): Indicates media connection to Finesse server.

The mediaConnected value can only be set to true and is only intended
to be used post initialization of the non-voice channel if the agent is
found to be in WORK mode.

Note

Request Parameters:

requestId: User provides a unique string that is used to correlate the originating
request with the resulting HTTP response or asynchronous error. This parameter
is not part of the resulting event or the events.

Header Parameters:

202: Successfully Accepted

The requestId is included in the response header, if provided.

This response only indicates the successful completion of the request.
The request is processed and the actual response is sent as part of a
media notification.

Note

400: Bad Request (for example, malformed or incomplete request)

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID or mrdId is not known)

503: Service Unavailable (for example, the Notification Service is not running)

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>finesse.api.media.not_configured</ErrorType>
<ErrorData>finesse.api.not_found</ErrorData>

<ErrorMessage>MediaDomain Information Does Not Exists in Finesse
for Id: 500</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Asynchronous Errors

If an error occurs after the initial validation is complete, an error notification is sent over XMPP to the Media
notification. The requestId is included in the response XML. The ErrorMedia parameter in the ApiError
information indicates the Media Routing Domain to which the error applies.

Media—Get Media

This API allows a user to get a copy of a Media object for a specified agent. This API can be used to return
only nonvoice Media objects.

https://<FQDN>/finesse/api/User/<id>/Media/<mrdId>URI:

https://finesse1.xyz.com/finesse/api/User/1234/Media/5001Example URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
198

Cisco Finesse Desktop APIs
Media—Get Media

Users can only act on their own Media objects.Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

id (required): The ID of the user

mrdId (required): The ID of the Media Routing Domain

Request Parameters:

200: Success

400: Bad Request (for example, malformed or incomplete request)

400: Parameter Missing

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID or mrdId is not known)

HTTP Response:

Response if the agent is assigned to skill groups in the Media Routing Domain:

<Media>
<uri>/finesse/api/User/1001004/Media/5000</uri>
<description>Chat MRD</description>
<dialogLogoutAction>CLOSE</dialogLogoutAction>
<id>5000</id>
<interruptible>false</interruptible>
<maxDialogLimit>10</maxDialogLimit>
<name>Cisco_Chat_MRD</name>
<ReasonCode>

<category>NOT_READY</category>
<code>10</code>
<forAll>true</forAll/>
<id>16</id>
<label>Team Meeting</label>
<uri>/finesse/api/ReasonCode/16</uri>

</ReasonCode>
<reasonCodeId>16</reasonCodeId>
<routable>true</routable>
<state>NOT_READY</state>
<stateChangeTime>2015-09-11T06:55:14.782Z</stateChangeTime>
<interruptAction>IGNORE</interruptAction>

</Media>

Response if the agent is not assigned to skill groups in the Media Routing
Domain:

<Media>
<uri>/finesse/api/User/1001004/Media/5002</uri>
<description>Chat MRD</description>
<id>5002</id>
<interruptible>false</interruptible>
<name>Cisco_Chat_MRD2</name>

</Media>

Example HTTP
Response

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
199

Cisco Finesse Desktop APIs
Media—Get Media

<ApiErrors>
<ApiError>
<ErrorData>1002001</ErrorData>
<ErrorMessage>The user specified in the authentication
credentials and the uri don't match</ErrorMessage>
<ErrorType>Invalid Authorization User Specified</ErrorType>

</ApiError>
</ApiErrors>

Example Failure
Response:

Media—Get List

This API allows a user to get a list of Media objects for all nonvoice Media Routing Domains (MRDs)
associated with an agent. The media object also includes the agent's state information for that MRD.

The agent association with an MRD is determined via membership in skill groups associated with the MRD.

https://<FQDN>/finesse/api/User/<id>/MediaURI:

https://finesse1.xyz.com/finesse/api/User/1234/MediaExample URI:

Users can only act on their own Media objects.Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

id (required): The ID of the userRequest Parameters:

200: Success

400: Bad Request (for example, malformed or incomplete request)

400: Parameter Missing

401: Unauthorized (for example, the user is not authenticated in the Web Session)

404: Not Found (for example, the user ID is not known)

HTTP Response:

<MediaList>
<Media>

...Full Media Object ...
</Media>
<Media>

...Full Media Object ...
</Media>

</MediaList>

Example HTTP
Response

<ApiErrors>
<ApiError>

<ErrorData>1002001</ErrorData>
<ErrorMessage>The user specified in the authentication
credentials and the uri don't match</ErrorMessage>
<ErrorType>Invalid Authorization User Specified</ErrorType>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
200

Cisco Finesse Desktop APIs
Media—Get List

MediaDomain—Get List
This API allows a user to get a list of all Media Domain objects configured on Unified CCE.

https://<FQDN>/finesse/api/MediaDomainURI:

https://finesse1.xyz.com/finesse/api/MediaDomainExample URI:

Only administrators can use this APISecurity Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

500: Internal Server Error

HTTP Response:

<MediaDomainList>
<MediaDomain>
<description>Default Media Routing Domain for

Cisco_Voice</description>
<id>1</id>
<interruptible>false</interruptible>
<maxDialogDuration>0</maxDialogDuration>
<name>Cisco_Voice</name>
</MediaDomain>
<MediaDomain>
<description />
<id>5000</id>
<interruptible>true</interruptible>
<maxDialogDuration>28800</maxDialogDuration>
<name>Cisco_Chat_MRD</name>
</MediaDomain>
<MediaDomain>
<description />
<id>5003</id>
<interruptible>false</interruptible>
<maxDialogDuration>60</maxDialogDuration>
<name>Cisco_Twitter_MRD</name>
</MediaDomain>
</MediaDomainList>

Example HTTP
Response

<ApiErrors>
<ApiError>
<ErrorType>Internal Server Error</ErrorType>
<ErrorMessage>Runtime Exception</ErrorMessage>
<ErrorData></ErrorData>
</ApiError>
</ApiErrors>

Example Failure
Response:

Agent States for Nonvoice Media
Users can set the following states with the Media APIs:

• LOGIN

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
201

Cisco Finesse Desktop APIs
MediaDomain—Get List

• READY

• NOT_READY

• LOGOUT

Users enter the following states automatically while on a task. Users cannot place themselves in these states.
For example, agents enter ACTIVE state when they accept a task.

• RESERVED

• ACTIVE

• PAUSED

• INTERRUPTED

• WORK_READY

The agent entersWORK_NOT_READY state automatically if the Finesse server on which the agent is signed
in disconnects. When agent signs in again or Finesse side reconnects to CCE, the agent is moved out of the
WORK_NOT_READY state. This state cannot be set from the agent desktop.

If an agent is configured to work on a maximum of one task in an MRD, the agent's state in the MRD reflects
the agent's activity on that task. However, an agent can be configured to work on several tasks at once in an
MRD. The following state hierarchy determines the agent's state in that MRD:

1. LOGIN/LOGOUT

2. READY/NOT_READY

3. INTERRUPTED

4. ACTIVE

5. WORK_READY

6. PAUSED

7. RESERVED

Consider this state hierarchy example. An agent is handling three tasks in an interruptible MRD:

• Task 1 = PAUSED

• Task 2 = WORK_READY

• Task 3 = ACTIVE

Based on the state hierarchy, the agent's overall state in the MRD is ACTIVE. If a task from another MRD
then interrupts this MRD, the agent's state in this MRD changes to INTERRUPTED.

The table describes the agent states for nonvoice MRDs.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
202

Cisco Finesse Desktop APIs
Agent States for Nonvoice Media

Allowed ActionsState InformationState

None; the user transitions to
NOT_READY automatically

The agent's state immediately after signing in. No
tasks are assigned to an agent while in this state.

The LOGIN state is a transitive state; LOGIN
triggers a change that results in a new state
(NOT_READY).

LOGIN

• READY

• LOGOUT

The agent won't be assigned tasks.

The agent enters NOT_READY state automatically
after signing in.

For accurate task durations in reports, do not change
agents to NOT_READY state while they have active
tasks. Instead, make the agent not routable to stop
assigning tasks to the agent.

An agent cannot change to NOT_READY state if
the agent has a pending incoming task. The agent
has a pending task if Finesse has an offered dialog
for that agent.

NOT_READY

• NOT_READY

• LOGOUT

The agent will be assigned tasks. The agent
currently doesn't have any tasks.

The agent is automatically made routable when the
agent enters READY state.

When an agent completes all tasks in the MRD, the
agent's state returns to the READY.

READY

• NOT_READY

• LOGOUT

The agent has been interrupted in this MRD by a
task from another MRD.

An agent can be interrupted from ACTIVE,
WORK_READY, PAUSED, and RESERVED
states.

The agent cannot perform dialog actions while
INTERRUPTED.

This state is only applicable for interruptibleMRDs
in which the agent was configured to accept
interrupts when signing into the MRD.

INTERRUPTED

• NOT_READY

• LOGOUT

The agent has accepted at least one offered task.
The agent can also have one or more of the
following:

• Paused tasks

• Offered tasks

• Tasks for which the agent is performing
wrap-up work

ACTIVE

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
203

Cisco Finesse Desktop APIs
Agent States for Nonvoice Media

Allowed ActionsState InformationState

• NOT_READY

• LOGOUT

The agent is performing wrap-up work for all tasks,
or is performing wrap-up work for at least one task
and has one or more paused tasks.

WORK_READY

• NOT_READY

• LOGOUT

The agent has paused all tasks.PAUSED

• NOT_READY

• LOGOUT

The agent has been assigned one or more tasks by
CCE, but has not accepted the tasks. The agent does
not have active or paused tasks, and is not
performing wrap-up work for any tasks.

RESERVED

LOGINThe agent signed out of the MRD.

If the agent signs out with active tasks, Finesse
either closes or transfers the tasks depending on
how the dialogLogoutAction parameter was set for
the MRD when the agent signed in.

LOGOUT

NoneThe Finesse server on which the agent is signed in
disconnected.

When an agent fails over to the secondary Finesse
server, the agent must sign in to the media again.
The agent's state after signing in is determined based
on the state of the agent's assigned tasks. If the agent
doesn't have tasks, the agent is put in NOT_READY
state.

WORK_NOT_READY

Media API Parameters

For parameters specified when a user signs in, including maxDialogLimit, interruptAction, and
dialogLogoutAction, the setting for the parameter is correct only when the user is signed in.

Note

NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy of the
Media object.

Stringuri

Any special XML
characters in the
description are
escaped. For
example, "<" is
replaced with
"&lt;".

—A description of theMedia Routing
Domain (MRD)

Stringdescription

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
204

Cisco Finesse Desktop APIs
Media API Parameters

NotesPossible ValuesDescriptionTypeParameter

——The ID of the user.Stringid

The size is
determined by
Unified CCE.

—The ID of the MRD.StringmrdId

Unified CCE only.trueIndicates media connection to
Finesse server.

BooleanmediaConnected

—true, falseWhether a task in this MRD can be
interrupted by a task from another
MRD.

Booleaninterruptible

The maximum value
for this parameter is
10.

1–10The maximum number of
concurrent dialogs this user is
allowed to handle in this MRD.
Each dialog represents a task.

IntegermaxDialogLimit

——The name of the MRD.Stringname

——The earlier sentence was A user
provided unique string used to
correlate originating request with
the resulting HTTP response or
asynchronous error. This parameter
isn’t part of the resulting
event/events.

StringrequestId

——Information about the reason code
currently associated with this user.

CollectionReasonCode

—NOT_READYThe category of the reason code.String-->category

——CTI code associated with this
reason code.

Integer-->code

—true, falseWhether the reason code is global
(true) or nonglobal (false).

Boolean-->forAll

——The ID of the reason code.Integer-->id

——The label associated with this
reason code.

String-->label

——The full URI for the reason code.String-->uri

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
205

Cisco Finesse Desktop APIs
Media API Parameters

NotesPossible ValuesDescriptionTypeParameter

The value of the
reasonCodeId may
be -1 in the following
cases:

• The agent
logged out.

• No reason
codes are
configured for
the category.

• The agent has
signed in
(transitioned
from LOGIN to
NOT_READY)

• A failover
occurred. The
agent is in
NOT_READY
state but
Finesse couldn’t
recover the
reasonCode
used before
failover.

If the user hasn’t
selected the
reason code, this
parameter is
empty. Otherwise,
the value of this
parameter is the
database ID for
the selected
reason code.

The database ID for the reason
code that indicates why the user is
in the current state in this MRD.

IntegerreasonCodeId

—true, falseIndicates whether CCE can route
the tasks to the user in this MRD.
When the agent is routable (true),
CCE can route tasks to the user.
When the agent isn’t routable
(false), CCE can’t route tasks to the
agent.

Booleanroutable

—LOGIN,
NOT_READY,
READY,
LOGOUT,
RESERVED,
ACTIVE,
PAUSED,
WORK_READY,
INTERRUPTED,
WORK_NOT_READY

The state for this user in thisMRD.Stringstate

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
206

Cisco Finesse Desktop APIs
Media API Parameters

NotesPossible ValuesDescriptionTypeParameter

This parameter is
empty if the time of
the state change isn’t
available (if no agent
state change
notification was
received yet).

—The time at which the state of the
user changed to the current state in
this MRD. The format for this
parameter is
YYYY-MM-DDThh:MM:ss.
SSSZ.

StringstateChangeTime

This parameter
reflects the
configured setting
only if you’re
performing aGET on
the Finesse server
that the user is signed
in to.

ACCEPT,
IGNORE

This parameter only applies to
interruptible MRDs. It is ignored
for noninterruptible MRDs.

An agent setting that defines the
behavior when an agent is handling
a task in an interruptible MRD and
is interrupted by a task or call from
a non-interruptible MRD.

ACCEPT: The MRD accepts the
interrupt event. The agent state is
INTERRUPTED in the
interruptible MRD and the agent
can’t perform any actions on
dialogs in that MRD.

IGNORE:TheMRDdoesn’t accept
the interrupt event. The agent state
doesn’t change in the interruptible
MRD and the agent can continue
to perform actions on dialogs in
that MRD.

StringinterruptAction

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
207

Cisco Finesse Desktop APIs
Media API Parameters

NotesPossible ValuesDescriptionTypeParameter

This parameter
reflects the
configured setting
only if you’re
performing aGET on
the Finesse server
that the user is signed
in to.

CLOSE,
TRANSFER

An agent setting that determines
whether active tasks are closed or
transferred when an agent logs out
of an MRD.

CLOSE (default): Active tasks are
closed when an agent logs out.
Finesse sends Customer
Collaboration Platform the
task-handled events. CCE
determines the correct disposition
codes for the closed task.

TRANSFER: Active tasks are
transferred using Customer
Collaboration Platform when an
agent logs out. Finesse puts the
dialogs in the CLOSED state with
theCD_TASK_TRANSFERRED_
AGENT_LOGOUT disposition
code.

StringdialogLogoutAction

Media API Errors
For synchronous errors, the Media APIs include the requestId in the error response.

DescriptionError TypeStatus

The request is malformed or incomplete.Bad Request400

An unaccounted for error occurred. The root cause
could not be determined.

Generic Error400

One of the parameters provided as part of the user
input is invalid or not recognized.

Invalid Input400

The state or requestedAction is not provided.Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (for example,
an agent tries to use an API that only a supervisor or
administrator is authorized to use).

Authorization Failure401

The authenticated user tried to make a request for
another user.

Invalid Authorization User
Specified

401

A supervisor tried to change the state of an agent who
does not belong to that supervisor's team.

Invalid Supervisor401

The resource specified is invalid or does not exist.Not Found404

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
208

Cisco Finesse Desktop APIs
Media API Errors

DescriptionError TypeStatus

A dependent service is down (for example, the Cisco
Finesse Notification Service or Cisco Finesse
Database). Finesse is OUT_OF_SERVICE.

Service Unavailable503

Dialog APIs for Nonvoice Tasks

Supported Functionality for Voice and Nonvoice Dialogs

The following are the major differences between supported functionality for voice and nonvoice dialogs:

• Users cannot initiate nonvoice dialogs; nonvoice dialogs are always incoming.

• Nonvoice dialogs can be blind transferred only. Direct transfer is not supported.

• Nonvoice dialogs support only one agent participant. Consult and conference are not supported.

Dialog Object and Parameters for Nonvoice Tasks

The same Dialog object is used for voice calls and nonvoice tasks. The Dialog object includes mediaId and
mediaType parameters that indicate the Media Routing Domain with which the dialog is associated.

Some of the Dialog parameters used for voice calls, such as callType andmediaAddressType, are not applicable
for nonvoice tasks; these parameters are not returned.

The dialog id format is different for voice calls and nonvoice tasks. The nonvoice dialog id contains underscores
(for example, 151635_312_1). Voice dialog ids do not contain underscores (for example, 16804377).

The Dialog section of the Finesse Desktop APIs chapter describes the differences in the Dialog object for
voice calls and nonvoice tasks. It also explains the parameters and parameter values used for nonvoice tasks.

Dialog APIs for Nonvoice Tasks

Most Dialog APIs are restricted to voice media.

You can use Dialog - Take Action on Participant API to handle nonvoice dialogs. This API supports the
following allowable actions for nonvoice tasks.

DescriptionAction

Allows an agent to accept an incoming task.ACCEPT

Allows an agent to start work on an accepted task.START

Allows an agent to pause an active task.PAUSE

Allows an agent to resume a paused task.RESUME

Allows an agent to transfer an accepted, active, or paused task to another
Script Selector/dialed number.

TRANSFER

Allows an agent to perform wrap up work for a task.WRAP_UP

Allows an agent to end a task.CLOSE

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
209

Cisco Finesse Desktop APIs
Dialog APIs for Nonvoice Tasks

For nonvoice tasks, dialog actions result only in Finesse reporting the state to CCE. The application is
responsible for enforcing that state within the application. For example, if a user pauses an email dialog using
the Dialog - Take Action on Participant API, the dialog state PAUSED is reported to CCE. However, if the
application still displays the user interface to work on the email, the agent can continue to work on the email.
The application must enforce the PAUSED state by preventing agent from working on the email in the user
interface.

Important

Notifications

Finesse sends a Dialogs/Media notification when information (or an action) changes for a nonvoice task to
which the user belongs.

If a nonvoice dialog operation results in an asynchronous error, the error is returned in a Dialogs/Media
notification. The notification includes the error type, error code, and error constant. The ErrorMedia parameter
indicates the Media RoutingDomain to which the error applies.

For an interruptible Media Routing Domain configured to accept interrupts, Finesse sends only a Media state
change when an agent is interrupted in that MRD. It does not send Dialogs/Media notifications with the action
list modified to reflect the fact that actions not permitted on the tasks in that media. The state change is the
only indication to the Finesse applications that no actions are allowed on the interrupted dialogs.

Important

Interactions with Customer Collaboration Platform

Finesse connects to Customer Collaboration Platform in order to resubmit tasks into the system for these
reasons:

• The agent transfers a task.

• A task RONAs while waiting to be accepted by an agent. Finesse automatically resubmits the task to
Customer Collaboration Platform.

• An agent signs out with tasks. The agent was configured to transfer tasks on logout. Finesse automatically
resubmits the task to Customer Collaboration Platform.

The original dialog is closed with an appropriate disposition code, and the task is resubmitted as a new task
request.

For automatic task resubmissions due to RONA and agent logout, the Finesse server on which the agent was
last signed in initiates the request.

User APIs for Nonvoice Tasks
Most User APIs are restricted to voice media. Several of them, described here, can be used with nonvoice
media.

User- Get List of Dialogs APIs

You can use User - Get List of Dialogs (Nonvoice Only) to get a list of only nonvoice dialogs for a user.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
210

Cisco Finesse Desktop APIs
User APIs for Nonvoice Tasks

To get a list of both voice and nonvoice dialogs for a user, use the User - Get List of Dialogs (Voice Only by
Default) API.

User - Sign Out and User - Change State with Reason Code APIs

You can sign a user out of all Media Routing Domains when the user signs out of the desktop, using either
the User - Sign Out API or the User - Change State with Reason Code API.

The desktop sign out fails only if the voice MRD sign out fails; it is not impacted by nonvoice MRD sign out
failure.

Single Sign-On
Single Sign-On (SSO) is a mechanism to authenticate users across software systems using a common LDAP
identity and this common authentication service provides a token. Multiple applications use this token to
authenticate the user across preconfigured applications.

The Single Sign-On (SSO) APIs are used in the Finesse desktop for token related operations and are ready to
use in an out of the box Finesse deployment. Third-party desktop applications have to use these APIs
independently for SSO token related operations.

Single Sign-On Components

The following are the SSO components:

Identity Provider (IdP)

• IdP is an application that creates, maintains, and manages identity information for users.

• IdP offers the user authentication as a service. Third-party applications (for example, web applications)
outsource the user authenticationmechanism to a trusted IdP which is configured within the Organization.
For example, Active Directory Windows Server.

Cisco Identity Service (IdS)

• Cisco IdS is the common API endpoint for relaying requests to the IdP by generating the authentication
token and validating it.

• Cisco IdS implements an authorization endpoint and token endpoint as part of its OAuth (Open
Authorization) server implementation.

Token Types

The following are the token types:

• Access Token—It accesses protected resources. Clients are issued an access token that contains identity
information for the user that is encrypted by default.

For an SSO enabled user, use the access token in the authorization header of the
Finesse REST APIs.

Authorization: Bearer <access token>

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
211

Cisco Finesse Desktop APIs
Single Sign-On

• Refresh Token—It obtains a new access token before the current access token expires. The IdS generates
the refresh token.

The refresh and access token are generated as a pair of tokens. When refreshing the access token, the pair of
tokens provide an extra layer of security.

You can configure the expiry time of the refresh token and access token in the IdS administration. When the
refresh token expires, you cannot refresh the access token.

Cisco Contact Center Components

The following are the Cisco Contact Center components that support SSO:

• Cisco Finesse

• Cisco Unified Intelligence Center

For more information about SSO Solution overview, see https://developer.cisco.com/docs/
contact-center-express/#cisco-identity-service-client-sdk-overview.

For more information about the third-party integrations, see https://developer.cisco.com/docs/
contact-center-express/#cisco-identity-service-client-sdk-guide/overview.

Single Sign-On APIs

Single Sign-On—Test API
This SSO Test API is used to test the SSO authentication and authorization setup with Finesse.

https://<FQDN>/desktop/sso/testURI:

https://finesse1.xyz.com/desktop/sso/testExample URI:

Agents and supervisors can use this API.Security Constraints:

GETHTTP Method:

—Content Type:

HTMLInput/Output Format:

—HTTP Request:

—Request Parameters:

200: Success

400: Bad Request

401: Unauthorized

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
212

Cisco Finesse Desktop APIs
Single Sign-On APIs

https://developer.cisco.com/docs/contact-center-express/#cisco-identity-service-client-sdk-overview
https://developer.cisco.com/docs/contact-center-express/#cisco-identity-service-client-sdk-overview
https://developer.cisco.com/docs/contact-center-express/#cisco-identity-service-client-sdk-guide/overview
https://developer.cisco.com/docs/contact-center-express/#cisco-identity-service-client-sdk-guide/overview

Response body returned after the SSO test contains anHTMLdisplaying information
about the user and token. This HTML also contains a JavaScript that sends the SSO
test status, via window postMessage API, to the parent or opener window.

To get the status of SSO test on an older versions of Internet Explorer or any
third-party non-browser clients that do not have this API, use the cookie set as part
of HTTP response.
COOKIES set as part of response:
ssotest=true
Post message to parent window with below object:
{

status: "true",
errorMessage: ""

}

Example Response

COOKIES set as part of response:
ssotest=false
Post message to parent window with below object:
{

status: "false",
errorMessage: "AUTH_ERROR"/"NO TOKEN"

}

Example Failure
Response:

Single Sign-On—Fetch Access Token
This API gets the access token and refresh token from the Finesse server.

Invoking this API might involve browser redirect to Cisco Identity Service and Identity Provider.Note

https://<FQDN>/desktop/sso/tokenURI:

https://finesse1.xyz.com/desktop/sso/tokenExample URI:

Agents and supervisors can use this API.Security Constraints:

GETHTTP Method:

—Content Type:

JSONInput/Output Format:

—HTTP Request:

(Optional) return_user=yes|no

(Optional) return_refresh_token=true|false

Request Parameters:

200: Success

400: Bad Request

401: Unauthorized

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
213

Cisco Finesse Desktop APIs
Single Sign-On—Fetch Access Token

Response without any parameter:
{"token":"eyJhbGciOiJkaXIiLCJjdHkiOiJKV1QiLCJlbm

MiOiJBMTI4Q0JDLUhTMjU2In0..lDXjaqAsM89uhdc
Qt364LA.qXBMK_y58Hkz19k-B8ealJ9LOalB0yNnm9
vOvKExf8slCpXAPPlJLnNXGD9_-YTGdjs7lPtEcdI—
hSuDmwxxOhdGZc7ekbAadJ6EItZhOGykCYk_CBF
mEHKU8-pHV3bdbsUGrCTponA8BMw04-S-N5iuI3v
u8fuihcNAeRY_9tjl5jvlhHEnD6zrYLDFH8KcO-V2f9
bcFdxHn3BrZk9tMasrsAJNhm8Uo_kg06PXq9omrTb
UEKm3f1_lMb3bwqZGXfOO6WLOngsADRTuHren_C
Tp5gR8r94LpsbXV7gRaEqsCu9kWo3pfxQsu88LNPR
W6RPcjozupw0A4-jrHBOf_X2XaDquanEbBkZIt9VIJh
jr6p8bTO5zlH9Z_x7vdMIfEt2pcjqcXKP3NiHlXOaB-tni
PX_zN8ckGqIKR7L4wBxYmXUj82cnjBNMkcUsbvP9W
Mb7ihJw0wazl1Tq6WnhtTGeOf0cnorjPm8DOZrcAAjJc
SDCpudfj5CgE-OwikeSdWURgYTg_k6Kcct71I3olVLT
c6nFRGcYvclvjCfTc1_ooBQ6ZKI_thq0Apnof235l6drDxG
sDMPiyop69hWCuMoRRK-KKAXr8xK3fiqKjSse-KMLMG
rMLZkUsr2Y_Q0YwiEIJk1FJ4n5Qgn-ismhKi-A_Vg3ZicG
J-YyIcYgcslJGDeqSB10Y0uThqOuMA9eGEHKSlZGLcZ
BfX5MGv23dEOOxN9_wLkqazF75m5H_23ycLyN0v9d8u
F7_fe7IWB97cI9nDAhaNBdHBR3XYU5GPSbRRS7GknD
oWZM_8eTgzc-gFTfYfAJveg_pPr1sSKvWnabqLXUuLDm
vcVbgA-5UI2Y4HEGKzW85fNOHE9WPpo3cQdxFdRQyH
fvFCBdTAOiFcIz_uP2nCDB_8oPT7qycm6b58BRJ5EzaTc
WapskB73w8no1YJadliQ20OYHrDKSs_LJYDeB2iBROS
UoVocYlW6GwTv0Ko7NsLv3OtGc_I.Fre8fhy_Y4u11tIfNo6
fIA","expires_in":300}

Example Response:

Response with return_user=yes parameter:
{"token":"eyJhbGciOiJkaXIiLCJjdHkiOiJKV1QiLCJlbm

MiOiJBMTI4Q0JDLUhTMjU2In0..lDXjaqAsM89uhdcQ
t364LA.qXBMK_y58Hkz19k-B8ealJ9LOalB0yNnm9v
OvKExf8slCpXAPPlJLnNXGD9_-YTGdjs7lPtEcdI—
hSuDmwxxOhdGZc7ekbAadJ6EItZhOGykCYk_CBFm
EHKU8-pHV3bdbsUGrCTponA8BMw04-S-N5iuI3vu8
fuihcNAeRY_9tjl5jvlhHEnD6zrYLDFH8KcO-V2f9bc
FdxHn3BrZk9tMasrsAJNhm8Uo_kg06PXq9omrTbUE
Km3f1_lMb3bwqZGXfOO6WLOngsADRTuHren_CTp
5gR8r94LpsbXV7gRaEqsCu9kWo3pfxQsu88LNPR
W6RPcjozupw0A4-jrHBOf_X2XaDquanEbBkZIt9V
IJhjr6p8bTO5zlH9Z_x7vdMIfEt2pcjqcXKP3NiHlXOaB-
tniPX_zN8ckGqIKR7L4wBxYmXUj82cnjBNMkcUsbvP
9WMb7ihJw0wazl1Tq6WnhtTGeOf0cnorjPm8DOZrcA
AjJcSDCpudfj5CgE-OwikeSdWURgYTg_k6Kcct71I3ol
VLTc6nFRGcYvclvjCfTc1_ooBQ6ZKI_thq0Apnof235l6
drDxGsDMPiyop69hWCuMoRRK-KKAXr8xK3fiqKjSse-
KMLMGrMLZkUsr2Y_Q0YwiEIJk1FJ4n5Qgn-ismhKi-A
_Vg3ZicGJ-YyIcYgcslJGDeqSB10Y0uThqOuMA9e
GEHKSlZGLcZBfX5MGv23dEOOxN9_wLkqazF75m5H
_23ycLyN0v9d8uF7_fe7IWB97cI9nDAhaNBdHBR3XYU
5GPSbRRS7GknDoWZM_8eTgzc-gFTfYfAJveg_pPr1s
SKvWnabqLXUuLDmvcVbgA-5UI2Y4HEGKzW85fNO
HE9WPpo3cQdxFdRQyHfvFCBdTAOiFcIz_uP2nCDB_8
oPT7qycm6b58BRJ5EzaTcWapskB73w8no1YJadliQ20O
YHrDKSs_LJYDeB2iBROSUoVocYlW6GwTv0Ko7NsLv3
OtGc_I.Fre8fhy_Y4u11tIfNo6fIA","expires_in":49,
"user_id":"1001001",
"realm":"finesse.com",
"user_principal":"1001001@finesse.com"}

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
214

Cisco Finesse Desktop APIs
Single Sign-On—Fetch Access Token

Response with return_refresh_token=true parameter:
{"token":"eyJhbGciOiJkaXIiLCJjdHkiOiJKV1QiLCJlbm

MiOiJBMTI4Q0JDLUhTMjU2In0..lDXjaqAsM89uhdcQ
t364LA.qXBMK_y58Hkz19k-B8ealJ9LOalB0yNnm9v
OvKExf8slCpXAPPlJLnNXGD9_-YTGdjs7lPtEcdI—
hSuDmwxxOhdGZc7ekbAadJ6EItZhOGykCYk_CBFm
EHKU8-pHV3bdbsUGrCTponA8BMw04-S-N5iuI3vu8
fuihcNAeRY_9tjl5jvlhHEnD6zrYLDFH8KcO-V2f9bc
FdxHn3BrZk9tMasrsAJNhm8Uo_kg06PXq9omrTbUE
Km3f1_lMb3bwqZGXfOO6WLOngsADRTuHren_CTp
5gR8r94LpsbXV7gRaEqsCu9kWo3pfxQsu88LNPR
W6RPcjozupw0A4-jrHBOf_X2XaDquanEbBkZIt9V
IJhjr6p8bTO5zlH9Z_x7vdMIfEt2pcjqcXKP3NiHlXOaB-
tniPX_zN8ckGqIKR7L4wBxYmXUj82cnjBNMkcUsbvP
9WMb7ihJw0wazl1Tq6WnhtTGeOf0cnorjPm8DOZrcA
AjJcSDCpudfj5CgE-OwikeSdWURgYTg_k6Kcct71I3ol
VLTc6nFRGcYvclvjCfTc1_ooBQ6ZKI_thq0Apnof235l6
drDxGsDMPiyop69hWCuMoRRK-KKAXr8xK3fiqKjSse-
KMLMGrMLZkUsr2Y_Q0YwiEIJk1FJ4n5Qgn-ismhKi-A
_Vg3ZicGJ-YyIcYgcslJGDeqSB10Y0uThqOuMA9e
GEHKSlZGLcZBfX5MGv23dEOOxN9_wLkqazF75m5H
_23ycLyN0v9d8uF7_fe7IWB97cI9nDAhaNBdHBR3XYU
5GPSbRRS7GknDoWZM_8eTgzc-gFTfYfAJveg_pPr1s
SKvWnabqLXUuLDmvcVbgA-5UI2Y4HEGKzW85fNO
HE9WPpo3cQdxFdRQyHfvFCBdTAOiFcIz_uP2nCDB_8
oPT7qycm6b58BRJ5EzaTcWapskB73w8no1YJadliQ20O
YHrDKSs_LJYDeB2iBROSUoVocYlW6GwTv0Ko7NsLv3
OtGc_I.Fre8fhy_Y4u11tIfNo6fIA","refresh_token":"
eyJhbGciOiJkaXIiLCJjdHkiOiJKV1QiLCJlbmMiOiJBMTI4Q0J
DLUhTMjU2In0..gdULcCw-3nh_R-FnIHPXDQ.0kYaOssJH76ro
2iD5JCYBuZqVMFrDpA0FDeK_bm9ClcuJaaU4vNWnww7r6G7qT4A
FdQZqnIMq0kBSzpbfKVIchOs95usysQA3IYi2d8dlEblIkdRiPW
YWhNbhj_KjcNM-Rjt9SbinW3dfl8NL_OB0MTs0HYa8DwdcXnP_
62QonodfHAiGVH9i8VgoHKBjCLUTNcUbVX43pdxy
OvLwuOOZh4Uzp-8L1dn16PE0wU7wBvyl2J6xTrAEZ1Beya2pCP-zn8e
CYTqAEiuzbm-DVP9b4G7w4qusQ_Z347b0Oa782o7_Ui4_mpbt2kaOP5w
YByR0ftCkGLsAnPyJ5BpB89Sd2TnXmRWMhc72vqu1AM67UimxUpjWxVDZ
em0QowbYKLdEWZSMUP744hLgrGFEKdanWQKFKoOMzqhprfHCz3VZYs6kZv
hvWRsmoU8hI9j0qklfNuhJkCs-UeF6GnlN7FNsxEfHAvcXgF_oxGFQcEjoe
k0cYPzUWhIqV94bapeYm6sRH7d38QGBRm2D-mkdsQyMcQvH66NJ3uYPm1Inw
NoNQuaS0feo4OTpms5CIt49jblNrl7k5Kpk6Q7DMKcCuyKK4OyxPY9uN-7y2l
3XnmtG3jhqOTjQ9t_1YdBh-RFHbv6M2KWWIHZ57CpRpSNCo-wN1VRaOkbQaLw
LwEU_Hk-Cp4.RRHsyddqhFEtH0xvRc5EjA","expires_in":49}

{"error":"invalid_redirectUri","error_description":"Invalid Redirect

URI."}

Example Failure
Response:

When you use the return_refresh_token=true query parameter in this API, access token and refresh
token cookies are not added to the response. All information is provided as part of the response body, which
can be directly used by the third-party clients.

Use this query parameter when third-party clients use Cisco Finesse SSO APIs alongside Finesse desktop in
the same browser. Using this query parameter prevents agent logout from Finesse desktop due to desktop
cookie overriding by third-party clients.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
215

Cisco Finesse Desktop APIs
Single Sign-On—Fetch Access Token

Single Sign-On—Refresh Existing Access Token
This API allows a user to refresh an existing access token that is about to expire.

• Third-party applications have to refresh the access token after 75% of the token expiry time is elapsed.

• Invoking this API might involve browser redirect to Cisco Identity Service and Identity Provider.

Note

https://<FQDN>/desktop/sso/tokenURI:

https://finesse1.xyz.com/desktop/sso/tokenExample URI:

Agents and supervisors can use this API.Security Constraints:

POSTHTTP Method:

application/x-www-form-urlencodedContent Type:

Application/JSONInput/Output Format:

—HTTP Request:

token=<token value>

refresh-token=<refresh token value>

(Optional) return_user=yes

Request URI
Parameters:

200: Success

400: Bad Request

401: Unauthorized

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
216

Cisco Finesse Desktop APIs
Single Sign-On—Refresh Existing Access Token

{"token": "eyJhbGciOiJkaXIiLCJjdHkiOiJKV1QiLCJlbmMiOiJBM
TI4Q0JDLUhTMjU2In0..521UM8q8d7wM5naKgWzPhA.NkhEH
7SatpXPOVqQobJstaZ51HBcMTcIej5qdIJ0ZwjCnV7u8iKGcv7t
5cLYruV6WZFJn8z7iSckXdduDqmRserhBDnbpk-gd5jqNj9r2ZS
tfeBZIx6Phng6EMWUjtK9cbrO79MenQ7u7Y3Hhe7P7qvQiaTw
keUw7No09NFGat-ICzhHbTF8D4WKFhFefw1J-q55ktcdD-CmM
s-KXYrmA8DLltjF9ii9dCYHFfC2nKBETzdYWR2ple4B6_Lv0np
g8OSU53LyTT3ObHm6TvWZ09KYrWUWMKNFas73Gx7rYro4
C7Tc4pYb9ZfJmkcT6coRIocMteYCrqCy7ufRqO-BPObNIah_J
o2VQ_wwo-5wE-cMUUDpGa5X2nMtP2YUH4sb7b_SHX9Xq_w6
cwLRcBiDXjyGl7Smk1RzF1aXj2A9R06a71VjzmUsjq4UtrT7_IfY
s9RrFX9jhnXX1VB8Dqgh-Pnb16rsskRg7TPP4EV9fwDSbhA-
oMrMKqFz5BFWMhNaFCHtJQWtXxNRK802ybyzXwR3KGeINS
D3dOGj2vWRpnhuTB9veHr9InSrc2s67rspguN7YX2bkIEEQNBC
Y3X5rf_UMyGSlPvlArh6b-_yZXk62kXmYJWJ7g1uTRwTaou87C
j83fqdaIOYMNIOeZhZqDmKDOZqMmVW_Aj-9-Tn0lTXkKmsPvqt
oJYCN1T_3fZrvhzJLImy0whXgEtxc88MYNOCsuPSkIuCRNpoO
GgWXATdF1GHPUnQPStW2GsZEfbdY5R1X9x3SZXtngh4XFM
gYtMjP129X8pvAT_AY35JtRzpdryRPdAYrEc72tkY_xWLBahpS
AKrcX7x8gtMRZmV5HlKs7_sW1amje0gaMKFlqh8i56XWbwnsU
SdKLC-LZDtvWZ5wYuHPY1CSwC0oT9lHytWBXo3GSXSv
1iqy75ud6KrvrJg3WG2k_2biqxpc0S9MsATT2WGtGBt5ko2wEcn6
A.l_JfM6gAelSswEeGFAOKwg",
"expires_in": 300}

Example Response

{"errorType": "AUTH_ERROR",
"errorData": "refresh-token",
"errorMessage": "Invalid Token"}

Example Failure
Response:

If the token was initially fetched with the return_refresh_token=true query parameter, the refresh
token query parameter with the value of the current refresh token is mandatory.

Note

Troubleshooting Steps

1. Validate that the requests are reaching Finesse by checking the Finesse tomcat_access_logs.

2. For any errors on the token refresh, check the Finesse Valve logs.

3. If the request reached Finesse access logs and there are no errors in Finesse Valve logs, check the IdS
error logs for more details. It contains the reason for the error.

Single Sign-On—Get User Authentication Mode
This API allows a client to get the authenticationmode of a user in a Unified CCE deployment that is in hybrid
mode (SSO and non-SSO). This API uses either the username or userId and it does not require authentication.

This API does not require HTTP authentication. The third-party integrations must configure this API to
determine which authentication mode (SSO or non-SSO) is configured for the user. If required, this API can
be disabled using CLI. By default, the CLI sets the value of this property as true.

utils finesse set_property webservices enableUserAuthMode {true|false}

For more information, see Service Properties section in Cisco Finesse Administration Guide at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
217

Cisco Finesse Desktop APIs
Single Sign-On—Get User Authentication Mode

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

https://<FQDN>/finesse/api/UserAuthMode/<username>

https://<FQDN>/finesse/api/UserAuthMode/<userId>

URI:

https://finesse1.xyz.com/finesse/api//UserAuthMode/myName

https://finesse1.xyz.com/finesse/api//UserAuthMode/1234

Example URI:

All users can use this API without authentication.Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

—Request Parameters:

200: Success

403: Forbidden

HTTP Response:

<UserAuthMode>
<authMode>NON_SSO</authMode>

</UserAuthMode>

Example Response

<ApiErrors>
<ApiError>

<ErrorType>Forbidden</ErrorType>
<ErrorMessage>UserAuthModeService is disabled</ErrorMessage>

<ApiError>
</ApiErrors>

Example Failure
Response:

Single Sign-On Parameters
NotesPossible ValuesDescriptionTypeParameter

——The username that is
configured at ADFS.

Stringusername

——The userId is the
peripheralId that is
configured in Unified CCE.

StringuserId

—SSO or non-SSOInformation about the user
authentication mode.

StringauthMode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
218

Cisco Finesse Desktop APIs
Single Sign-On Parameters

Single Sign-On API Errors
DescriptionError TypeStatus

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

Client Integration
Clients can use the Finesse REST APIs in SSO mode. For thick client integrations, the following are browser
like behaviors that thick clients must ensure to exhibit:

• Follow server issued redirects.

• Store and forward cookies.

• Honor the various cookie attributes.

• Run JavaScript in HTML responses.

Procedure

Step 1 Use the API to get the system's authentication mode. The authentication mode can be found in the response
as the value of the systemAuthMode.

If the system's authentication mode is SSO, then you can skip step 2.Note

Step 2 Use the Single Sign-On—Get User Authentication Mode to get a specific user's authentication mode.

You must use browser components that allow redirections and IdP form submissions. You cannot
use Postman or AJAX for the Single Sign-On APIs.

Note

Step 3 Use the Single Sign-On—Get User Authentication Modewith the return_user query parameter set to yes
to get the user's access token.

The username must be provided in a cookie or a URL query parameter with a key of cc_username. The value
is a URL encoded username, which can be the loginName or peripheralId for whom the token is requested.

Example:

https://finesse1.xyz.com/desktop/sso/token?return_refresh_token=true

The result of the API request will redirect the request to the IdS page which then redirects to the IdP page.

Step 4 On the IdP page, enter the username and the password.

• On successful authentication, the response body contains the access token and user_id value. The access
token returns the token in the JWT format.

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
219

Cisco Finesse Desktop APIs
Single Sign-On API Errors

{"token":"eyJhbGciOiJkaXIiLCJjdHkiOiJKV1QiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0..0
KelINtPSTQJGHthEo6GGg.iJl7anAh8Edt07pOQmHZ7BLgK-ozMiy5Fy42Pkj8FQ3xUMQvq5coGwSnHCEr1
deuNFt5i6685L5aHZzGe3VChWRPOnHveKaOEbgjgdNAhFXnIF033H4hZ-sKf zGSdIiXDIqv7llOGhzwDWw
jYA7icEgIqaTttu5VVMPsI5eCwwd8uf1SXA7_rNU9bM1Kkra-v PRyqJX4h2gR-1vbk1q3L1GEtaAnWqDIe
4MAZELtuD-J5O4Kid26lwKzdq5PL_PH51-lyw_Mz ds0JiE4ZWcG_JmAa4BtZfKGs1z4S6Laj7scxi7WW7u
5-lfBsn6ixhouC3Jdz4N3FJQZ6IizQ 0tUwOWb0HoD6tsU6mH4r5tYeRjtGliTJff71BIAkZl6N1fCB0ZN2
P5lPMWPqfIgqw8r0H5Ar 1xDNpmfs_b0e0lHwfCczWKqn96wFIUeP0IBpk2uv7-8C5NvM6U72Vbs9SjUH7T
3b8zZzt9mg Hnu2fdluW5OfrdLxF6BGiI20_p6jjI0D7HPrqpX-I7RGSWB79fEFm0IOFAEy04kwvRJBJx8hI
Mu-2AHc38NW7i-mZVzbE28K2pPwyeFMR6UWKIl0ztDsAyEQA89DI1bOukFa57CDQzF4mR5szmczaLeoXTAC
hY8qPMvAEjMtAvSIQSwb9W-D6HoxBQM6gF-Sth1eD2n82gkbb1-Gg4GF3gzoSa-_kf1sYj62mF4PUsJVN4_
cFXRgzdyhjkDielwabBJPbt0oAXR2qj3qH7TBxLj4hYdKbPq2bDd9eFNeMhTMX49hYrONGWaSz3CdBb3fby
177ALj-AHlGU2mbZ1Ofa3hUj5h1H3p7QwGWGs1Ka56DHK3cTcPszAvMdtVF0MZsK9ODr0gJVFFKPvoY2alb
d3xG6rbbQmvWGoSYWgT7l2dzUYokEOEjN6halaZmOBcnjxS-NeqCRrve-22zwqFwD-fEdjRf9ATtq32UcB_
RmlnubDJOndJQ.5kix_gQZGr6xGye3cUE18g","refresh_token":"eyJhbGciOiJkaXIiLCJjdHkiOiJK
V1QiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0..gdULcCw-3nh_R-FnIHPXDQ.0kYaOssJH76ro2iD5JCYBuZ
qVMFrDpA0FDeK_bm9ClcuJaaU4vNWnww7r6G7qT4AFdQZqnIMq0kBSzpbfKVIchOs95usysQA3IYi2d8dlE
blIkdRiPWYWhNbhj_KjcNM-Rjt9SbinW3dfl8NL_OB0MTs0HYa8DwdcXnP_62QonodfHAiGVH9i8VgoHKBj
CLUTNcUbVX43pdxyOvLwuOOZh4Uzp-8L1dn16PE0wU7wBvyl2J6xTrAEZ1Beya2pCP-zn8eCYTqAEiuzbm-
DVP9b4G7w4qusQ_Z347b0Oa782o7_Ui4_mpbt2kaOP5wYByR0ftCkGLsAnPyJ5BpB89Sd2TnXmRWMhc72vq
u1AM67UimxUpjWxVDZem0QowbYKLdEWZSMUP744hLgrGFEKdanWQKFKoOMzqhprfHCz3VZYs6kZvhvWRsmo
U8hI9j0qklfNuhJkCs-UeF6GnlN7FNsxEfHAvcXgF_oxGFQcEjoek0cYPzUWhIqV94bapeYm6sRH7d38QGB
Rm2D-mkdsQyMcQvH66NJ3uYPm1InwNoNQuaS0feo4OTpms5CIt49jblNrl7k5Kpk6Q7DMKcCuyKK4OyxPY9
uN-7y2l3XnmtG3jhqOTjQ9t_1YdBh-RFHbv6M2KWWIHZ57CpRpSNCo-wN1VRaOkbQaLwLwEU_Hk-Cp4.RRH
syddqhFEtH0xvRc5EjA","expires_in":3564,"user_id":"sjefferson","realm":"finesse.com",
"user_principal":"sjefferson@finesse.com"}

• The response also contains the token expiry time in seconds.

In a Unified CCX deployment, the username, loginName, and loginId can be used interchangeably
for the Finesse REST API calls.

Note

Step 5 This step is for Unified CCE deployments only. In a Unified CCE deployment, the user_id obtained from the
IdS token can be either the loginName or the peripheralId (loginId). The Finesse REST APIs can only accept
the loginId. Use the User—Get User Id from loginName API to get the loginId from the user_id of the IdS
token.

Example:

https://finesse1.xyz.com/finesse/api/User/sjefferson

Example Response:

<User>
<dialogs>/finesse/api/User/1001002/Dialogs</dialogs>
<extension></extension>
<firstName>AGENT</firstName>
<lastName>98411</lastName>
<loginId>98411</loginId>
<loginName>sjefferson</loginName>
<mediaType>1</mediaType>
<pendingState></pendingState>
<reasonCodeId>-1</reasonCodeId>
<roles>

<role>Agent</role>
</roles>
<settings>

<wrapUpOnIncoming>OPTIONAL</wrapUpOnIncoming>
</settings>
<state>LOGOUT</state>
<stateChangeTime></stateChangeTime>
<teamId>5000</teamId>
<teamName>FunctionalAgents</teamName>
<uri>/finesse/api/User/sjefferson</uri>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
220

Cisco Finesse Desktop APIs
Client Integration

<wrapUpTimer>30</wrapUpTimer>
</User>

Step 6 Get the loginId from the loginId field.

All subsequent Finesse REST API requests must use the loginId from the <User> response, instead of the
username/user_id/loginName.

Example:

To login the agent sjefferson using the Finesse REST API, you must use the loginId of 98411.
https://finesse1.xyz.com/finesse/api/User/98411

<User>
<state>LOGIN</state>
<extension>98411</extension>

</User>

Step 7 To avoid the authentication and authorization flow again, the access token must be refreshed before the expiry
time. Use the Single Sign-On—Refresh Existing Access Token with the return_user query parameter set to
yes to refresh the user's access token.

The username must be provided in a cookie or a URL query parameter with a key of cc_username. The value
is a URL encoded username, which can be the loginName or peripheralId for whom the token is requested.

Example Response:

{"token":"eyJhbGciOiJkaXIiLCJjdHkiOiJKV1QiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0..0

KelINtPSTQJGHthEo6GGg.iJl7anAh8Edt07pOQmHZ7BLgK-ozMiy5Fy42Pkj8FQ3xUMQvq5coGwSnHCEr1

deuNFt5i6685L5aHZzGe3VChWRPOnHveKaOEbgjgdNAhFXnIF033H4hZ-sKf zGSdIiXDIqv7llOGhzwDWw

jYA7icEgIqaTttu5VVMPsI5eCwwd8uf1SXA7_rNU9bM1Kkra-v PRyqJX4h2gR-1vbk1q3L1GEtaAnWqDIe

4MAZELtuD-J5O4Kid26lwKzdq5PL_PH51-lyw_Mz ds0JiE4ZWcG_JmAa4BtZfKGs1z4S6Laj7scxi7WW7u

5-lfBsn6ixhouC3Jdz4N3FJQZ6IizQ 0tUwOWb0HoD6tsU6mH4r5tYeRjtGliTJff71BIAkZl6N1fCB0ZN2

P5lPMWPqfIgqw8r0H5Ar 1xDNpmfs_b0e0lHwfCczWKqn96wFIUeP0IBpk2uv7-8C5NvM6U72Vbs9SjUH7T 3b8zZzt9mg

Hnu2fdluW5OfrdLxF6BGiI20_p6jjI0D7HPrqpX-I7RGSWB79fEFm0IOFAEy04kwvRJBJx8hI

Mu-2AHc38NW7i-mZVzbE28K2pPwyeFMR6UWKIl0ztDsAyEQA89DI1bOukFa57CDQzF4mR5s zmczaLeoXTAC

hY8qPMvAEjMtAvSIQSwb9W-D6HoxBQM6gF-Sth1eD2n82gkbb1-Gg4GF3gzo Sa-_kf1sYj62mF4PUsJVN4_

cFXRgzdyhjkDielwabBJPbt0oAXR2qj3qH7TBxLj4hYdKbPq2b Dd9eFNeMhTMX49hYrONGWaSz3CdBb3fby1

77ALj-AHlGU2mbZ1Ofa3hUj5h1H3p7QwGWGs1Ka 56DHK3cTcPszAvMdtVF0MZsK9ODr0gJVFFKPvoY2albd3

xG6rbbQmvWGoSYWgT7l2dzUYokEOE jN6halaZmOBcnjxS-NeqCRrve-22zwqFwD-fEdjRf9ATtq32UcB_Rml

nubDJOndJQ.5kix_gQZ Gr6xGye3cUE18g","expires_in":3564,"user_id":"sjefferson",

"realm":"finesse.com","user_principal":"sjefferson@finesse.com"}

TeamMessage
The TeamMessage object represents messages that can be sent by the supervisor or the Finesse administrator
to any or all teams. It contains the URI, team message, and id of the sender. The supervisor or administrator
uses the TeamMessage APIs to create or delete a team message, return all active messages for a team, and
return all messages created by a user.

The TeamMessage object is structured as follows:
<TeamMessage>

<uri>/finesse/api/TeamMessage/be1598bb-bb2a-4dfc-8c01-91ec10b029af</uri>
<id>be1598bb-bb2a-4dfc-8c01-91ec10b029af</id>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
221

Cisco Finesse Desktop APIs
TeamMessage

<createdBy>
<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418173</createdAt>
<duration>100</duration>
<content>content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>

TeamMessage APIs

TeamMessage—Get Team Message
This API allows the user to get a copy of a TeamMessage object.

https://<FQDN>/finesse/api/TeamMessage/<id>URI:

https://finesse1.xyz.com/finesse/api/TeamMessage/123Example URI:

Supervisors or administrators can use this API.Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

404: Not Found

500: Internal Server Error

HTTP Response:

<TeamMessage>

<uri>/finesse/api/TeamMessage/be1598bb-bb2a-4dfc-8c01-91ec10b029af</uri>

<id>be1598bb-bb2a-4dfc-8c01-91ec10b029af</id>
<createdBy>

<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418173</createdAt>
<duration>100</duration>
<content>content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
222

Cisco Finesse Desktop APIs
TeamMessage APIs

<ApiErrors>
<ApiError>

<ErrorType>Not Found</ErrorType>
<ErrorData>finesse.api.not_found</ErrorData>
<ErrorMessage>Message with ID

06f381e6-10ee-47a9-9b36-1c2d7b62db08 not found.</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

TeamMessage—Get List
This API allows the user to get a list of all Team Messages that are created by the user.

https://<FQDN>/finesse/api/TeamMessages?createdBy=<id>URI:

https://finesse1.xyz.com/finesse/api/TeamMessages?createdBy=1001050Example URI:

Administrator and supervisor who created the message can use this API.

For Administrators, if the createdBy parameter has no value, it returns all active
messages.

Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
223

Cisco Finesse Desktop APIs
TeamMessage—Get List

<TeamMessages>
<TeamMessage>

<uri>/finesse/api/TeamMessage/be1598bb-bb2a-4dfc-8c01-91ec10b029af</uri>

<id>be1598bb-bb2a-4dfc-8c01-91ec10b029af</id>
<createdBy>

<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418173</createdAt>
<duration>100</duration>
<content>content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>
<TeamMessage>

<uri>/finesse/api/TeamMessage/c652fb4f-1f1a-48c8-bc77-2cbab3c9d231</uri>

<id>c652fb4f-1f1a-48c8-bc77-2cbab3c9d231</id>
<createdBy>

<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418172</createdAt>
<duration>100</duration>
<content>content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>
<TeamMessage>

<uri>/finesse/api/TeamMessage/ea74a0db-efcf-4651-84b1-1d2119509e9f</uri>

<id>ea74a0db-efcf-4651-84b1-1d2119509e9f</id>
<createdBy>

<id>1001050</id>
<firstName>AGENT</firstName>
<lastName>1001050</lastName>

</createdBy>
<createdAt>1537418177</createdAt>
<duration>100</duration>
<content>some content 4</content>
<teams>

<team>5052</team>
<team>5000</team>

</teams>
</TeamMessage>

</TeamMessages>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Unauthorized</ErrorType>
<ErrorMessage>Not authorized to access this

resource.</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
224

Cisco Finesse Desktop APIs
TeamMessage—Get List

TeamMessage—Create a Team Message
This API allows the user to create a TeamMessage object.

https://<FQDN>/finesse/api/TeamMessageURI:

https://finesse1.xyz.com/finesse/api/TeamMessagesExample URI:

Supervisors or administrators can use this API.Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

207: Partially succeeded

207 indicates that one of the operations (Create or Delete) has
succeeded but publishing to the alternate node might have failed due
to DB replication issues. In this case, the message broadcasted by a
supervisor (logged in to one of the Finesse nodes) might not be
displayed to the agents logged in to the alternate Finesse node.

Note

401: Authorization Failure

404: Not Found

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<TeamMessage>
<duration>100</duration>
<content>content 3</content>
<teams>

<team>5000</team>
<team>5052</team>

</teams>
</TeamMessage>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>System Resource Limit Exceeded</ErrorType>
<ErrorData>teammessage.max.limit.exceeded</ErrorData>

<ErrorMessage>MAX_ACTIVE_MESSAGE_LIMIT_EXCEEDED</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

TeamMessage—Delete a Team Message
This API allows the supervisor who created the Team Message or administrator, to delete a Team Message.
The supervisor or administrator can reference the existing TeamMessage object by its ID.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
225

Cisco Finesse Desktop APIs
TeamMessage—Create a Team Message

https://<FQDN>/finesse/api/TeamMessage/<id>URI:

https://finesse1.xyz.com/finesse/api/TeamMessage/be1598bb-bb2a-4dfc-8c01-91ec10b029afExample URI:

Supervisor who created the Team Message or the administrator can use this API.Security Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

207: Partially succeeded

207 indicates that one of the operations (Create or Delete) has
succeeded but publishing to the alternate node might have failed due
to DB replication issues. In this case, the message broadcasted by a
supervisor (logged in to one of the Finesse nodes) might not be
displayed to the agents logged in to the alternate Finesse node.

Note

401: Authorization Failure

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Not Found</ErrorType>
<ErrorData>finesse.api.not_found</ErrorData>
<ErrorMessage>Message with ID

06f381e6-10ee-47a9-9b36-1c2d7b62db08 not found.</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

TeamMessage API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the TeamMessage object.

Stringuri

—The unique identifier for the
TeamMessage.

Stringid

—The Agent ID of the creator
of the TeamMessage.

StringcreatedBy

—The UTC time of the
TeamMessage posted in
seconds.

IntegercreatedAt

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
226

Cisco Finesse Desktop APIs
TeamMessage API Parameters

NotesPossible ValuesDescriptionTypeParameter

—The time the TeamMessage
is displayed in seconds.

Integerduration

A maximum of 255
characters are
supported.

—The content of the
TeamMessage.

Stringcontent

—The ID of the particular
team.

Integerteam

TeamMessage API Errors
DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

Authorization Failure401

The resource specified is invalid or does not exist.Not Found404

The user ID provided is invalid or is not recongnized.
No such user exists in CTI.

User Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
227

Cisco Finesse Desktop APIs
TeamMessage API Errors

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
228

Cisco Finesse Desktop APIs
TeamMessage API Errors

C H A P T E R 4
Cisco Finesse Configuration APIs

• SystemConfig, on page 229
• ConfigInfo, on page 233
• ECCVariableConfig, on page 235
• ClusterConfig, on page 238
• EnterpriseDatabaseConfig, on page 241
• LayoutConfig, on page 245
• ReasonCode, on page 260
• WrapUpReason, on page 267
• ChatConfig, on page 274
• Cloud Connect, on page 276
• MediaPropertiesLayout, on page 282
• PhoneBook, on page 297
• Contact, on page 307
• Workflow, on page 313
• WorkflowAction, on page 331
• Team, on page 342
• SystemVariable, on page 356

SystemConfig
The SystemConfig object is a container element that holds the Finesse system configuration, including details
about the primary and backup CTI servers.

SystemConfig APIs apply only to Finesse deployments with Unified CCE. Because you need not configure
these settings for Finesse with Unified CCX, these APIs are not supported for deployments with Unified CCX.

Note

The SystemConfig object is structured as follows:
<SystemConfig>

<uri>/finesse/api/SystemConfig</uri>
<cti>

<host></host>
<port></port>
<backupHost></backupHost>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
229

<backupPort></backupPort>
<peripheralId></peripheralId>
<secure></secure>

</cti>
</SystemConfig>

Any changes made to the settings through the SystemConfig API will require a Cisco Finesse Tomcat restart.Note

SystemConfig APIs

SystemConfig—Get
This API allows an administrator to get a copy of the SystemConfig object.

https://<FQDN>/finesse/api/SystemConfigURI:

https://finesse1.xyz.com/finesse/api/SystemConfigExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<SystemConfig>
<uri>/finesse/api/SystemConfig</uri>
<cti>

<host>10.1.1.1</host>
<port>42027</port>
<backupHost>10.1.1.2</backupHost>
<backupPort>42027</backupPort>
<peripheralId>5000</peripheralId>
<secure>true</secure>

</cti>
</SystemConfig>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
230

Cisco Finesse Configuration APIs
SystemConfig APIs

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

SystemConfig—Set
This API allows an administrator to configure the CTI server settings.

If you do not specify the backupHost and backupPort during a PUT operation but they were configured at an
earlier time, the PUT operation removes these values from the database.

Note

https://<FQDN>/finesse/api/SystemConfigURI:

https://finesse1.xyz.com/finesse/api/SystemConfigExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<SystemConfig>
<uri>/finesse/api/SystemConfig</uri>
<cti>

<host>10.1.1.1</host>
<port>42027</port>
<backupHost>10.1.1.2</backupHost>
<backupPort>42027</backupPort>
<peripheralId>5000</peripheralId>
<secure>false</secure>

</cti>
</SystemConfig>

HTTP Request:

host (required): Hostname or IP address of the primary (A Side) CTI server

Port (required): Port number of the primary (A Side) CTI server

backupHost (required if backupPort is present): Hostname or IP address of the
backup (B Side) CTI server

backupPort (required if backupHost is present): Port number of the backup (B Side)
CTI server

peripheralId (required): ID of the CTI server peripheral

secure (optional): enables secure encryption to configure secure CTI connection
depending on value set to true or false. By default, the value if not provided, will
be false

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
231

Cisco Finesse Configuration APIs
SystemConfig—Set

200: Success

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>port</ErrorMessage>
<ErrorData>65536</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

SystemConfig API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the SystemConfig object.

Stringuri

—Information about the CTI
server settings.

Collectioncti

No special characters
allowed except “.”
and “-”.

—The hostname or IP address
of the primary (A Side) CTI
server.

String-->host

1–65535

Default value: 42027

The port of the primary (A
Side) CTI server.

Integer-->port

1–32767

Default value: 5000

The ID of the CTI server
peripheral.

Integer-->peripheralId

Must not be the same
as the hostname or IP
address of the
primary (A Side) CTI
server.

No special characters
allowed except “.”
and “-”.

—The hostname or IP address
of the (B Side) backup CTI
server.

String-->backupHost

1–65535The port of the backup (B
Side) CTI server.

Integer-->backupPort

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
232

Cisco Finesse Configuration APIs
SystemConfig API Parameters

NotesPossible ValuesDescriptionTypeParameter

When the value is set
to true enables secure
encryption and if the
value is set to false
disables secure
encryption

true or falseTo enable secure
encryption.

Boolean-->secure

SystemConfig API Errors
DescriptionError TypeStatus

One of the parameters provided as part of the user
input is invalid or not recognized.

Invalid Input400

A required parameter was not provided in the request.

For example, if the backupPort is provided but the
backupHost is missing.

Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

ConfigInfo
The ConfigInfo object is a container element that holds the Cisco Finesse configuration details.

The ConfigInfo object is structured as follows:

<ConfigInfo>
<totalSkillGroups></totalSkillGroups>
<totalSupervisors></totalSupervisors>
<totalTeams></totalTeams>
<totalUsers></totalUsers>
<uri></uri>
<versionInfo></versionInfo>
</ConfigInfo>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
233

Cisco Finesse Configuration APIs
SystemConfig API Errors

ConfigInfo APIs

ConfigInfo—Get
This API allows an administrator to get the following information:

• Product version with the COP information

• Total skillGroups

• Total supervisors

• Total teams

• Total users

https://<FQDN>/finesse/api/ConfigInfoURI:

https://finesse1.xyz.com/finesse/api/ConfigInfoExample URI:

Administrators, agents, and supervisors can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<ConfigInfo>
<totalSkillGroups>5</totalSkillGroups>
<totalSupervisors>11</totalSupervisors>
<totalTeams>53</totalTeams>
<totalUsers>48</totalUsers>
<uri>/finesse/api/ConfigInfo</uri>
<versionInfo>12.0.0.99200-263</versionInfo>

</ConfigInfo>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
234

Cisco Finesse Configuration APIs
ConfigInfo APIs

ConfigInfo API Parameters
NotesPossible ValuesDescriptionTypeParameter

——The total number of skill
groups.

IntegertotalSkillGroups

——The total number of
supervisors.

IntegertotalSupervisors

——The total number of teams.IntegertotalTeams

——The total number of users.IntegertotalUsers

——The URI to get a new copy
of the ConfigInfo object.

Stringuri

——The product version with the
COP information.

StringversionInfo

ConfigInfo API Errors
DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

Authorization Failure401

The user attempted to run the API against the
secondary Cisco Finesse server.

Configuration APIs cannot be run against the
secondary Cisco Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

ECCVariableConfig
The ECCVariableConfig object is a container element that holds ECC variable configuration details for Unified
CCE.

The ECCVariableConfig object is structured as follows:
<ECCVariableConfig>

<ECCVariable>
<name>user.microapp.override_cli</name>
<length>40</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.play_data</name>
<length>40</length>

</ECCVariable>
<ECCVariable>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
235

Cisco Finesse Configuration APIs
ConfigInfo API Parameters

<name>user.cvp_server_info</name>
<length>40</length>

</ECCVariable>
<ECCVariable>

<name>user.media.id</name>
<length>40</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.media_server</name>
<length>40</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.app_media_lib</name>
<length>10</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.locale</name>
<length>5</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.FromExtVXML</name>
<length>60</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.caller_input</name>
<length>40</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.error_code</name>
<length>2</length>

</ECCVariable>
<ECCVariable>

<name>user.CourtesyCallbackEnabled</name>
<length>1</length>

</ECCVariable>
<ECCVariable>

<name>user.charset</name>
<length>3</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.UseVXMLParams</name>
<length>1</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.input_type</name>
<length>1</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.ToExtVXML</name>
<length>80</length>

</ECCVariable>
</ECCVariableConfig>

ECCVariableConfig APIs

ECCVariableConfig—Get ECC Variable Configuration
This API allows a user to get a copy of the ECC variable configuration in Unified CCE.

https://<FQDN>/finesse/api/ECCVariableConfigURI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
236

Cisco Finesse Configuration APIs
ECCVariableConfig APIs

https://finesse1.xyz.com/finesse/api/ECCVariableConfigExample URI:

Administrators, agents, and supervisors can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<ECCVariableConfig>
<ECCVariable>

<name>user.microapp.override_cli</name>
<length>40</length>

</ECCVariable>
<ECCVariable>

<name>user.microapp.play_data</name>
<length>40</length>

</ECCVariable>
</ECCVariableConfig>

Example Response:

ECCVariableConfig API Parameters
NotesPossible ValuesDescriptionTypeParameter

——The name of the ECC variable
(both scalar and array).

Stringname

The maximum payload per
ECC variable (bytes) in
Unified UCC is 210.

The ECC variable limitation
for Unified CCE can be
defined in the CTI server. The
maximum value is 210.

—The length of the ECC
variable.

Numberlength

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
237

Cisco Finesse Configuration APIs
ECCVariableConfig API Parameters

ECCVariableConfig API Errors
DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

Authorization Failure401

The user attempted to run the API against the
secondary Cisco Finesse server.

Configuration APIs cannot be run against the
secondary Cisco Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

ClusterConfig
The ClusterConfig object is a container element that holds Finesse cluster configuration. This container
supports the addition of a single, secondary Finesse node. After the secondary Finesse node is installed and
ready, it becomes part of the cluster.

ClusterConfig APIs apply only to Finesse deployments with Unified CCE. Because you need not configure
cluster settings for Unified CCX deployments, these APIs are not supported for Finesse with Unified CCX.

Note

This feature also reports replication status. Replication status determines whether a user is allowed to or
restricted from changing the value of the secondary node.

The Finesse server interacts with the VOS database to get and set information about the secondary node.

The ClusterConfig object is structured as follows:
<ClusterConfig>

<uri>/finesse/api/ClusterConfig</uri>
<secondaryNode>

<host></host>
</secondaryNode>

</ClusterConfig>

Any changes made to the settings through the ClusterConfig API will require a Cisco Finesse Tomcat restart.Note

ClusterConfig APIs

ClusterConfig—Get
This API allows an administrator to get a copy of the ClusterConfig object.

https://<FQDN>/finesse/api/ClusterConfigURI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
238

Cisco Finesse Configuration APIs
ECCVariableConfig API Errors

https://finesse1.xyz.com/finesse/api/ClusterConfigExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<ClusterConfig>
<uri>/finesse/api/ClusterConfig</uri>
<secondaryNode>

<host>10.1.1.1</host>
</secondaryNode>

</ClusterConfig>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

ClusterConfig—Set
This API allows an administrator to configure cluster settings for Finesse.

https://<FQDN>/finesse/api/ClusterConfigURI:

https://finesse1.xyz.com/finesse/api/ClusterConfigExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<ClusterConfig>
<uri>/finesse/api/ClusterConfig</uri>
<secondaryNode>

<host>10.1.1.1</host>
</secondaryNode>

</ClusterConfig>

HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
239

Cisco Finesse Configuration APIs
ClusterConfig—Set

host (required): Hostname or IP address of the secondary Finesse serverRequest Parameters:

200: Success

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>host</ErrorMessage>
<ErrorData>10.1.1</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

ClusterConfig API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the ClusterConfig object.

Stringuri

—Information about
secondary Finesse node.

CollectionsecondaryNode

No special characters
allowed except “.”
and “-”.

—The hostname or IP address
of the secondary Finesse
node.

String-->host

ClusterConfig API Errors
DescriptionError TypeStatus

One of the parameters provided as part of the user
input is invalid or not recognized.

Invalid Input400

A required parameter was not provided in the request.Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
240

Cisco Finesse Configuration APIs
ClusterConfig API Parameters

DescriptionError TypeStatus

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

EnterpriseDatabaseConfig
The EnterpriseDatabaseConfig object is a container element that holds the properties required for Finesse to
connect to the Administration & Data Server database (AWDB) for user authentication.

The EnterpriseDatabaseConfig APIs apply only to Finesse deployments with Unified CCE. Because these
settings do not apply to Finesse deployments with Unified CCX, these APIs are not supported with Unified
CCX.

Note

The EnterpriseDatabaseConfig object is structured as follows:
<EnterpriseDatabaseConfig>

<uri>/finesse/api/EnterpriseDatabaseConfig</uri>
<host></host>
<backupHost></backupHost>
<port></port>
<databaseName></databaseName>
<domain></domain>
<username></username>
<password></password>

</EnterpriseDatabaseConfig>

Any changes made to the settings through the EnterpriseDatabaseConfig API will require a Cisco Finesse
Tomcat restart.

Note

EnterpriseDatabaseConfig APIs

EnterpriseDatabaseConfig—Get
This API allows an administrator to get a copy of the EnterpriseDatabaseConfig object.

https://<FQDN>/finesse/api/EnterpriseDatabaseConfigURI:

https://finesse1.xyz.com/finesse/api/EnterpriseDatabaseConfigExample URI:

Only administrators can use this API.Security
Constraints:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
241

Cisco Finesse Configuration APIs
EnterpriseDatabaseConfig

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<EnterpriseDatabaseConfig>
<uri>/finesse/api/EnterpriseDatabaseConfig</uri>
<host>10.1.1.1</host>
<backupHost>10.1.1.2</backupHost>
<port>1433</port>
<databaseName>ucce8x_awdb</databaseName>
<domain>xyz.com</domain>
<username>Administrator</username>
<password>admin_password</password>

</EnterpriseDatabaseConfig>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

EnterpriseDatabaseConfig—Set
This API allows an administrator to configure the enterprise database settings.

If you do not specify the backupHost during a PUT operation but it was configured at an earlier time, the PUT
operation resets the value for this parameter to blank.

Note

The URI for this API contains the query parameter override. This parameter is optional and can be set to true
or false.

Certain errors returned by this API can be overridden. If an error can be overridden, it contains an override
XML element within the body with a value of "true". If Finesse cannot connect to the Enterprise database
with the supplied parameters, the following error is returned.
<ApiErrors>
<ApiError>
<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>Enterprise Database Connection Validation Failed</ErrorMessage>
<ErrorData>Unable to authenticate against the primary enterprise database</ErrorData>
<Overrideable>true</Overrideable>
</ApiError>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
242

Cisco Finesse Configuration APIs
EnterpriseDatabaseConfig—Set

</ApiErrors>

If this API is called with the query parameter override set to "true", the validation is skipped, the error is
overridden, and the API continues to run.

https://<FQDN>/finesse/api/EnterpriseDatabaseConfig?override='<true|false>'URI:

https://finesse1.xyz.com/finesse/api/EnterpriseDatabaseConfig?override='true'Example URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<EnterpriseDatabaseConfig>
<uri>/finesse/api/EnterpriseDatabaseConfig</uri>
<host>10.1.1.1</host>
<backupHost>10.1.1.2</backupHost>
<port>1433</port>
<databaseName>ucce8.x_awdb</databaseName>
<domain>example.com</domain>
<username>Admin</username>
<password>password</password>

</EnterpriseDatabaseConfig>

HTTP Request:

host (required): Hostname or IP address of the AWDB server

backupHost (optional): Hostname or IP address of the backup AWDB server

Port (required): Port number of the AWDB server

databaseName (required): Name of the AWDB

domain (optional): Domain of the AWDB

username (required): Username to sign in to the AWDB. If there is a domain
specified, this must be a domain user. Otherwise it must be an SQL user.

password (required): Password to sign in to the AWDB

Request Parameters:

200: Success

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>port</ErrorMessage>
<ErrorData>65536</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
243

Cisco Finesse Configuration APIs
EnterpriseDatabaseConfig—Set

EnterpriseDatabaseConfig API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the
EnterpriseDatabaseConfig
object.

Stringuri

No special characters
allowed except “.”
and “-”.

—The hostname or IP address
of the AWDB server.

Stringhost

No special characters
allowed except “.”
and “-”.

—The hostname or IP address
of the backup AWDB
server.

StringbackupHost

1–65535The port of the AWDB
server.

Integerport

—The name of the AWDB
(for example,
ucceinstance_awdb).

StringdatabaseName

—The domain of the AWDB.Stringdomain

—The username required to
sign in to the AWDB. If
there is a domain specified,
this must be a domain user.
Otherwise it must be an
SQL user.

Stringusername

—The password required to
sign in to the AWDB.

Stringpassword

EnterpriseDatabaseConfig API Errors
DescriptionError TypeStatus

One of the parameters provided as part of the user
input is invalid or not recognized.

Invalid Input400

A required parameter was not provided in the request.

For example, if the backupPort is provided but the
backupHost is missing.

Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
244

Cisco Finesse Configuration APIs
EnterpriseDatabaseConfig API Parameters

DescriptionError TypeStatus

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

LayoutConfig
The LayoutConfig object is a container element that holds the layout XML for the Finesse desktop. The layout
XML defines how tabs, labels, columns, and gadgets appear on the Finesse agent and supervisor desktops.

When the desktop loads, Finesse reads the label for each tab and attempts to find it in the resource bundle (as
a key). If Finesse finds the key, it displays in the value in the tab. If Finesse does not find the key, it displays
the key as the default value for the tab.

The following example shows how the key mappings appear in the resource bundle for the Home andManage
Call tabs:

finesse.container.tabs.agent.homeLabel=Home
finesse.container.tabs.agent.manageCallLabel=Manage Call
finesse.container.tabs.supervisor.homeLabel=Home
finesse.container.tabs.supervisor.manageCallLabel=Manage Call

Gadgets that reside on the Finesse server can be specified by a relative path, as shown in the following example:
/desktop/gadgets/<gadgetname>.xml

Gadgets that are hosted on a server other than the Finesse server must be specified with a fully-qualified URL
(absolute path), as shown in the following example:
http://server.com/<path to gadget>/<gadget name>.xml

Note

The LayoutConfig object is structured as follows for Unified CCE:
<!--
*Note: When you upgrade, modify Custom Layout XML appropriately to utilize the benefits of
new gadgets.
-->
<finesseLayout xmlns="http://www.cisco.com/vtg/finesse">

<!-- DO NOT EDIT. The version number for the layout XML. -->
<version>1250.03</version>
<configs>

<!-- The Title for the application which can be customized. -->
<config key="title" value="Cisco Finesse"/>
<!-- The following entries are examples of changing defaults for desktop properties.

To change any property, uncomment the respective line and set the appropriate value.

For more details on the properties that can be customized, refer to the Cisco Finesse

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
245

Cisco Finesse Configuration APIs
LayoutConfig

Administration Guide.
Note: The customized properties can only be set in the configs section and are not

role-specific. -->
<!-- <config key="enableDragDropAndResizeGadget" value="false"/> -->
<!-- <config key="wrapUpCountDown" value="true"/> -->
<!-- <config key="desktopChatAttachmentEnabled" value="true"/> -->
<!-- <config key="forceWrapUp" value="true"/> -->
<!-- The logo file for the application -->
<!-- For detailed instructions on using custom icons for logos and tabs,
please refer to the section "Customize Title and Logo in the Header"
in the Finesse Administration Guide. -->
<!-- <config key="logo" value="/3rdpartygadget/files/cisco_finext_logo.png"/> -->

</configs>
<header>

<!-- Please ensure that at least one gadget/component is present within every
headercolumn tag -->
<leftAlignedColumns>
<headercolumn width="300px">
<component id="cd-logo">
<url>/desktop/scripts/js/logo.js</url>
</component>
</headercolumn>
<headercolumn width="230px">
<component id="agent-voice-state">
<url>/desktop/scripts/js/agentvoicestate.component.js</url>
</component>
</headercolumn>
<headercolumn width="251px">
<component id="nonvoice-state-menu">
<url>/desktop/scripts/js/nonvoice-state-menu.component.js</url>
</component>
</headercolumn>

</leftAlignedColumns>
<rightAlignedColumns>
<headercolumn width="50px">

<component id="broadcastmessagepopover">
<url>/desktop/scripts/js/teammessage.component.js</url>

</component>
</headercolumn>

<headercolumn width="50px">
<component id="chat">

<url>/desktop/scripts/js/chat.component.js</url>
</component>

</headercolumn>
<headercolumn width="50px">
<component id="make-new-call-component">
<url>/desktop/scripts/js/makenewcall.component.js</url>
</component>
</headercolumn>
<headercolumn width="72px">
<component id="identity-component">
<url>/desktop/scripts/js/identity-component.js</url>
</component>
</headercolumn>
</rightAlignedColumns>
</header>

<layout>
<role>Agent</role>
<page>

<gadget>/desktop/scripts/js/callcontrol.js</gadget>
</page>
<tabs>

<tab>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
246

Cisco Finesse Configuration APIs
LayoutConfig

<id>home</id>
<icon>home</icon>
<label>finesse.container.tabs.agent.homeLabel</label>
<columns>

<column>
<gadgets>
<

<!-- The following gadget is for CloudCherry Customer Experience
Journey.

If CloudCherry is onboarded successfully with all configurations,
then replace the url

with the actual url obtained by exporting the Cisco Finesse
gadget from CloudCherry -->

<!-- <gadget>/3rdpartygadget/files/CXService/CiscoCXJourneyGadget.xml</gadget> -->

<gadget>/desktop/scripts/js/queueStatistics.js</gadget>

<!--
The following Gadgets are for LiveData.
If you wish to show LiveData Reports, then do the following:

1) Uncomment each Gadget you wish to show.
2) Replace all instances of "my-cuic-server.com" with the Fully Qualified

Domain Name of your Intelligence Center Server.
3) [OPTIONAL] Adjust the height of the gadget by changing the

"gadgetHeight" parameter.
IMPORTANT NOTES:

- In order for these Gadgets to work, you must have performed all
documented pre-requisite steps.

- Do *NOT* change the viewId (unless you have built a custom report and
know what you are doing).

- The "teamName" will be automatically replaced with the Team Name of
the User logged into Finesse (for Team-specific layouts).
-->

<!-- HTTPS Version of LiveData Gadgets -->
<!-- TEAM STATUS REPORTS: 1. Agent Default view (default), 2.

Agent Skill Group Default view -->
<!--

<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=310&

viewId_1=99E6C8E210000141000000D80A0006C4&filterId_1=agent.id=CL%20teamName&

viewId_2=9AB7848B10000141000001C50A0006C4&filterId_2=agent.id=CL%20teamName</gadget>
-->

<!-- QUEUE STATUS REPORTS: 1. Skill Group Default view (default),
2. Skill Group Utilization view, 3. Precision Queue Default view, 4. Precision Queue
Utilization view -->

<!--
<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?
gadgetHeight=310&viewId_1=B7371BE210000144000002870A0007C5&filterId_1=skillGroup.id=CL%20teamName
&viewId_2=9E760C8B1000014B0000005A0A0006C4&filterId_2=skillGroup.id=CL%20teamName
&viewId_3=B71A630C10000144000002480A0007C5&filterId_3=precisionQueue.id=CL%20teamName&
viewId_4=286B86F01000014C000005330A0006C4&filterId_4=precisionQueue.id=CL%20teamName</gadget>
-->

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>myStatistics</id>
<icon>column-chart</icon>
<label>finesse.container.tabs.agent.myStatisticsLabel</label>
<columns>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
247

Cisco Finesse Configuration APIs
LayoutConfig

<column>
<gadgets>

<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?
gadgetHeight=150&viewId=0B8D11317ED54A80B64F3AE28C5139E5&
filterId=agentStats.id=CL%20teamName</gadget>

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>myHistory</id>
<icon>history</icon>
<label>finesse.container.tabs.agent.myHistoryLabel</label>
<columns>

<column>
<!-- The following gadgets are used for viewing the call history

and state history of an agent. -->
<gadgets>

<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?
gadgetHeight=280&viewId=5FA44C6F930C4A64A6775B21A17EED6A&
filterId=agentTaskLog.id=CL%20teamName</gadget>

<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?
gadgetHeight=280&viewId=56BC5CCE8C37467EA4D4EFA8371258BC&
filterId=agentStateLog.id=CL%20teamName</gadget>

</gadgets>
</column>

</columns>
</tab>
<!--

The following Gadgets are for LiveData.
If you wish to show More LiveData Reports, then do the following:

1) Uncomment each Gadget you wish to show.
2) Replace all instances of "my-cuic-server.com" with the Fully Qualified Domain Name

of your Intelligence Center Server.
3) [OPTIONAL] Adjust the height of the gadget by changing the "gadgetHeight" parameter.

IMPORTANT NOTES:
- In order for these Gadgets to work, you must have performed all documented pre-requisite

steps.
- Do *NOT* change the viewId (unless you have built a custom report and know what you

are doing).
- The "teamName" will be automatically replaced with the Team Name of the User logged

into Finesse (for Team-specific layouts).
-->

<!-- If you are showing the "More Live Data Reports" tab, then also uncomment
this section.

<tab>
<id>moreLiveDataReports</id>
<icon>reports-more</icon>
<label>finesse.container.tabs.agent.moreLiveDataReportsLabel</label>
<gadgets>

-->
<!-- HTTPS Version of LiveData Gadgets -->
<!-- AGENT REPORTS: 1. Agent Default view (default) -->

<!--
<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=310&
viewId_1=99E6C8E210000141000000D80A0006C4&filterId_1=agent.id=CL%20teamName</gadget>-->
<!-- AGENT SKILL GROUP REPORTS: 1. Agent Skill Group Default view (default) -->
<!--
<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=310&
viewId_1=9AB7848B10000141000001C50A0006C4&filterId_1=agent.id=CL%20teamName</gadget>-->

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
248

Cisco Finesse Configuration APIs
LayoutConfig

<!-- QUEUE STATUS SKILL GROUP REPORTS: 1. Skill Group Default view (default),
2. Skill Group Utilization view -->

<!--
<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=310&
viewId_1=B7371BE210000144000002870A0007C5&filterId_1=skillGroup.id=CL%20teamName&
viewId_2=9E760C8B1000014B0000005A0A0006C4&filterId_2=skillGroup.id=CL%20teamName</gadget>-->

<!-- QUEUE STATUS PRECISION QUEUE REPORTS: 1. Precision Queue Default view
(default), 2. Precision Queue Utilization view -->

<!--
<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=310&
viewId_1=B71A630C10000144000002480A0007C5&filterId_1=precisionQueue.id=CL%20teamName&
viewId_2=286B86F01000014C000005330A0006C4&filterId_2=precisionQueue.id=CL%20teamName</gadget>-->

<!-- If you are showing the "more reports" tab, then uncomment this section
too.

</gadgets>
</tab>
-->

</tabs>
</layout>
<layout>

<role>Supervisor</role>
<page>

<gadget>/desktop/scripts/js/callcontrol.js</gadget>
</page>
<tabs>

<tab>
<id>home</id>
<icon>home</icon>
<label>finesse.container.tabs.supervisor.homeLabel</label>
<columns>

<column>
<gadgets>
<!-- The following gadget is for CloudCherry Customer Experience

Analytics.
If CloudCherry is onboarded successfully with all configurations,

then replace the url
with the actual url obtained by exporting the Cisco Finesse

gadget from CloudCherry -->
<!-- <gadget>/3rdpartygadget/files/CXService/CiscoCXAnalyticsGadget.xml</gadget> -->

<gadget
id="team-performance">/desktop/scripts/js/teamPerformance.js</gadget>

<!-- The following gadgets are used for viewing the call history
and state history of an agent selected in the Team Performance Gadget. -->

<!-- The following gadgets are managed(loaded and displayed)
by the team performance gadget (associated with id "team-performance").

This association is done using the mapping of managedBy
attribute of the managed gadgets, to the id of managing gadget.

If the id for team performance gadget is changed, the
values for the associated managedBy attribute

for the managed gadgets, also need to be updated with the
new id.

These managed gadgets are not displayed by default, but
would be displayed when the option

"view history" is selected, for an agent, in the team
performance gadget.

Note: As managed gadgets are not displayed by default,
placing managed gadgets alone on

separate columns of their own, would display blank space

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
249

Cisco Finesse Configuration APIs
LayoutConfig

in that area.
For more details on managed gadgets and managedBy attribute,

please refer to Finesse Administration Guide.
-->

<gadget
managedBy="team-performance">https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?
gadgetHeight=275&viewId=630CB4C96B0045D9BFF295A49A0BA45E&filterId=agentTaskLog.id=AgentEvent:Id
&type=dynamic&maxRows=20</gadget>
<gadget
managedBy="team-performance">https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?
gadgetHeight=275&viewId=56BC5CCE8C37467EA4D4EFA8371258BC&filterId=agentStateLog.id=AgentEvent:Id
&type=dynamic&maxRows=20</gadget>

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>myHistory</id>
<icon>history</icon>
<label>finesse.container.tabs.agent.myHistoryLabel</label>
<columns>

<column>
<!-- The following gadgets are used for viewing the call history

and state history of a logged in supervisor. -->
<gadgets>

<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=280&
viewId=5FA44C6F930C4A64A6775B21A17EED6A&filterId=agentTaskLog.id=CL%20teamName</gadget>

<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=280&
viewId=56BC5CCE8C37467EA4D4EFA8371258BC&filterId=agentStateLog.id=CL%20teamName</gadget>

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>teamData</id>
<icon>team-data</icon>
<label>finesse.container.tabs.supervisor.teamDataLabel</label>
<columns>

<column>
<!-- The following gadget is used by the supervisor to view an

agent's queue interval details. -->
<gadgets>

<gadget>https://my-cuic-server.com:8444/cuic/gadget/LiveData/LiveDataGadget.jsp?gadgetHeight=310&
viewId=0B8D11317ED54A80B64F3AE28C5139E5&filterId=agentStats.id=CL%20teamName</gadget>

<gadget>https://my-cuic-server.com:8444/cuic/gadget/Historical/HistoricalGadget.jsp?
viewId=BD9A8B7DBE714E7EB758A9D472F0E7DC&linkType=htmlType&viewType=Grid
&refreshRate=900&@start_date=RELDATE%20THISWEEK&@end_date=RELDATE%20THISWEEK&
@agent_list=CL%20~teams~&gadgetHeight=360</gadget>

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>queueData</id>
<icon>storage</icon>
<label>finesse.container.tabs.supervisor.queueDataLabel</label>
<columns>

<column>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
250

Cisco Finesse Configuration APIs
LayoutConfig

<gadgets>
<gadget>/desktop/scripts/js/queueStatistics.js</gadget>

</gadgets>
</column>

</columns>
</tab>

</tabs>
</layout>

</finesseLayout>

The LayoutConfig object is structured as follows for Unified CCX:
<!--
*Note:
- When you upgrade, modify Custom Layout XML appropriately to utilize the benefits of new
gadgets.
- Remove the Agent State Log gadget from My Statistics tab, as it is available in the My
History tab.
-->
<finesseLayout xmlns="http://www.cisco.com/vtg/finesse">

<!-- DO NOT EDIT. The version number for the layout XML. -->
<version>1250.03</version>
<configs>

<!-- The Title for the application which can be customized. -->
<config key="title" value="Cisco Finesse"/>
<!-- The following entries are examples of changing defaults for desktop properties.

To change any property, uncomment the respective line and set the appropriate value.

For more details on the properties that can be customized, refer to the Cisco Finesse
Administration Guide.

Note: The customized properties can only be set in the configs section and are not
role-specific. -->

<!-- <config key="enableDragDropAndResizeGadget" value="false"/> -->
<!-- <config key="wrapUpCountDown" value="true"/> -->
<!-- <config key="desktopChatAttachmentEnabled" value="true"/> -->
<!-- <config key="enableShortCutKeys" value="true"/> -->
<!-- The logo file for the application -->
<!-- For detailed instructions on using custom icons for logos and tabs,
please refer to the section "Customize Title and Logo in the Header"
in the Finesse Administration Guide. -->
<!-- <config key="logo" value="/3rdpartygadget/files/cisco_finext_logo.png"/> -->

</configs>
<header>

<!-- Please ensure that at least one gadget/component is present within every
headercolumn tag -->

<leftAlignedColumns>
<headercolumn width="300px">

<component id="cd-logo">
<url>/desktop/scripts/js/logo.js</url>

</component>
</headercolumn>
<headercolumn width="230px">

<component id="agent-voice-state">
<url>/desktop/scripts/js/agentvoicestate.component.js</url>

</component>
</headercolumn>
<headercolumn width="251px">

<component id="nonvoice-state-menu">
<url>/desktop/scripts/js/nonvoice-state-menu.component.js</url>

</component>
</headercolumn>

</leftAlignedColumns>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
251

Cisco Finesse Configuration APIs
LayoutConfig

<rightAlignedColumns>
<headercolumn width="50px">

<component id="broadcastmessagepopover">
<url>/desktop/scripts/js/teammessage.component.js</url>

</component>
</headercolumn>

<headercolumn width="50px">
<component id="chat">

<url>/desktop/scripts/js/chat.component.js</url>
</component>

</headercolumn>
<headercolumn width="50px">

<component id="make-new-call-component">
<url>/desktop/scripts/js/makenewcall.component.js</url>

</component>
</headercolumn>
<headercolumn width="72px">

<component id="identity-component">
<url>/desktop/scripts/js/identity-component.js</url>

</component>
</headercolumn>

</rightAlignedColumns>
</header>
<layout>

<role>Agent</role>
<page>

<gadget>/desktop/scripts/js/callcontrol.js</gadget>
<!--

The following Gadget is used for WebChat and Email. It is *ONLY* supported with WebChat
and Email. If you are not using WebChat and Email, then

remove it. If you are using WebChat or Email, include this Gadget in the Desktop Layouts
used by Teams associated with chat and email

CSQs. To include this functionality:
1) Remove these comments leaving the gadget

RESTRICTIONS:
- The NonVoiceControl gadget must be configured as a page level gadget
- The NonVoiceControl gadget must not be configured in a column

<gadget
hidden="true">https://localhost:8445/uccx-nvcontrol/gadgets/NonVoiceControl.xml</gadget>
-->

</page>
<tabs>

<tab>
<id>home</id>
<icon>home</icon>
<label>finesse.container.tabs.agent.homeLabel</label>
<columns>

<column>
<gadgets>

<!-- The following gadget is for CloudCherry Customer Experience Journey.
If CloudCherry is onboarded successfully with all configurations,

then replace the url
with the actual url obtained by exporting the Cisco Finesse

gadget from CloudCherry -->
<!-- <gadget>/3rdpartygadget/files/CXService/CiscoCXJourneyGadget.xml</gadget> -->

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=310&
viewId=76D964AD10000140000000830A4E5E6F&filterId=AgentCSQStats.csqName=CL&compositeFilterId=
AgentCSQStats.AgentIds.agentId=loginId</gadget>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=310&

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
252

Cisco Finesse Configuration APIs
LayoutConfig

viewId=5C626F9C10000140000000600A4E5B33&filterId=ResourceIAQStats.resourceId=CL</gadget>
</gadgets>

</column>
</columns>

</tab>
<tab>

<id>myHistory</id>
<icon>history</icon>
<label>finesse.container.tabs.agent.myHistoryLabel</label>
<columns>

<column>
<!-- The following gadgets are used for viewing the call history

and state history of an agent. -->
<gadgets>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=280&
viewId=ECD59EE071BE439A898187B29575E175&filterId=AgentCallLogDetailStats.agentID=loginId</gadget>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=280&
viewId=5D411E8A10000140000000230A4E5E6B&filterId=AgentStateDetailStats.agentID=loginId</gadget>

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>myStatistics</id>
<icon>column-chart</icon>
<label>finesse.container.tabs.agent.myStatisticsLabel</label>
<columns>

<column>
<gadgets>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=150&
viewId=67D4371110000140000001080A4E5E6B&filterId=ResourceIAQStats.resourceId=loginId</gadget>

</gadgets>
</column>

</columns>
</tab>
<!--

The following Tab and Gadget are used for WebChat and Email. They are *ONLY* supported
with WebChat and Email. If you are not using WebChat or Email, then

remove them. If you are using WebChat or Email, include this Gadget in the Desktop
Layouts used by Teams associated with chat or email

CSQs. To include this functionality:
1) Remove these comments leaving the tab and gadget
2) Replace all instances of "my-ccp-server" with the Fully Qualified Domain Name

of your CCP Server.
3) [OPTIONAL] Adjust the height of the gadget by changing the "gadgetHeight"

parameter.

IMPORTANT NOTE:
- In order for this Gadget to work, you must have performed all documented

prerequisite steps.

RESTRICTIONS:
- The multisession-reply-gadget must not be configured as a page level gadget
- The multisession-reply-gadget must not be configured in a column

<tab>
<id>manageNonVoiceMedia</id>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
253

Cisco Finesse Configuration APIs
LayoutConfig

<icon>settings</icon>
<label>finesse.container.tabs.agent.manageNonVoiceMediaLabel</label>
<columns>

<column>
<gadgets>

<gadget>https://my-ccp-server/multisession/ui/gadgets/multisession-reply-gadget.xml?gadgetHeight=590</gadget>

</gadgets>
</column>

</columns>
</tab>

-->
</tabs>

</layout>
<layout>

<role>Supervisor</role>
<page>

<gadget>/desktop/scripts/js/callcontrol.js</gadget>
<!--

The following Gadget is used for WebChat and Email. It is *ONLY* supported with WebChat
and Email. If you are not using WebChat and Email, then

remove it. If you are using WebChat or Email, include this Gadget in the Desktop Layouts
used by Teams associated with chat or email

CSQs. To include this functionality:
1) Remove these comments leaving the gadget

RESTRICTIONS:
- The NonVoiceControl gadget must be configured as a page level gadget
- The NonVoiceControl gadget must not be configured in a column
- The NonVoiceControl gadget is a headless gadget(i.e., with no display of its own),

but has to be available for the agent's non-voice state control to be able
to

set agent states for WebChat and Email.

<gadget
hidden="true">https://localhost:8445/uccx-nvcontrol/gadgets/NonVoiceControl.xml</gadget>
-->

</page>
<tabs>

<tab>
<id>manageTeam</id>
<icon>manage-team</icon>
<label>finesse.container.tabs.supervisor.manageTeamLabel</label>
<columns>

<column>
<gadgets>
<!-- The following gadget is for CloudCherry Customer Experience

Analytics.
If CloudCherry is onboarded successfully with all configurations,

then replace the url
with the actual url obtained by exporting the Cisco Finesse

gadget from CloudCherry -->
<!-- <gadget>/3rdpartygadget/files/CXService/CiscoCXAnalyticsGadget.xml</gadget> -->

<gadget
id="team-performance">/desktop/scripts/js/teamPerformance.js</gadget>

<!-- The following gadgets are used for viewing the call history
and state history of an agent selected in the Team Performance Gadget. -->

<!-- The following gadgets are managed(loaded and displayed)
by the team performance gadget (associated with id "team-performance").

This association is done using the mapping of managedBy

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
254

Cisco Finesse Configuration APIs
LayoutConfig

attribute of the managed gadgets, to the id of managing gadget.
If the id for team performance gadget is changed, the

values for the associated managedBy attribute
for the managed gadgets, also need to be updated with the

new id.

These managed gadgets are not displayed by default, but
would be displayed when the option

"view history" is selected, for an agent, in the team
performance gadget.

Note: As managed gadgets are not displayed by default,
placing managed gadgets alone on

separate columns of their own, would display blank space
in that area.

For more details on managed gadgets and managedBy attribute,
please refer to Finesse Administration Guide.

-->
<gadget

managedBy="team-performance">https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?
gadgetHeight=275&viewId=D6D0B6740B0040D5A089FD1C09F5C72C&filterId=
AgentCallLogDetailStats.agentID=AgentEvent:Id&type=dynamic&maxRows=20</gadget>

<gadget
managedBy="team-performance">https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?
gadgetHeight=275&viewId=5D411E8A10000140000000230A4E5E6B&filterId=
AgentStateDetailStats.agentID=AgentEvent:Id&type=dynamic&maxRows=20</gadget>

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>myHistory</id>
<icon>history</icon>
<label>finesse.container.tabs.supervisor.myHistoryLabel</label>
<columns>

<column>
<!-- The following gadgets are used for viewing the call history

and state history of a supervisor. -->
<gadgets>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=280&
viewId=ECD59EE071BE439A898187B29575E175&filterId=AgentCallLogDetailStats.agentID=loginId</gadget>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=280&
viewId=5D411E8A10000140000000230A4E5E6B&filterId=AgentStateDetailStats.agentID=loginId</gadget>

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>teamData</id>
<icon>team-data</icon>
<label>finesse.container.tabs.supervisor.teamDataLabel</label>
<columns>

<column>
<gadgets>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=620&
viewId_1=7291DCB410000140000000890A4E5B33&filterId_1=ResourceIAQStats.resourceId=CL&viewId_2=728283C210000140000000530A4E5B33
&filterId_2=ResourceIAQStats.resourceId=CL</gadget>

<!--
The following Gadget is used for WebChat and Email. It is *ONLY* supported with WebChat

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
255

Cisco Finesse Configuration APIs
LayoutConfig

and Email. If you are not using WebChat or Email, then
remove it. If you are using WebChat or Email, include this Gadget in the Desktop Layouts

used by Teams associated with chat or email
CSQs. To include this functionality:

1) Remove these comments leaving the gadget

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=310&
viewId=F2F1FC17100001440000014E0A4E5D48&filterId=ChatAgentStats.agentId=CL</gadget>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=310&
viewId=BCC5767B1000014F000000580A4D3FA7&filterId=EmailAgentStats.agentId=CL</gadget>
-->

<!--
The following Gadgets are used for Predictive/Progressive/Preview Agent Outbound.
To include this functionality:
1) Remove these comments leaving the gadget

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=310&
viewId_1=FD919FB9100001440000005D0A4E5B29&filterId_1=ResourceIAQStats.resourceId=CL&viewId_2=FD919FB510000144000000470A4E5B29
&filterId_2=ResourceIAQStats.resourceId=CL</gadget>
-->

</gadgets>
</column>

</columns>
</tab>
<tab>

<id>queueData</id>
<icon>storage</icon>
<label>finesse.container.tabs.supervisor.queueDataLabel</label>
<columns>

<column>
<gadgets>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=620
&viewId_1=C8E2DB1610000140000000A60A4E5E6B&filterId_1=VoiceIAQStats.esd
Name=CL&viewId_2=9A7A14CE10000140000000ED0A4E5E6B&filterId_2=VoiceCSQDetailsStats.
agentId=CL&compositeFilterId=VoiceCSQDetailsStats.AgentVoiceCSQNames.agentVoiceCSQName=CL&
viewId_3=C8EF510810000140000000EB0A4E5E6B&filterId_3=VoiceIAQStats.esdName=CL&viewId_4=
C8EE241910000140000000C30A4E5E6B&
filterId_4=VoiceIAQStats.esdName=CL</gadget>

<!--
The following Gadget is used for WebChat and Email. It is *ONLY* supported with WebChat

and Email. If you are not using WebChat or Email, then
remove it. If you are using WebChat or Email, include this Gadget in the Desktop Layouts

used by Teams associated with chat or email
CSQs. To include this functionality:

1) Remove these comments leaving the gadget

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=310&
viewId=E42ED788100001440000007B0A4E5CA1&filterId=ChatQueueStatistics.queueName=CL</gadget>

<gadget>https://localhost:8445/cuic/gadget/LiveData/LiveDataGadget.xml?gadgetHeight=310&
viewId=13970B4E100001500000021C0A4D3FA7&filterId=EmailQueueStatistics.queueName=CL</gadget>

-->
</gadgets>

</column>
</columns>

</tab>
<!--

The following Tab and Gadget are used for WebChat and Email. They are *ONLY* supported

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
256

Cisco Finesse Configuration APIs
LayoutConfig

with WebChat and Email. If you are not using WebChat or Email, then
remove them. If you are using WebChat or Email, include this Gadget in the Desktop

Layouts used by Teams associated with chat or email
CSQs. To include this functionality:

1) Remove these comments leaving the tab and gadget
2) Replace all instances of "my-ccp-server" with the Fully Qualified Domain Name

of your CCP Server.
3) [OPTIONAL] Adjust the height of the gadget by changing the "gadgetHeight"

parameter.

IMPORTANT NOTE:
- In order for this Gadget to work, you must have performed all documented

prerequisite steps.

RESTRICTIONS:
- The multisession-reply-gadget must not be configured as a page level gadget
- The multisession-reply-gadget must not be configured in a column

<tab>
<id>manageNonVoiceMedia</id>
<icon>settings</icon>
<label>finesse.container.tabs.supervisor.manageNonVoiceMediaLabel</label>
<columns>

<column>
<gadgets>

<gadget>https://my-ccp-server/multisession/ui/gadgets/multisession-reply-gadget.xml?gadgetHeight=590</gadget>

</gadgets>
</column>

</columns>
</tab>

-->
<!--

The following gadget provides Supervisor with advanced capabilities.
Using this gadget, supervisors can manage Queues, Prompts, Calendars, and so on.
Before including this gadget in Desktop Layout,
ensure that the advanced capability is enabled in Unified CCX Administration.

<tab>
<id>ASCGadget</id>
<icon>admin</icon>
<label>finesse.container.tabs.supervisor.advancedcapabilities</label>
<columns>

<column>
<gadgets>

<gadget>https://localhost:8445/ascgadget/gadgets/ascgadget.xml</gadget>
</gadgets>

</column>
</columns>

</tab>
-->

</tabs>
</layout>

</finesseLayout>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
257

Cisco Finesse Configuration APIs
LayoutConfig

LayoutConfig APIs

LayoutConfig—Get
This API allows an administrator to get a copy of the LayoutConfig object.

https://<FQDN>/finesse/api/LayoutConfig/defaultURI:

https://finesse1.xyz.com/finesse/api/LayoutConfig/defaultExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<LayoutConfig>
<uri>/finesse/api/LayoutConfig/default</uri>

<layoutxml>

...

</layoutxml>
</LayoutConfig>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

LayoutConfig—Set
This API allows an administrator to update the default layout settings for the Finesse desktop.

The XML data is verified to ensure that it is valid XML and that it conforms to the Finesse schema.Note

https://<FQDN>/finesse/api/LayoutConfig/defaultURI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
258

Cisco Finesse Configuration APIs
LayoutConfig APIs

https://finesse1.xyz.com/finesse/api/LayoutConfig/defaultExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<LayoutConfig>
<layoutxml><?xml version="1.0" encoding="UTF-8">

...
</layoutxml>

</LayoutConfig>

HTTP Request:

layoutxml (required): The XML data that determines the layout of the Finesse
desktop

Request Parameters:

200: Success

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>layoutxml</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

LayoutConfig API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the LayoutConfig object.

Stringuri

Must be valid XML
and must conform to
the Finesse schema.

—The XML data that
determines the layout of the
Finesse desktop.

Stringlayoutxml

LayoutConfig API Errors
DescriptionError TypeStatus

The submitted XML is invalid or does not conform to
the Finesse schema.

Invalid Input400

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
259

Cisco Finesse Configuration APIs
LayoutConfig API Parameters

DescriptionError TypeStatus

The layout XML file was not provided.Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

ReasonCode
The ReasonCode object represents a reason code that can be applied when an agent changes state. There are
two categories of reason codes: not ready reason codes and sign out reason codes.

Administrators can use either the ReasonCode APIs or the Finesse administration console to configure not
ready and sign out reason codes. When using the APIs to configure reason codes, the administrator specifies
the category of reason code in the request (NOT_READY or LOGOUT).

To prevent reporting problems, define your reason codes consistently on both Finesse and the platform (Unified
CCE or Unified CCX). For example, if you create a not ready reason code in Finesse with a code of 413 and
a label of “Meeting”, but create a not ready reason code in Unified CCE with a code of 413 and a description
of “Lunch Break”, the Unified CCE report shows “Lunch Break” for any agent who selects that code. For
more information about predefined reason codes for Unified CCE, see the Cisco Unified Contact Center
Enterprise Reporting User Guide (http://www.cisco.com/en/US/products/sw/custcosw/ps1844/products_user_
guide_list.html). For more information about predefined reason codes for Unified CCX, see theCisco Unified
Contact Center Express CTI Protocol Developer Guide.

System reason codes are defined by Unified CCE and Unified CCX. These reason codes are used by Finesse
but not listed in the ReasonCode APIs.

Note

The ReasonCode object is structured as follows:
<ReasonCode>

<uri>/finesse/api/ReasonCode/{id}</uri>
<category>NOT_READY|LOGOUT</category>
<code></code>
<label></label>
<forAll>true|false</forAll>
<systemCode>true|false</systemCode>

</ReasonCode>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
260

Cisco Finesse Configuration APIs
ReasonCode

http://www.cisco.com/en/US/products/sw/custcosw/ps1844/products_user_guide_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1844/products_user_guide_list.html

ReasonCode APIs

ReasonCode—Get
The following GET APIs allow an administrator or an agent to get a copy of the ReasonCode object.

https://<FQDN>/finesse/api/ReasonCode/<id>URI:

https://finesse1.xyz.com/finesse/api/ReasonCode/45Example URI:

Administrators and agents can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ReasonCode>
<uri>/finesse/api/ReasonCode/45</uri>
<category>NOT_READY</category>
<code>10</code>
<label>Team Meeting</label>
<forAll>true</forAll>
<systemCode>true</systemCode>

</ReasonCode>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

https://<FQDN>/finesse/api/ReasonCode?category=NOT_READY|LOGOUT&code=<code>URI:

https://finesse1.xyz.com/finesse/api/ReasonCode?category=NOT_READY&code=45Example URI:

Administrators and agents can use this API.Security
Constraints:

GETHTTP Method:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
261

Cisco Finesse Configuration APIs
ReasonCode APIs

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ReasonCode>
<uri>/finesse/api/ReasonCode/45</uri>
<category>NOT_READY</category>
<code>10</code>
<label>Team Meeting</label>
<forAll>true</forAll>
<systemCode>true</systemCode>

</ReasonCode>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

ReasonCode—Get List
This API allows an administrator to get a list of not ready or sign out reason codes. The required URI parameter
category specifies whether to retrieve not ready reason codes, sign out reason codes or both. If the category
parameter is missing, the API returns an error.

https://<FQDN>/finesse/api/ReasonCodes?category=NOT_READY|LOGOUT|ALLURI:

https://finesse1.xyz.com/finesse/api/ReasonCodes?category=ALLExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
262

Cisco Finesse Configuration APIs
ReasonCode—Get List

200: Success

400: Invalid Input

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ReasonCodes category="ALL">
<ReasonCode>

<uri>/finesse/api/ReasonCode/1</uri>
<category>NOT_READY</category>
... Rest of ReasonCode Object ..

</ReasonCode>
<ReasonCode>

<uri>/finesse/api/ReasonCode/2</uri>
<category>LOGOUT</category>
... Rest of ReasonCode Object ...

</ReasonCode>
</ReasonCodes>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

ReasonCode—Create
This API allows an administrator to create a new reason code. The administrator specifies the category, code,
label, and forAll attributes for the reason code.

Finesse supports a maximum of 100 global reason codes and 100 non-global reason codes for each category.
You can create up to 100 global and 100 non-global reason codes with a category of NOT_READY, and 100
global and 100 non-global reason codes with a category of LOGOUT.

The forAll parameter determines if a reason code is global (true) or non-global (false).

If you provide two or more duplicate tags in the XML body for a POST operation, the value of the last duplicate
tag is processed and all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/ReasonCode/URI:

https://finesse1.xyz.com/finesse/api/ReasonCode/Example URI:

Only administrators can use this API.Security Constraints:

POSTHTTP Method:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
263

Cisco Finesse Configuration APIs
ReasonCode—Create

Application/XMLContent Type:

XMLInput/Output Format:

<ReasonCode>
<category>NOT_READY</category>
<code>24</code>
<label>Lunch</label>
<forAll>true</forAll>

</ReasonCode>

HTTP Request:

category (required): The category of reason code (NOT_READY or LOGOUT)

code (required):The code for the reason code

label (required): The UI label for the reason code

forAll (required): Whether the reason code is global (true) or non-global (false)

Request Parameters:

200: Success

Finesse successfully created the new ReasonCode. The response
contains an empty response body, and a "location:" header denoting
the absolute URL of the newly created ReasonCode object

Note

400: Bad Request

400: Finesse API Error

400: Maximum Exceeded

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

ReasonCode—Update
This API allows an administrator to modify an existing reason code. The administrator specifies an existing
reason code via the uri, which includes its id, along with the value of the field to update.

At least one of the following parameters must be present in the HTTP request to update a reason code: code,
label, or forAll. If none of these parameters are present, Finesse returns an Invalid Input error.

You do not need to include the attributes (code, label, or forAll) that you do not want to change. For example,
if you want to change only the label for an existing reason code from "In Meeting" to "Attend Meeting", you
can send the following request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
264

Cisco Finesse Configuration APIs
ReasonCode—Update

<ReasonCode>
<label>Attend Meeting</label>

</ReasonCode>

If you provide two or more duplicate tags in the XML body for a PUT operation, the value of the last duplicate
tag is processed and all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/ReasonCode/<id>URI:

https://finesse1.xyz.com/finesse/api/ReasonCode/456Example URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<ReasonCode>
<code>101</code>
<label>Lunch Break</label>
<forAll>true</forAll>

</ReasonCode>

HTTP Request:

id (required): The database ID for the reason code

code:The code for the reason code

label: The UI label for the reason code

forAll: Whether the reason code is global (true) or non-global (false)

Your request must include at least one of the following parameters:
code, label, or forAll.

Note

Request Parameters:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
265

Cisco Finesse Configuration APIs
ReasonCode—Update

ReasonCode—Delete
This API allows an administrator to delete an existing reason code.

https://<FQDN>/finesse/api/ReasonCode/<id>URI:

https://finesse1.xyz.com/finesse/api/ReasonCode/ 423Example URI:

Only administrators can use this API.Security Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

ReasonCode API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the ReasonCode object.

Stringuri

NOT_READY,
LOGOUT

The category of the reason
code.

Stringcategory

The combination of
code and category
must be unique.

Unified CCE: 1–65535

Unified CCX: 1–999

The code for the reason
code

Integercode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
266

Cisco Finesse Configuration APIs
ReasonCode—Delete

NotesPossible ValuesDescriptionTypeParameter

Maximum of 40
characters.

The combination of
label and category
must be unique.

—The UI label for the reason
code.

Stringlabel

true, falseWhether a reason code is
global (true) or non-global
(false).

BooleanforAll

true, falseThe reserved status of the
reason code.

BooleansystemCode

ReasonCode API Errors
DescriptionError TypeStatus

One of the required parameters was not provided or
is invalid

Bad Request400

API error such as duplicated reason code or the reason
code does not exist.

Finesse API Error400

The maximum number of items has been exceeded.Maximum Exceeded400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The authenticated user tried to use the identity of
another user.

Invalid Authorization User
Specified

401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

The specified resource cannot be found.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

WrapUpReason
The WrapUpReason object represents a reason that an agent can apply to a call during call wrap-up.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
267

Cisco Finesse Configuration APIs
ReasonCode API Errors

The WrapUpReason object is structured as follows:
<WrapUpReason>

<uri>/finesse/api/WrapUpReason/{id}</uri>
<label></label>
<forAll>true|false</forAll>

</WrapUpReason>

WrapUpReason APIs

WrapUpReason—Get
This API allows an administrator to get a copy of the WrapUpReason object.

https://<FQDN>/finesse/api/WrapUpReason/<id>URI:

https://finesse1.xyz.com/finesse/api/WrapUpReason/31Example URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<WrapUpReason>
<uri>/finesse/api/WrapUpReason/31</uri>
<label>Product Question</label>
<forAll>false</forAll>

</WrapUpReason>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
268

Cisco Finesse Configuration APIs
WrapUpReason APIs

WrapUpReason—Get List
This API allows an administrator to get a list of wrap-up reasons.

https://<FQDN>/finesse/api/WrapUpReasonsURI:

https://finesse1.xyz.com/finesse/api/WrapUpReasonsExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<WrapUpReasons>
<WrapUpReason>

... Full WrapUpReason Object ...
</WrapUpReason>
<WrapUpReason>

... Full WrapUpReason Object ...
</WrapUpReason>
<WrapUpReason>

... Full WrapUpReason Object ...
</WrapUpReason>

</WrapUpReasons>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

WrapUpReason—Create
This API allows an administrator to create a new wrap-up reason. The administrator specifies the label and
forAll attributes for the wrap-up reason.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
269

Cisco Finesse Configuration APIs
WrapUpReason—Get List

Cisco Finesse does not support the use of extended ASCII characters required for additional alphabets in the
wrap-up reasons. You must use only ASCII characters in the 0-127 range. For example, if you add a wrap-up
reason that contains the character à (ASCII 133), it does not appear correctly on the agent desktop.

Note

Finesse supports a maximum of 100 global wrap-up reasons and 1500 non-global wrap-up reasons, for each
category, with the restriction that a maximum of 100 non-global wrap-up reasons can be assigned to a single
team.

The forAll parameter determines if a reason code is global (true) or non-global (false).

If you provide two or more duplicate tags in the XML body for a POST operation, the value of the last duplicate
tag is processed and all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/WrapUpReason/URI:

https://finesse1.xyz.com/finesse/api/WrapUpReason/Example URI:

Only administrators can use this API.Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<WrapUpReason>
<label>Recommendation</label>
<forAll>true</forAll>

</WrapUpReason>

HTTP Request:

label (required): The UI label for the wrap-up reason

forAll (required): Whether the wrap-up reason is global (true) or non-global (false)

Request Parameters:

200: Success

Finesse successfully created the new WrapUpReason. The response
contains an empty response body, and a "location:" header denoting
the absolute URL of the newly created WrapUpReason object

Note

400: Maximum Exceeded

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
270

Cisco Finesse Configuration APIs
WrapUpReason—Create

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

WrapUpReason—Update
This API allows an administrator to modify an existing wrap-up reason. The administrator references the
wrap-up reason by its ID and specifies the values of the fields to update.

At least one of the following parameters must be present in the HTTP request to update a wrap-up reason:
label or forAll. If neither of these parameters is present, Finesse returns an Invalid Input error.

You do not need to include the attributes (label or forAll) that you do not need to change. For example, if you
want to change only the label for an existing reason code from "Wrong Number" to "Wrong Department",
you can send the following request:

<WrapUpReason>
<label>Wrong Department</label>

</WrapUpReason>

If you provide two or more duplicate tags in the XML body for a PUT operation, the value of the last duplicate
tag is processed and all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/WrapUpReason/<id>URI:

https://finesse1.xyz.com/finesse/api/WrapUpReason/43Example URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<WrapUpReason>
<label>Sales Call</label>
<forAll>true</forAll>

</WrapUpReason>

HTTP Request:

id (required): The database ID for the wrap-up reason

label (required): The UI label for the reason code

forAll (required): Whether the reason code is global (true) or non-global (false)

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
271

Cisco Finesse Configuration APIs
WrapUpReason—Update

200: Success

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

WrapUpReason—Delete
This API allows an administrator to delete an existing wrap-up reason.

https://<FQDN>/finesse/api/WrapUpReason/<id>URI:

https://finesse1.xyz.com/finesse/api/WrapUpReason/23Example URI:

Only administrators can use this API.Security Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
272

Cisco Finesse Configuration APIs
WrapUpReason—Delete

WrapUpReason API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the WrapUpReason
object.

Stringuri

Maximum of 39
bytes (which is equal
to 39 US English
characters).

The label must be
unique.

—The UI label for the
wrap-up reason.

Stringlabel

true, falseWhether a wrap-up reason
is global (true) or
non-global (false).

BooleanforAll

WrapUpReason API Errors
DescriptionError TypeStatus

The request body is invalidBad Request400

API error such as duplicated wrap-up reason or the
wrap-up reason does not exist.

Finesse API Error400

The maximum number of items has been exceeded.Maximum Exceeded400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The authenticated user tried to use the identity of
another user.

Invalid Authorization User
Specified

401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

The specified resource cannot be found.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
273

Cisco Finesse Configuration APIs
WrapUpReason API Parameters

ChatConfig
The ChatConfig object is a container element that holds the Finesse chat configuration and URLs of the
primary and secondary chat servers.

The ChatConfig object is structured as follows:
<ChatConfig>

<uri>/finesse/api/ChatConfig</uri>
<primaryNode></primaryNode>
<secondaryNode></secondaryNode>

</ChatConfig>

ChatConfig APIs

ChatConfig—Get
This API allows an administrator to get a copy of the ChatConfig object.

https://<FQDN>/finesse/api/ChatConfigURI:

https://finesse1.xyz.com/finesse/api/ChatConfigExample URI:

Administrators and agents can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<ChatConfig>
<primaryNode></primaryNode>
<secondaryNode></secondaryNode> <uri></uri>

</ChatConfig>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
274

Cisco Finesse Configuration APIs
ChatConfig

ChatConfig—Set
This API allows an administrator to configure the desktop chat server settings.

https://<FQDN>/finesse/api/ChatConfigURI:

https://finesse1.xyz.com/finesse/api/ChatConfigExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<ChatConfig>
<primaryNode>https://finessecup.xyz.com/httpbinding</primaryNode>

<secondaryNode>https://finessecup2.xyz.com/httpbinding</secondaryNode>
</ChatConfig>

HTTP Request:

primaryNode (optional): Primary node of the desktop chat server.

secondaryNode (optional): The secondary node of the desktop chat server.

Request Parameters:

200: Success

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Invalid Input</ErrorType>
<ErrorData>primaryNode</ErrorData>
<ErrorMessage>Invalid Primary Node specified for

ChatConfig</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

ChatConfig API Parameters
NotesPossible ValuesDescriptionTypeParameter

—Valid URL with https
protocol.

The primary server node of
the chat server.

StringprimaryNode

—Valid URL with https
protocol.

The secondary server node
of the chat server.

StringsecondaryNode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
275

Cisco Finesse Configuration APIs
ChatConfig—Set

ChatConfig API Errors
DescriptionError TypeStatus

One of the parameters provided as part of the user
input is invalid or not recognized.

Invalid Input400

A required parameter was not provided in the request.Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user is not authorized to use the API (the user is
not an administrator).

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Cloud Connect

Cloud Connect Configuration
Cloud Connect is a component that hosts services that allow customers to use cloud capabilities such as Cisco
Webex Experience Management. The administrator can configure the Cloud Connect server settings in the
Finesse administration console to contact the Cisco cloud services.

For more information, seeCisco Unified Contact Center Enterprise Features Guide at https://www.cisco.com/
c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-feature-guides-list.html.

The Cloud Connect configuration object is structured as follows:
<CloudConnectConfig>

<publisherAddress>ccpub.cisco.com</publisherAddress>
<subscriberAddress>ccsub.cisco.com</subscriberAddress>
<userName>admin</userName>
<password>password</password>

</CloudConnectConfig>

Cloud Connect Configuration APIs

Cloud Connect Configuration—Get

This API allows an administrator to get a copy of the Cloud Connect configuration details. These details are
stored in Finesse database.

https://<FQDN>/finesse/api/CloudConnectConfigURI:

https://finesse1.xyz.com/finesse/api/CloudConnectConfigExample URI:

Only administrators can use this API.Security Constraints:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
276

Cisco Finesse Configuration APIs
ChatConfig API Errors

https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-feature-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-feature-guides-list.html

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

—Request Parameters:

200: Success

400: Bad Request

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<CloudConnectConfig>
<publisherAddress>ccpub.cisco.com</publisherAddress>
<subscriberAddress>ccsub.cisco.com</subscriberAddress>
<userName>admin</userName>
<password>password</password>

</CloudConnectConfig>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure Response:

Cloud Connect Configuration—Set

This API allows an administrator to configure the Cloud Connect server settings for Finesse.

https://<FQDN>/finesse/api/CloudConnectConfigURI:

https://finesse1.xyz.com/finesse/api/CloudConnectConfigExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<CloudConnectConfig>
<publisherAddress>ccpub.cisco.com</publisherAddress>
<subscriberAddress>ccsub.cisco.com</subscriberAddress>
<userName>admin</userName>
<password>password</password>

</CloudConnectConfig>

HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
277

Cisco Finesse Configuration APIs
Cloud Connect Configuration—Set

publisherAddress (required): The Cloud Connect publisher address.

subscriberAddress (optional): The Cloud Connect subscriber address.

userName (required): The username to invoke the Cloud Connect APIs.

password (required): The password to invoke the Cloud Connect APIs.

Request Parameters:

200: Success

400: Bad Request

400: Parameter Missing

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<CloudConnectConfig>
<publisherAddress>ccpub.cisco.com</publisherAddress>
<subscriberAddress>ccsub.cisco.com</subscriberAddress>
<userName>admin</userName>
<password>********</password>

</CloudConnectConfig>

Example Response:

Example:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example:

<ApiErrors>
<ApiError>

<ErrorType>Parameter Missing</ErrorType>
<ErrorData>Username</ErrorData>
<ErrorMessage>Missing required parameter</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cloud Connect Integration—Delete

This API allows an administrator to delete the Cloud Connect server settings for Finesse.

https://<FQDN>/finesse/api/CloudConnectConfigURI:

https://finesse1.xyz.com/finesse/api/CloudConnectConfigExample URI:

Only administrators can use this API.Security Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
278

Cisco Finesse Configuration APIs
Cloud Connect Integration—Delete

—HTTP Request:

200: Success

400: Bad Request

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure Response:

Cloud Connect Configuration Parameters

NotesPossible ValuesDescriptionTypeParameter

Mandatory—The FQDN of the Cloud Connect
publisher.

StringpublisherAddress

Optional—The FQDN of the Cloud Connect
subscriber.

StringsubscriberAddress

Mandatory—The username to invoke the Cloud
Connect APIs.

StringuserName

Mandatory—The password to invoke the Cloud
Connect APIs.

Stringpassword

Cloud Connect Configuration API Errors

DescriptionError TypeStatus

The request is malformed or incomplete or the extension
provided is invalid.

Bad Request400

The required parameter was not provided in the request.Parameter Missing400

Unauthorized (for example, the user is not yet authenticated
in the Web Session).

The user is not authorized to use the API (for example, an
agent tries to use an API that only the administrator is
authorized to use).

Authorization Failure401

Any runtime exception is caught and responded with this
error.

Internal Server Error500

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
279

Cisco Finesse Configuration APIs
Cloud Connect Configuration Parameters

DescriptionError TypeStatus

A dependent service is down (for example, the Cisco Finesse
Notification Service or Cisco Finesse Database). Finesse is
OUT_OF_SERVICE.

Service Unavailable503

Cloud Connect Services

Cloud Connect Token APIs provide a standard way to fetch the token from the CloudConnect server.
These tokens are used by the Webex Experience Management, and Agent Answers gadgets to make
API request from Cisco Finesse browser to the respective hosts or applications.

Cloud Connect Services APIs

Cloud Connect Services Token—Get

The Cloud Connect Services Token—Get API fetches the token from the CloudConnect server.

Tokens are fetched from the CloudConnect server based on the tokenSource and scopes parameters. At least
one of the two parameters is mandatory and when both the parameters are provided, the scopes parameter is
ignored.

The tokenSource parameter value can be either of cherrypoint or evapoint. Based on the value, the respective
token request is made to CloudConnect to fetch the token from CloudCherry and Voicea applications
respectively.

When tokenSource parameter is not provided, the scopes parameter value is used to request the Cloud
Integration token from CloudConnect.

https://<FQDN>/finesse/api/CloudTokenService?

tokenSource=<>&scopes=<>

URI:

https://finesse1.xyz.com:8445/finesse/api/CloudTokenService?tokenSource=cherrypoint

https://finesse1.xyz.com:8445/finesse/api/CloudTokenService?scopes=cjp-analyzer:read

Example URI:

Administrators, agents, and supervisors can use this API.Security Constraints:

GETHTTP Method:

—Content Type:

JSONInput/Output Format:

—HTTP Request:

tokenSource(optional): The source where the CloudConnect tokens
are fetched. Possible values: cherrypoint or evapoint.

scopes (optional): Scopes of the fetched token.

At least one parameter is required.Note

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
280

Cisco Finesse Configuration APIs
Cloud Connect Services

200: Success

400: Bad Request

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

{
"access_token": "MjQxZDI5f-bafb-4d68"
"expires_at": 161629128912891289128912
"token_type": "Bearer"

}

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>ACCESSTOKEN</ErrorData>

</ApiError>
</ApiErrors>

Example Failure Response:

Cloud Connect Services API Parameters

NotesPossible ValuesDescriptionTypeParameter

—cherrypoint or
evapoint

The source from where
the CloudConnect
server tokens are
fetched.

StringtokenSource

——Scope of the fetched
token.

Stringscopes

Cloud Connect Management Service Config—Get

The Cloud Connect ServicesManagement—Get API fetches the organization configuration details with which
cloud connect is on-boarded.

https://<FQDN>/finesse/api/CloudConnectMgmtService/ConfigURI:

https://finesse1.xyz.com:8445/finesse/api/CloudConnectMgmtService/ConfigExample URI:

Administrators, agents, and supervisors can use this API.Security Constraints:

GETHTTP Method:

—Content Type:

JSONInput/Output Format:

—HTTP Request:

—Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
281

Cisco Finesse Configuration APIs
Cloud Connect Services API Parameters

200: Success

400: Bad Request

401: Authorization Failure

500: Internal Server Error

503: Service Unavailable

HTTP Response:

{
"u2cHost":"ciscospark.com",
"orgId":"ccbu"

}

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>Jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure Response:

Cloud Connect Services API Errors

DescriptionError TypeStatus

The request is malformed or incomplete or the extension
provided is invalid.

Bad Request400

Authorization failed.Authorization Failure401

Any runtime exception is caught and responded with this
error.

Internal Server Error500

The dependent service is down (for example, the Cisco
Finesse Notification Service or Cisco Finesse Database).
Finesse is OUT_OF_SERVICE.

Service Unavailable503

MediaPropertiesLayout
The MediaPropertiesLayout object represents the appearance of media properties in the call control gadget
on the agent or supervisor desktop. Media properties are carried in Dialog objects. Administrators can create
and customize multiple layouts for media properties.

The MediaPropertiesLayout supports callVariable1 through callVariable10, ECC variables, and the following
blended agent (outbound) variables:

• BACampaign

• BAAccountNumber

• BAResponse

• BAStatus

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
282

Cisco Finesse Configuration APIs
Cloud Connect Services API Errors

• BADialedListID

• BATimeZone

• BABuddyName

• BACustomerNumber (Unified CCX only)

The MediaPropertiesLayout object is structured as follows:

<MediaPropertiesLayout>
<uri>/finesse/api/MediaPropertiesLayout/{id}</uri>
<name>Layout name</name>
<description>Layout description</description>
<type>DEFAULT|CUSTOM</type>
<header>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</header>
<column>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Customer Acct#</displayName>
<mediaProperty>user.cisco.acctnum</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>
<column>

<entry>
<displayName>Support contract</displayName>
<mediaProperty>callVariable2</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Product calling about</displayName>
<mediaProperty>callVariable3</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>

</MediaPropertiesLayout>

MediaPropertiesLayout APIs

MediaPropertiesLayout—Get
This API allows an administrator to get a copy of the media properties layout associated with the specified
ID.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
283

Cisco Finesse Configuration APIs
MediaPropertiesLayout APIs

https://<FQDN>/finesse/api/MediaPropertiesLayout/{id}URI:

https://finesse1.xyz.com/finesse/api/MediaPropertiesLayout/15Example URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<MediaPropertiesLayout>
... Full MediaPropertiesLayoutConfig Object ...
</MediaPropertiesLayout>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

MediaPropertiesLayout—Get Default Layout
This API allows an administrator to get a copy of the default MediaPropertiesLayout object.

Cisco Finesse supports this API for backward compatibility, but to get the default layout, developers must
specify the default MediaPropertiesLayout ID in the MediaPropertiesLayout—Get API.

Note

https://<FQDN>/finesse/api/MediaPropertiesLayout/defaultURI:

https://finesse1.xyz.com/finesse/api/MediaPropertiesLayout/defaultExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
284

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Get Default Layout

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<MediaPropertiesLayout>
<uri>/finesse/api/MediaPropertiesLayout/{id}</uri>
<name>Default</name>
<description>This is the default layout</description>
<type>DEFAULT</type>
<header>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</header>
<column>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Customer Acct#</displayName>
<mediaProperty>user.cisco.acctnum</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>
<column>

<entry>
<displayName>Support contract</displayName>
<mediaProperty>callVariable2</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Product calling about</displayName>
<mediaProperty>callVariable3</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>

</MediaPropertiesLayout>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
285

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Get Default Layout

MediaPropertiesLayout—Get List
This API allows an administrator to list all the media properties layouts configured in the system.

https://<FQDN>/finesse/api/MediaPropertiesLayoutsURI:

https://finesse1.xyz.com/finesse/api/MediaPropertiesLayoutsExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

500: Internal Server Error

HTTP Response:

<MediaPropertiesLayouts>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>
<MediaPropertiesLayout>

... Full MediaPropertiesLayout Object ...
</MediaPropertiesLayout>

</MediaPropertiesLayouts>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
286

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Get List

If the Finesse database is down or if there is a problem retrieving the media properties layout from the database,
then a GET on https://<server>/finesse/api/MediaPropertiesLayouts (or on
https://<server>/finesse/api/MediaPropertiesLayout/default) returns the system defined default media properties
layout with an ID of 0.

Note

MediaPropertiesLayout—Create
This API allows an administrator to create a custommedia properties layout. Finesse supports up to 200media
properties layouts (1 default and 199 custom media properties layouts).

https://<FQDN>/finesse/api/MediaPropertiesLayout/URI:

https://finesse1.xyz.com/finesse/api/MediaPropertiesLayout/Example URI:

Only administrators can use this API.Security
Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output
Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
287

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Create

<MediaPropertiesLayout>
<name>Layout name</name>
<description>Layout description</description>
<header>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</header>
<column>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Customer Acct#</displayName>
<mediaProperty>user.cisco.acctnum</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>
<column>

<entry>
<displayName>Support contract</displayName>
<mediaProperty>callVariable2</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Product calling about</displayName>
<mediaProperty>callVariable3</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>

</MediaPropertiesLayout>

HTTP Request:

name (required): Name of the media properties layout

description (optional): Description of the media properties layout

header (optional): Mapping for a single mediaProperty to be displayed with a label
on the call details in the agent or supervisor desktop

column (optional): Grouping of mediaProperties for agent or supervisor desktops

entry (optional): Contains a displayName and mediaProperty combination

displayName (required): Name of the field to be displayed to the agent or supervisor

mediaProperty (required): Value of the entry to be displayed to the agent or supervisor
matched with the displayName in the same entry

showInPopOver: Indicates if the call variables to be displayed in the Call PopOver
are based on the set value (true or false)

uiEditable: Indicates if the call variable values can be edited in the agent and supervisor
desktop (true or false)

Request
Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
288

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Create

200: Success

Finesse successfully created the new media properties layout. The
response contains an empty response body and a location header that
denotes the absolute URL of the newly created MediaPropertiesLayout
object.

Note

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

MediaPropertiesLayout—Update
This API allows an administrator to update the media properties layout associated with the specified ID.

https://<FQDN>/finesse/api/MediaPropertiesLayout/{id}URI:

https://finesse1.xyz.com/finesse/api/MediaPropertiesLayout/15Example URI:

Only administrators can use this API.Security
Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output
Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
289

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Update

<MediaPropertiesLayout>
<name>Layout name</name>
<description>Layout description</description>
<header>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</header>
<column>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Customer Acct#</displayName>
<mediaProperty>user.cisco.acctnum</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>
<column>

<entry>
<displayName>Support contract</displayName>
<mediaProperty>callVariable2</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Product calling about</displayName>
<mediaProperty>callVariable3</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>

</MediaPropertiesLayout>

HTTP Request:

name (required): Name of the media properties layout

description (optional): Description of the media properties layout

header (optional): Mapping for a single mediaProperty to be displayed with a label
on the call details in the agent or supervisor desktop

column (optional): Grouping of mediaProperties for agent or supervisor desktops

entry (optional): Contains a displayName and mediaProperty combination

displayName (required): Name of the field to be displayed to the agent or supervisor

mediaProperty (required): Value of the entry to be displayed to the agent or supervisor
matched with the displayName in the same entry

showInPopOver: Indicates if the call variables to be displayed in the Call PopOver
are based on the set value (true or false)

uiEditable: Indicates if the call variable values can be edited in the agent and supervisor
desktop (true or false)

Request
Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
290

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Update

200: Success

400: Parameter Missing

400: Invalid Input

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

MediaPropertiesLayout—Update Default Layout
This API allows an administrator to update the default media properties layout for the Finesse desktop.

Cisco Finesse supports this API for backward compatibility, but to update the default layout, developers must
specify the default MediaPropertiesLayout ID in the MediaPropertiesLayout—Update API.

Note

https://<FQDN>/finesse/api/MediaPropertiesLayout/defaultURI:

https://finesse1.xyz.com/finesse/api/MediaPropertiesLayout/defaultExample URI:

Only administrators can use this API.Security
Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output
Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
291

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Update Default Layout

<MediaPropertiesLayout>
<name>Default</name>
<description>default layout</description>
<header>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</header>
<column>

<entry>
<displayName>Customer Name</displayName>
<mediaProperty>callVariable1</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Customer Acct#</displayName>
<mediaProperty>user.cisco.acctnum</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>
<column>

<entry>
<displayName>Support contract</displayName>
<mediaProperty>callVariable2</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
<entry>

<displayName>Product calling about</displayName>
<mediaProperty>callVariable3</mediaProperty>
<showInPopOver>false</showInPopOver>
<uiEditable>false</uiEditable>

</entry>
</column>

</MediaPropertiesLayout>

HTTP Request:

name (required): Name of the media properties layout

description (optional): Description of the media properties layout

header (optional): Contains displayName andmediaProperty that appears in the call header
on the desktop

column (optional): Grouping of media properties for the Finesse desktop (can contain a
maximum of 10 entries)

entry (optional): Contains a displayName and mediaProperty

displayName (required): A label that describes the mediaProperty for that entry

mediaProperty (required): The name of the variable for that entry

showInPopOver: Indicates if the call variables to be displayed in the Call PopOver are
based on the set value (true or false)

uiEditable: Indicates if the call variable values can be edited in the agent and supervisor
desktop (true or false)

Request
Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
292

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Update Default Layout

200: Success

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP
Response:

<ApiErrors>
<ApiError>
<ErrorData>The entry contained an invalid media property:
callVariable11</ErrorData>
<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>HTTP Status code: 400 (Bad Request)

Api Error Type: Invalid Input
Error Message: Invalid media property name 'callVariable11'

</ErrorMessage>
</ApiError>

</ApiErrors>

Example
Failure
Response:

MediaPropertiesLayout—Delete
This API allows an administrator to delete the custom media properties layout with the specified ID.

https://<FQDN>/finesse/api/MediaPropertiesLayout/{id}URI:

https://finesse1.xyz.com/finesse/api/MediaPropertiesLayout/15Example URI:

Only administrators can use this API.

Administrators can only delete a media properties layout of type CUSTOM.

Security
Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

401: Unauthorized

403: Forbidden

404: Not Found

500: Runtime exception

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
293

Cisco Finesse Configuration APIs
MediaPropertiesLayout—Delete

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

If you attempt to delete the default media properties layout, the system responds with one of the following
errors, depending on the API you use for the operation:

DetailsHTTP ResponseAPI Used to Delete the Default
Layout

DELETE of the default media properties
layout is forbidden with this API.

403 Forbiddenhttps://<FQDN>/finesse/api/
MediaPropertiesLayout/{id}

DELETE is not a supported operation with
this API.

405 Method Not Allowedhttps://<FQDN>/finesse/api/
MediaPropertiesLayout/default

Note

MediaPropertiesLayout API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The id maps to the primary key
of the media properties layout
entry.

Stringuri

Max length of 40
characters

—The name of the media
properties layout.

Stringname

Max length of
128 characters

—The description of the media
properties layout.

Stringdescription

DEFAULT, CUSTOMThe type of media properties
layout.

Stringtype

—Contains a single entry
(combination of displayName
and mediaProperty) that appears
in the call header on the desktop
for each call.

Objectheader

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
294

Cisco Finesse Configuration APIs
MediaPropertiesLayout API Parameters

NotesPossible ValuesDescriptionTypeParameter

Finesse supports
up to two
columns in the
MediaProperties
Layout object.
Columns can
contain up to 10
entries and can
be empty.

The first column
supplied in a
PUT is always
the left column.
The second
column (if any)
is always the
right column.

—Grouping of media properties for
agent and supervisor desktops.

Contains a list of entry objects

Objectcolumn

Each entry must
contain one
displayName and
one
mediaProperty.

The
displayName can
be empty.

—A displayName and
mediaProperty combination.

Object-->entry

Maximum of 50
characters.

—Part of an entry. A label that
describes the mediaProperty for
that entry (for example,
Customer Name). The label
appears on the Finesse desktop.

String--->displayName

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
295

Cisco Finesse Configuration APIs
MediaPropertiesLayout API Parameters

NotesPossible ValuesDescriptionTypeParameter

Maximum of 32
characters.

Allowed strings include
callVariable1 through
callVariable10, any valid
ECC variable (user.*), and
the following Outbound
Option variables:

• BACampaign

• BAAccountNumber

• BAResponse

• BAStatus

• BADialedListID

• BATimeZone

• BABuddyName

• BACustomerNumber
(Unified CCX only)

The name of the variable that is
displayed on the Finesse desktop.

Each entry contains exactly one
mediaProperty.

String--->mediaProperty

Default value for
this parameter is
FALSE.

TRUE, FALSEIndicates the call variables to be
displayed in the Call PopOver
and in Supervisor team
performance gadget based on the
value.

Boolean--->showInPopOver

Default value for
this parameter is
FALSE.

TRUE, FALSEIndicates the call variables that
are editable in the agent and
supervisor desktop.

Note • Call variable
(callVariable1
to
callVariable10)
values are
editable.

• ECC variable
values are
editable.

• Amongst BA
variables
(campaign
based
outbound
calls), only
BA Response
value is
editable.

Boolean--->uiEditable

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
296

Cisco Finesse Configuration APIs
MediaPropertiesLayout API Parameters

MediaPropertiesLayout API Errors
DescriptionError TypeStatus

Request parameter is invalid.Bad Request400

API error, such as: object is stale, violation of database
constraint, and so on.

Finesse API error400

At least one of the parameters provided is not valid.Invalid Input400

At least one of the required parameters was not
provided.

Parameter Missing400

The maximum number of items has been exceeded.Maximum Exceeded400

The user has selected more than five call variables
when configuring call pop-over for a layout.

Invalid Input400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The authenticated user tried to use the identity that is
not their own.

Invalid Authorization User
Specified

401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

The default media properties layout may not be
deleted.

Forbidden403

Could not find the call variables layout with the
specified ID.

Not Found404

Unsupported operation is performed against an API.
For example, if a DELETE or POST is attempted on:
https://<FQDN>/finesse/api/MediaPropertiesLayout/default
(which only supports GET and PUT).

Method Not Allowed405

Any runtime exception is caught and responded with
this error.

Internal Server Error500

PhoneBook
The PhoneBook object represents a phone book that contains contacts. Each PhoneBook object contains a
Contacts summary object.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
297

Cisco Finesse Configuration APIs
MediaPropertiesLayout API Errors

Phone books can be assigned globally (to all agents) or to specific teams. Finesse supports a maximum of 10
global phone books and 300 team phone books.

The PhoneBook object is structured as follows:
<PhoneBook>

<uri>/finesse/api/PhoneBook/{id}</uri>
<name></name>
<type></type>
<contacts>/finesse/api/PhoneBook/{id}/Contacts</contacts>

</PhoneBook>

PhoneBook APIs

PhoneBook—Get
This API allows an administrator to get a specific phone book.

https://<FQDN>/finesse/api/PhoneBook/<id>URI:

https://finesse1.xyz.com/finesse/api/PhoneBook/34Example URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<PhoneBook>
<uri>/finesse/api/PhoneBook/34</uri>
<name>Phonebook 1</name>
<type>GLOBAL</type>
<contacts>/finesse/api/PhoneBook/34/Contacts</contacts>

</PhoneBook>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
298

Cisco Finesse Configuration APIs
PhoneBook APIs

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

PhoneBook—Get List
This API allows an administrator to get a list of all global and team phone books. Agents' personal phone
books are not returned.

https://<FQDN>/finesse/api/PhoneBooksURI:

https://finesse1.xyz.com/finesse/api/PhoneBooksExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

500: Internal Server Error

HTTP Response:

<PhoneBooks>
<PhoneBook>

...Full PhoneBook Object...
</PhoneBook>
<PhoneBook>

...Full PhoneBook Object...
</PhoneBook>
<PhoneBook>

...Full PhoneBook Object...
</PhoneBook>

</PhoneBooks>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
299

Cisco Finesse Configuration APIs
PhoneBook—Get List

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

PhoneBook—Create
This API allows an administrator to create a new phone book. The administrator specifies the name and type
for the phone book.

https://<FQDN>/finesse/api/PhoneBook/URI:

https://finesse1.xyz.com/finesse/api/PhoneBook/Example URI:

Only administrators can use this API.Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<PhoneBook>
<name>PhoneBook1</name>
<type>GLOBAL</type>

</PhoneBook>

HTTP Request:

name (required): The name of the phone book

type (required): The type of phone book (GLOBAL or TEAM)

Request Parameters:

200: Success

Finesse successfully created the new phone book. The server response
contains an empty response body and a location header that denotes
the absolute URL of the new phone book.

Note

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
300

Cisco Finesse Configuration APIs
PhoneBook—Create

PhoneBook—Update
This API allows an administrator to modify an existing phone book.

https://<FQDN>/finesse/api/PhoneBook/<id>URI:

https://finesse1.xyz.com/finesse/api/PhoneBook/45Example URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<PhoneBook>
<name>PhoneBook2</name>
<type>TEAM</type>

</PhoneBook>

HTTP Request:

id (required): The database ID for the phone book

name (required): The name of the phone book

type (required): The type of phone book (GLOBAL or TEAM)

Request Parameters:

202: Successfully Accepted

400: In Use

400: Invalid Input

400: Parameter Missing

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

PhoneBook—Delete
This API allows an administrator to delete an existing phone book.

https://<FQDN>/finesse/api/PhoneBook/<id>URI:

https://finesse1.xyz.com/finesse/api/PhoneBook/43Example URI:

Only administrators can use this API.Security Constraints:

DELETEHTTP Method:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
301

Cisco Finesse Configuration APIs
PhoneBook—Update

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

400: In Use

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

PhoneBook—Import Contact List (CSV)
This API allows an administrator to replace all the contacts in a specific phonebook by importing a list of
contacts in a comma-separated values (CSV) file. The CSV file can contain up to 6000 contacts. Cisco Finesse
supports a system-wide total of 50,000 contacts.

All existing contacts in the phonebook are deleted before the new contacts are inserted. Contacts that contain
errors are not inserted. Contacts that are error-free or contacts that contain missing or empty fields are inserted.

In general, the import is fault-tolerant. The CSV file is sent using standard web form syntax and is delivered
to the Cisco Finesse server as multipart/form data.

This format is particular about formatting. Lines in the CSV file must be separated by carriage returns and
newlines (\r\n). To import:

1. Use the PhoneBook—Get List API to get a list of all the global and team phonebooks. From the returned
list, find the id of the phonebook containing the contacts that need to be replaced. The phonebook id can
be found in the uri field.

2. Create a Web Form HTML file by copying the below HTML into a new file. In the form action field,
replace <FQDN> with the FQDN of the Finesse server and <id> with the phonebook id obtained from
Step 1. Save the file on your desktop as a HTML file. Example: phonebook.html.
<form action="https://<FQDN>/finesse/api/PhoneBook/<id>/Contacts/csvFileContent"
enctype="multipart/form-data" method="post">

<p>
File(s):
<input type="file" name="datafile" size="40">

</p>
<div>

<input type="submit" value="Import">
</div>

</form>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
302

Cisco Finesse Configuration APIs
PhoneBook—Import Contact List (CSV)

3. Create a CSV file with the phonebook content you want to upload. Example: pb.csv (Also saved to the
Desktop).
"First Name","Last Name","Phone Number","Notes"
"Agent","10001","20001","Sales"
"Agent","10002","20002","Service"
"Agent","10003","20011","Supervisor"
"","VVB","090011","HelloWorld"
"","Survivability","090011","To HelloWorld"

4. Run the phonebook.html file. A browser window opens.

5. Click Browse and select the pb.csv file.

6. Click Import.

https://<FQDN>/finesse/api/PhoneBook/<id>/Contacts/csvFileContentURI:

https://finesse1.xyz.com/finesse/api/PhoneBook/34/Contacts/csvFileContentExample URI:

Only administrators can use this API.Security Constraints:

POSTHTTP Method:

text/CSVContent Type:

text/plain, text/CSVInput/Output Format:

<form
action="https://finesse1.xyz.com/finesse/api/PhoneBook/34/Contacts/csvFileContent"
enctype="multipart/form-data" method="post">

<p>
File(s):
<input type="file" name="datafile" size="40">

</p>
<div>

<input type="submit" value="Import">
</div>

</form>

Example HTML
Form:

-----------------------------13290916118636
Content-Disposition: form-data; name="phonebook"
-----------------------------13290916118636
Content-Disposition: form-data; name="datafile"; filename="pb.csv"
Content-Type: application/vnd.ms-excel

"First Name","Last Name","Phone Number","Notes"
"Amanda","Cohen","6511234",""
"Nicholas","Knight","6125551228","Sales"
"Natalie","Lambert","9525559876","Benefits"
"Joseph","Stonetree","6515557612","Manager"

HTTP Request:

id (required): The database ID for the phonebookRequest Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
303

Cisco Finesse Configuration APIs
PhoneBook—Import Contact List (CSV)

202: Successfully Accepted

This response indicates a successful completion of the request. The
request is processed and the actual response is sent as part of and
updated to the PhoneBook object.

Note

400: Invalid Input

400: Maximum Exceeded

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

PhoneBook—Import Contact List (XML)
This API allows an administrator to replace all the contacts in a specific phone book by importing a collection
of contacts. The collection can contain up to 6000 contacts.

All existing contacts in the phone book are deleted before the new contacts are inserted. Contacts that contain
errors are not inserted.

https://<FQDN>/finesse/api/PhoneBook/<id>/ContactsURI:

https://finesse1.xyz.com/finesse/api/PhoneBook/34/ContactsExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Contacts>
<Contact>

...Full Contact Object...
</Contact>
<Contact>

...Full Contact Object...
</Contact>
<Contact>

...Full Contact Object
</Contact>

HTTP Request:

id (required): The database ID for the phone bookRequest Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
304

Cisco Finesse Configuration APIs
PhoneBook—Import Contact List (XML)

202: Successfully Accepted

This response indicates a successful completion of the request. The
request is processed and the actual response is sent as part of and
updated to the PhoneBook object.

Note

Some of the data could not be imported because it was invalid. The
ErrorData field contains a list of lines that were not imported. This
response indicates partial success because some data was uploaded.

Note

400: Invalid Input

400: Maximum Exceeded

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

PhoneBook—Export Contact List
This API allows an administrator to export a list of contacts that belong to a specific phone book. The list is
exported in CSV format.

https://<FQDN>/finesse/api/PhoneBook/<id>/Contacts/csvFileContentURI:

https://finesse1.xyz.com/finesse/api/PhoneBook/34/Contacts/csvFileContentExample URI:

Only administrators can use this API.Security Constraints:

GETHTTP Method:

text/CSVContent Type:

Multipart/form-data type=fileInput/Output Format:

"First Name","Last Name","Phone Number","Notes"
"Amanda","Cohen","6511234",""
"Nicholas","Knight","6125551228","Sales"
"Natalie","Lambert","9525559876","Benefits"
"Joseph","Stonetree","6515557612","Manager"

Example Exported
CSV File:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
305

Cisco Finesse Configuration APIs
PhoneBook—Export Contact List

200: Success

This response indicates a successful completion of the request. After
a successful request, browser clients are prompted to save the returned
content as a CSV file.

Note

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

PhoneBook API Parameters
NotesPossible ValuesDescriptionTypeParameter

The id in the URI
maps to the primary
key of the phone
book entry.

—The URI to get a new copy
of the PhoneBook object.

Stringuri

—The name of the phone
book.

Stringname

GLOBAL, TEAMThe type of phone book.Stringtype

PhoneBook API Errors
DescriptionError TypeStatus

API error such as the object is stale or does not exist.Finesse API Error400

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
306

Cisco Finesse Configuration APIs
PhoneBook API Parameters

DescriptionError TypeStatus

One of the input parameters exceeded constraints.

Contacts could not be imported because the data was
invalid. The file may be empty or may not contain any
valid lines. If the ErrorData field contains no lines,
there may not be data to import. The multipart mime
message may have been improperly formatted or did
not contain a file.

The multipart mime message may have been
improperly formatted or did not contain a file. In this
case, the existing records are overwritten.

Invalid Input400

The phone book is assiged to a team. You cannot
change a team phone book to a global phone book if
it is use. You cannot delete a phone book if it is use.

In Use400

Themaximumnumber of phone books or contacts has
been exceeded.

Maximum Exceeded400

A required parameter was not present in the request.Parameter Missing400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The authenticated user tried to use the identity of
another user.

Invalid Authorization User
Specified

401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

The specified resource cannot be found.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Contact
The Contact object represents a contact that can be assigned to a phone book. A phone book can contain up
to 6000 contacts. Finesse supports a system-wide total of 50,000 contacts.

The Contact object is structured as follows:
<Contact>

<firstName></firstName>
<lastName></lastName>
<phoneNumber></phoneNumber>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
307

Cisco Finesse Configuration APIs
Contact

<description></description>
<uri>/finesse/api/PhoneBook/{phoneBookId}/Contact/{id}</uri>

</Contact>

Contact APIs

Contact—Get
This API allows an administrator to get a specific phone book contact.

https://<FQDN>/finesse/api/PhoneBook/<phoneBookId>/Contact/<id>URI:

https://finesse1.xyz.com/finesse/api/PhoneBook/34/Contact/785Example URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<Contact>
<firstName>John</firstName>
<lastName>Doe</lastName>
<phoneNumber>5551234</phoneNumber>
<description>Accounts Manager</description>
<uri>/finesse/api/PhoneBook/34/Contact/785</uri>

</Contact>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
308

Cisco Finesse Configuration APIs
Contact APIs

Contact—Get List
This API allows an administrator to get a list of contacts for a specific phone book.

https://<FQDN>/finesse/api/PhoneBook/<phoneBookId>/ContactsURI:

https://finesse1.xyz.com/finesse/api/PhoneBook/34/ContactsExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<Contacts>
<Contact>

...Full Contact Object...
</Contact>
<Contact>

...Full Contact Object...
</Contact>
<Contact>

...Full Contact Object...
</Contact>

</Contacts>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Contact—Create
This API allows an administrator to create a new phone book contact.

https://<FQDN>/finesse/api/PhoneBook/<phoneBookId>/Contact/URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
309

Cisco Finesse Configuration APIs
Contact—Get List

https://finesse1.xyz.com/finesse/api/PhoneBook/34/Contact/Example URI:

Only administrators can use this API.Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Contact>
<firstName>Jerry</firstName>
<lastName>Green</lastName>
<phoneNumber>5554444</phoneNumber>
<description>Product Expert</description>

</Contact>

HTTP Request:

phoneBookId (required): Maps to the primary key of the phone book to which the
contact belongs

firstName (optional): The first name of the contact

lastName (optional): The last name of the contact

phoneNumber (required): The phone number of the contact

description (optional): A description for the contact

Request Parameters:

200: Success

Finesse successfully created the new contact. The server response
contains an empty response body and a location header that denotes
the absolute URL of the new contact.

Note

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Contact—Update
This API allows an administrator to modify a specific phone book contact.

https://<FQDN>/finesse/api/PhoneBook/<phoneBookId>/Contact/<id>URI:

https://finesse1.xyz.com/finesse/api/PhoneBook/45 /Contact/787Example URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
310

Cisco Finesse Configuration APIs
Contact—Update

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Contact>
<firstName>Marie</firstName>
<lastName>Brown</lastName>
<phoneNumber>5554444</phoneNumber>
<description>Product Expert</description>

</Contact>

HTTP Request:

phoneBookId (required): Maps to the primary key of the phone book to which the
contact belongs

id (required): Maps to the primary key of the contact entry

firstName (optional): The first name of the contact

lastName (optional): The last name of the contact

phoneNumber (required): The phone number of the contact

description (optional): A description for the contact

Request Parameters:

202: Successfully Accepted

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Contact—Delete
This API allows an administrator to delete an existing phone book contact.

https://<FQDN>/finesse/api/PhoneBook/<phoneBookId>/Contact/<id>URI:

https://finesse1.xyz.com/finesse/api/PhoneBook/43 /Contact/1523Example URI:

Only administrators can use this API.Security Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
311

Cisco Finesse Configuration APIs
Contact—Delete

XMLInput/Output Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Contact API Parameters
NotesPossible ValuesDescriptionTypeParameter

The phoneBookId in
the URI maps to the
primary key of the
phone book to which
the contact belongs.

The id in the URI
maps to the primary
key of the contact
entry.

—The URI to get a new copy
of the Contact object.

Stringuri

Maximum of 128
characters.

—The first name of the
contact.

StringfirstName

Maximum of 128
characters.

—The last name of the
contact.

StringlastName

Maximum of 32
characters.

—The phone number for the
contact.

StringphoneNumber

Maximum of 128
characters.

—A description of the contact.Stringdescription

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
312

Cisco Finesse Configuration APIs
Contact API Parameters

Contact API Errors
DescriptionError TypeStatus

The request body is invalid.Bad Request400

API error such as the object is stale or does not exist.Finesse API Error400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

The specified resource cannot be found.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Workflow
TheWorkflow object represents a workflow that can be assigned to a team. Workflows manage agent activity
based on call events. Workflows have triggers and conditions, which are used to determine whether the
associated actions are run. TheWorkflow object contains the following subobjects: TriggerSet, ConditionSet,
and workflowActions. The Workflow object is structured as follows:
<Workflow>

<uri>/finesse/api/Workflow/{id}</uri>
<name></name>
<description></description>
<media></media>
<TriggerSet>

<type></type>
<name></name>
<allowOverlappingCallWorkflow></allowOverlappingCallWorkflow>
<triggers>

<Trigger>
<Variable>

<name></name>
<node></node>
<type></type>

</Variable>
<comparator></comparator>
<value></value>

</Trigger>
<Trigger>

<Variable>
<name></name>
<node></node>
<type></type>

</Variable>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
313

Cisco Finesse Configuration APIs
Contact API Errors

<comparator></comparator>
<value></value>

</Trigger>
</triggers>

</TriggerSet>
<ConditionSet>

<applyMethod></applyMethod>
<conditions>

<Condition>
<Variable>

<name></name>
<type></type>

</Variable>
<comparator></comparator>
<value></value>

</Condition>
<Condition>

<Variable>
<name></name>
<type></type>

</Variable>
<comparator></comparator>
<value></value>

</Condition>
</conditions>

</ConditionSet>
<workflowActions>

<WorkflowAction>
<name></name>
<type></type>
<uri>/finesse/api/WorkflowAction/{id}</uri>

</WorkflowAction>
<WorkflowAction>

<name></name>
<type></type>
<uri>/finesse/api/WorkflowAction/{id}</uri>

</WorkflowAction>
</workflowActions>

</Workflow>

The following SYSTEM TriggerSets are defined by the Finesse system. When you create a workflow, you
need only specify the name and type of SYSTEM. The TriggerSets are automatically expandedwhen retrieved
by the User—Get list of workflows API.

CALL_ARRIVES

<TriggerSet>
<type>SYSTEM</type>
<name>CALL_ARRIVES</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>
<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
314

Cisco Finesse Configuration APIs
Workflow

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ACD_IN,PREROUTE_ACD_IN,PREROUTE_DIRECT_AGENT,TRANSFER,OVERFLOW_IN,
OTHER_IN,AGENT_OUT,OUT,OUTBOUND,OUTBOUND_CALLBACK,OUTBOUND_PERSONAL_CALLBACK,

AGENT_INSIDE,OFFERED,CONSULT,CONSULT_OFFERED,CONSULT_CONFERENCE,CONFERENCE,
TASK_ROUTED_BY_ICM,TASK_ROUTED_BY_APPLICATION,VOICE_CALL_BACK,NON_ACD,
SUPERVISOR_BARGE_IN,NULL</value>
</Trigger>
<Trigger>

<Variable>
<name>state</name>
<node>//Dialog/participants/Participant/mediaAddress
[.='${extension}']/../state</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ALERTING,ACTIVE,HELD</value>

</Trigger>
<Trigger>

<Variable>
<name>fromAddress</name>
<node>//Dialog/fromAddress</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_NOT_EQUAL</comparator>
<value>${extension}</value>

</Trigger>
</triggers>

</TriggerSet>

CALL_ANSWERED

<TriggerSet>
<type>SYSTEM</type>
<name>CALL_ANSWERED</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>
<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ACD_IN,PREROUTE_ACD_IN,PREROUTE_DIRECT_AGENT,TRANSFER,OVERFLOW_IN,
OTHER_IN,AGENT_OUT,OUT,OUTBOUND,OUTBOUND_CALLBACK,OUTBOUND_PERSONAL_CALLBACK,
AGENT_INSIDE,OFFERED,CONSULT,CONSULT_OFFERED,CONSULT_CONFERENCE,CONFERENCE,
TASK_ROUTED_BY_ICM,TASK_ROUTED_BY_APPLICATION,VOICE_CALL_BACK,NON_ACD,
SUPERVISOR_BARGE_IN,NULL</value>

</Trigger>
<Trigger>

<Variable>
<name>state</name>
<node>//Dialog/participants/Participant/mediaAddress
[.='${extension}']/../state</node>
<type>CUSTOM</type>

</Variable>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
315

Cisco Finesse Configuration APIs
Workflow

<comparator>IS_EQUAL</comparator>
<value>ACTIVE</value>

</Trigger>
</triggers>

</TriggerSet>

CALL_ENDS

<TriggerSet>
<type>SYSTEM</type>
<name>CALL_ENDS</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>
<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ACD_IN,PREROUTE_ACD_IN,PREROUTE_DIRECT_AGENT,TRANSFER,OVERFLOW_IN,

OTHER_IN,AGENT_OUT,OUT,OUTBOUND,OUTBOUND_CALLBACK,OUTBOUND_PERSONAL_CALLBACK,
AGENT_INSIDE,OFFERED,CONSULT,CONSULT_OFFERED,CONSULT_CONFERENCE,CONFERENCE,
TASK_ROUTED_BY_ICM,TASK_ROUTED_BY_APPLICATION,VOICE_CALL_BACK,NON_ACD,
SUPERVISOR_BARGE_IN,NULL</value>
</Trigger>
<Trigger>

<Variable>
<name>state</name>
<node>//Dialog/participants/Participant/mediaAddress
[.='${extension}']/../state</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>DROPPED,WRAP_UP</value>

</Trigger>
</triggers>

</TriggerSet>

CALL_IS_MADE

<TriggerSet>
<type>SYSTEM</type>
<name>CALL_IS_MADE</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
316

Cisco Finesse Configuration APIs
Workflow

<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ACD_IN,PREROUTE_ACD_IN,PREROUTE_DIRECT_AGENT,TRANSFER,OVERFLOW_IN,

OTHER_IN,AGENT_OUT,OUT,OUTBOUND,OUTBOUND_CALLBACK,OUTBOUND_PERSONAL_CALLBACK,
AGENT_INSIDE,OFFERED,CONSULT,CONSULT_OFFERED,CONSULT_CONFERENCE,CONFERENCE,
TASK_ROUTED_BY_ICM,TASK_ROUTED_BY_APPLICATION,VOICE_CALL_BACK,NON_ACD,
SUPERVISOR_BARGE_IN,NULL</value>
</Trigger>
<Trigger>

<Variable>
<name>state</name>
<node>//Dialog/participants/Participant/mediaAddress
[.='${extension}']/../state</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ALERTING,INITIATED,FAILED,ACTIVE,HELD</value>

</Trigger>
<Trigger>

<Variable>
<name>fromAddress</name>
<node>//Dialog/fromAddress</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>${extension}</value>

</Trigger>
</triggers>

</TriggerSet>

CALL_IS_PREVIEWED

<TriggerSet>
<type>SYSTEM</type>
<name>CALL_IS_PREVIEWED</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>
<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>OUTBOUND_PREVIEW,OUTBOUND_CALLBACK_PREVIEW,OUTBOUND_DIRECT_PREVIEW,
OUTBOUND_PERSONAL_CALLBACK_PREVIEW</value>

</Trigger>
</triggers>
<allowOverlappingCallWorkflow>true</allowOverlappingCallWorkflow>

</TriggerSet>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
317

Cisco Finesse Configuration APIs
Workflow

Workflow APIs

Workflow—Get
This API allows an administrator to get a specific Workflow object.

https://<FQDN>/finesse/api/Workflow/<id>URI:

https://finesse1.xyz.com/finesse/api/Workflow/195Example URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
318

Cisco Finesse Configuration APIs
Workflow APIs

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
319

Cisco Finesse Configuration APIs
Workflow—Get

<Workflow>
<uri>/finesse/api/Workflow/195</uri>
<name>Workflow A</name>
<description>Workflow description</description>
<media>Media Channel</media>
<TriggerSet>

<type>SYSTEM</type>
<name>CALL_ARRIVES</name>
<triggers>

<Trigger>
<Variable>

<name>mediaType</name>
<node>//Dialog/mediaType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_EQUAL</comparator>
<value>Voice</value>

</Trigger>
<Trigger>

<Variable>
<name>callType</name>
<node>//Dialog/mediaProperties/callType</node>
<type>CUSTOM</type>

</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ACD_IN,PREROUTE_ACD_IN,PREROUTE_
DIRECT_AGENT,TRANSFER,OVERFLOW_IN,
OTHER_IN,AGENT_OUT,OUT,OUTBOUND,OUTBOUND_
CALLBACK,OUTBOUND_PERSONAL_CALLBACK,AGENT_INSIDE,
OFFERED,CONSULT,CONSULT_OFFERED,CONSULT_CONFERENCE,
CONFERENCE,TASK_ROUTED_BY_ICM,TASK_ROUTED_BY_
APPLICATION,VOICE_CALL_BACK,NON_ACD,SUPERVISOR_
BARGE_IN,NULL</value>

</Trigger>
<Trigger>

<Variable>
<name>state</name>

<node>//Dialog/participants/Participant/mediaAddress[.=${userExtension}]/../state</node>

<type>CUSTOM</type>
</Variable>
<comparator>IS_IN_LIST</comparator>
<value>ALERTING,ACTIVE,HELD</value>

</Trigger>
</triggers>

</TriggerSet>
<ConditionSet>

<applyMethod>ALL</applyMethod>
<conditions>

<Condition>
<Variable>

<name>callVariable1</name>
<type>SYSTEM</type>

</Variable>
<comparator>CONTAINS</comparator>
<value>1234</value>

</Condition>
<Condition>

<Variable>
<name>user.foo.bar[1}</name>

<node>/dialogs/Dialog/mediaProperties/callvariables/CallVariable/name[.="user.foo.bar[1]"]/../value</node>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
320

Cisco Finesse Configuration APIs
Workflow—Get

<type>CUSTOM</type>
</Variable>
<comparator>IS_NOT_EMPTY</comparator>

</Condition>
</conditions>

</ConditionSet>
<workflowActions>

<WorkflowAction>
<name>Google</name>
<type>BROWSER_POP</type>
<uri>/finesse/api/WorkflowAction/1234</uri>

</WorkflowAction>
<WorkflowAction>

<name>Company Web Page</name>
<type>BROWSER_POP</type>
<uri>/finesse/api/WorkflowAction/9876</uri>

</WorkflowAction>
</workflowActions>

</Workflow>

<ApiErrors>
<ApiError>

<ErrorData>Workflow 10009 not found.</ErrorData>
<ErrorType>Not Found</ErrorType>
<ErrorMessage>HTTP Status code:404 (Not Found)

Api Error Type: Not Found
Error Message: Workflow not found with an id of 10009

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Workflow—Get List
This API allows an administrator to get a list of workflows.

https://<FQDN>/finesse/api/WorkflowsURI:

https://finesse1.xyz.com/finesse/api/WorkflowsExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
321

Cisco Finesse Configuration APIs
Workflow—Get List

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<Workflows>
<Workflow>

...Full Workflow Object...
</Workflow>
<Workflow>

...Full Workflow Object...
</Workflow>
<Workflow>

...Full Workflow Object...
</Workflow>

</Workflows>

Example Response:

<ApiErrors>
<ApiError>

<ErrorData>Database read/write error</ErrorData>
<ErrorType>Bad Request</ErrorType>
<ErrorMessage>

HTTP Status code: 400 (Bad Request)
Api Error Type: Bad Request
Error Message: Database read/write error

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Workflow—Create
This API allows an administrator to create a new workflow. Finesse supports a maximum of 100 workflows.

If you provide two or more duplicate tags during a POST, the value of the last duplicate tag is processed and
all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/Workflow/URI:

https://finesse1.xyz.com/finesse/api/Workflow/Example URI:

Only administrators can use this API.Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Workflow>
...Full Workflow Object...

</Workflow>

HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
322

Cisco Finesse Configuration APIs
Workflow—Create

id (required): Maps to the primary key of the workflow entry

name (required): The name of the workflow

description (optional): A description of the workflow

Media (optional): The media of the workflow

TriggerSet (required): A set of events that cause the conditions to be evaluated

ConditionSet (optional): A set of conditions that determine if the workflow is run

workflowActions (optional): A list of workflow actions to run if the trigger and
conditions are satisfied

Request Parameters:

200: Success

Finesse successfully created the new workflow. The server response
contains an empty response body and a location header that denotes
the absolute URL of the new phone book.

Note

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>Duplicate Workflow name.</ErrorData>
<ErrorType>Database constraint violation</ErrorType>
<ErrorMessage>

HTTP Status code: 400 (Bad Request)
Api Error Type: Database constraint violation
Error Message: A workflow with the same name
already exists

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Workflow—Update
This API allows an administrator to update an existing workflow.

If the attributes (name, description, TriggerSet, ConditionSet, workflowActions) for the specified workflow
do not change, the request does not need to include those attributes. If an attribute is not specified, the current
value is retained. However, you must specify at least one attribute in the request.

If you only want to change the description of the workflow, you can make the following request:
<Workflow>

<description>New description</description>
</Workflow>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
323

Cisco Finesse Configuration APIs
Workflow—Update

If you provide two or more duplicate tags during a PUT, the value of the last duplicate tag is processed and
all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/Workflow/<id>URI:

https://finesse1.xyz.com/finesse/api/Workflow/769Example URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Workflow>
...Workflow Object...

</Workflow>

HTTP Request:

id (required): Maps to the primary key of the workflow entry

name (optional): The name of the workflow

description (optional): A description of the workflow

Media (optional): The media of the workflow

TriggerSet (optional): A set of events that cause the conditions to be evaluated

ConditionSet (optional): A set of conditions that determine if the workflow is run

workflowActions (optional): A list of workflow actions to run if the trigger and
conditions are satisfied

Request Parameters:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
324

Cisco Finesse Configuration APIs
Workflow—Update

<ApiErrors>
<ApiError>

<ErrorData>For update, at least one field must be set.</ErrorData>

<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>

HTTP Status code: 400 (Bad Request)
Api Error Type: Invalid Input
Error Message: Updating a Workflow requires specifying at
least one value to be changed.

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Workflow—Delete
This API allows an administrator to delete an existing workflow. The administrator references the existing
Workflow object by its ID.

https://<FQDN>/finesse/api/Workflow/<id>URI:

https://finesse1.xyz.com/finesse/api/Workflow/768Example URI:

Only administrators can use this API.Security Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>Workflow 1009 not found.</ErrorData>
<ErrorType>Not Found</ErrorType>
<ErrorMessage>

HTTP Status code: 404 (Not Found)
Api Error Type: Not Found
Error Message: Workflow not found with an id of 1009

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
325

Cisco Finesse Configuration APIs
Workflow—Delete

Workflow API Parameters
NotesPossible ValuesDescriptionTypeParameter

The id in the URI maps to
the primary key of the
workflow.

—The URI to get a new copy
of the Workflow object.

Stringuri

Must be unique.

Maximum of 40
characters.

—The name of the workflow.Stringname

Maximum of 128
characters.

—A description of the
workflow.

Stringdescription

Media channel maps to the
media id.

Domain List
can be
obtained from
the
MediaDomain
API.

Note

• For Unified CCE,
you can define
custom media
channels for Voice
and Digital Channels.

• For Unified CCX, the
media channels are:

• Voice with
media id as 1.

• Chat with media
id as Chat.

• Email with
media id as
Email.

If no media
channels are
specified,
Voice is set
as the default
media.

Note

—Media channel of the
workflow

Stringmedia

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
326

Cisco Finesse Configuration APIs
Workflow API Parameters

NotesPossible ValuesDescriptionTypeParameter

—A set of events that cause
the conditions to be
evaluated.

ObjectTriggerSet

You can assign up to five
conditions to a workflow.

—A set of conditions that
determine whether the
workflow runs.

ObjectConditionSet

You can assign up to five
workflow actions to a
workflow.

When getting a workflow
or list of workflows, this
list contains summary
workflow actions (name,
type, and URL). When
creating or updating a
workflow, only the URI is
required in each workflow
action.

For more information, see
WorkflowAction, on page
331.

—A list of workflow actions
to run if the trigger and its
conditions are met. Actions
run in the order in which
they appear in this list.

ObjectworkflowActions

ConditionSet Parameters

NotesPossible ValuesDescriptionTypeParameter

ANY, ALLDetermines whether any or
all of the conditions must be
met for the workflow to run.

StringapplyMethod

Maximum of five
conditions for a
workflow.

A workflow with no
conditions is
specified by a
conditions parameter
with no Condition
elements.

—A list of conditions for the
workflow.

Objectconditions

—Information about a
workflow condition.

ObjectCondition

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
327

Cisco Finesse Configuration APIs
Workflow API Parameters

NotesPossible ValuesDescriptionTypeParameter

Leading and trailing
spaces are removed
from the variable
during evaluation.
Comma-separated
values in a list also
have leading and
trailing spaces
removed. If the value
contains only spaces,
it is treated as an
empty value.

—A piece of data from the
Trigger event used to filter
the event.

ObjectVariable

IS_EQUAL,
IS_NOT_EQUAL,
BEGINS_WITH,
ENDS_WITH,
CONTAINS,
IS_EMPTY,
IS_NOT_EMPTY,
IS_IN_LIST,
IS_NOT_IN_LIST

The operator used to
compare the event variable
to the desired value.

Stringcomparator

If the comparator is
IS_IN_LIST or
IS_NOT_IN_LIST,
the value is one of a
comma-separated list
of values. If an
explicit comma is
needed, it must be
escaped with a
backslash (\,). If a
backslash is needed,
it must be escaped
with a backslash (\\)
(for example,
apple,slash\\
here,comma\,here,ball).

When type is SYSTEM,
valid values are
CALL_ARRIVES,
CALL_ANSWERED,
CALL_ENDS,
CALL_IS_MADE, and
CALL_IS_PREVIEWED.

The value to compare the
event variable with.

Stringvalue

TriggerSet Parameters

NotesPossible ValuesDescriptionTypeParameter

SYSTEMThe type of TriggerSet.Stringtype

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
328

Cisco Finesse Configuration APIs
Workflow API Parameters

NotesPossible ValuesDescriptionTypeParameter

When type is SYSTEM,
valid values are
CALL_ARRIVES,
CALL_ANSWERED,
CALL_ENDS,
CALL_IS_MADE, and
CALL_IS_PREVIEWED.

The name of the TriggerSetStringname

Default for this
parameter is FALSE.

TRUE, FALSEIndicates whether workflow
for a second simultaneous
call can fir while the call for
this trigger is in process.

Booleanallow
Overlapping
CallWorkflow

For workflow admin,
this field is not
returned and is
ignored if the type is
SYSTEM.

—List of Trigger subobjects.Objecttriggers

Trigger Parameters

NotesPossible ValuesDescriptionTypeParameter

—A piece of data from the
trigger event to be used to
filter the event.

Contains a name, node,
and type.

ObjectVariable

—A unique name for the
variable. Used as a
readable, unique key for
the variable.

Stringname

—The XPath to use to
extract the value of the
variable from an XMPP
event that might contain
it.

Stringnode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
329

Cisco Finesse Configuration APIs
Workflow API Parameters

NotesPossible ValuesDescriptionTypeParameter

SYSTEM variables
are name references
to the values returned
by SystemVariable
and do not require a
node value.
CUSTOM variables
are self-defining and
require a node and a
unique name that
does not conflict with
any system variable.

SYSTEM, CUSTOMIndicates whether this is a
system or custom variable.

Stringtype

Nodes can contain the following predefined variables as part of their XPath. When the node is evaluated, the
current value as received in the most recent User event will be substituted in place of the variable. Variables
are surrounded by ${} when specified in XPath as shown in the table below.

These variables are a subset of those defined by the SystemVariable resourceNote

SYSTEM variables are name references to the values returned by SystemVariable and do not require a node
value. CUSTOM variables are self-defining and require a node and a unique name that does not conflict with
any system variable.

Data TypeValueVariable Name

StringThe extension this user is currently
using.

${userExtension}

StringThe login ID of the user.${userLoginId}

StringThe user's login name.${userLoginName}

StringThe name of the team the user
belongs to.

${userTeamName}

StringThe ID of the team the user belongs
to.

${userTeamId}

StringThe first name of the user.${userFirstName}

StringThe last name of the user.${userLastName}

Workflow API Errors
DescriptionError TypeStatus

The request body is invalid.Bad Request400

API error such as the object is stale or does not exist.Finesse API Error400

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
330

Cisco Finesse Configuration APIs
Workflow API Errors

DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

The specified resource cannot be found.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

WorkflowAction
TheWorkflowAction object represents a workflow action that can be assigned to a workflow. Finesse supports
a system-wide maximum of 100 workflow actions.

The WorkflowAction object is structured as follows:
<WorkflowAction>

<uri>/finesse/api/WorkflowAction/{id}</uri>
<name></name>
<type></type>
<handledBy></handledBy>
<params>

<Param>
<name><name>
<value></value>

</Param>
<Param>

<name></name>
<value></value>

</Param>
</params>
<actionVariables>

<ActionVariable>
<name></name>
<type></type>

</ActionVariable>
</actionVariables>

</WorkflowAction>

There are two types of workflow actions: BROWSER_POP and HTTP_REQUEST.

The BROWSER_POP type is structured as follows:
<WorkflowAction>

<uri>/finesse/api/WorkflowAction/{id}</uri>
<name>DuckDuckGo</name>
<type>BROWSER_POP</type>
<handledBy>FINESSE_DESKTOP</handledBy>
<params>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
331

Cisco Finesse Configuration APIs
WorkflowAction

<Param>
<name>path<name>

<value>http://www.example.com?q=${callVariable1}</value>
</Param>
<Param>
<name>windowName</name>

<value>theWindow</value>
</Param>

</params>
<actionVariables>
<ActionVariable>
<name>callVariable1</name>

<type>SYSTEM</type>
</ActionVariable>
</actionVariables>

</WorkflowAction>

The HTTP_REQUEST type is structured as follows:
<WorkflowAction>

<name>Test with Content Type</name>
<type>HTTP_REQUEST</type>
<handledBy>FINESSE_DESKTOP</handledBy>

<Param>
<name>path</name>

<value>http://www.example.com?q=${callVariable1}</value>
</Param>
<Param>

<name>method</name>
<value>PUT</value>

</Param>
<Param>

<name>authenticationType</name>
<value>BASIC</value>

</Param>
<Param>

<name>location</name>
<value>OTHER</value>

</Param>
<Param>

<name>contentType</name>
<value>application/xml</value>

</Param>
<Param>

<name>body</name>
<value>${callVariable1},${callVariable2}</value>

</Param>
</params>
<actionVariables>

<ActionVariable>
name>callVariable1</name>
<type>SYSTEM</type>

</ActionVariable>
<ActionVariable>

<name>callVariable2</name>
<type>SYSTEM</type>

</ActionVariable>
</actionVariables>

</WorkflowAction>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
332

Cisco Finesse Configuration APIs
WorkflowAction

WorkflowAction APIs

WorkflowAction—Get
This API allows an administrator to get a specific WorkflowAction object.

https://<FQDN>/finesse/api/WorkflowAction/<id>URI:

https://finesse1.xyz.com/finesse/api/WorkflowAction/674Example URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<WorkflowAction>
...Full WorkflowAction Object...

</WorkflowAction>

Example Response:

<ApiErrors>
<ApiError>

<ErrorData>Action 674 not found.</ErrorData>
<ErrorType>Not Found</ErrorType>
<ErrorMessage>HTTP Status code:404 (Not Found)

Api Error Type: Not Found
Error Message: Workflow not found with an id of 674

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

WorkflowAction—Get List
This API allows an administrator to get a list of workflow actions.

https://<FQDN>/finesse/api/WorkflowActionsURI:

https://finesse1.xyz.com/finesse/api/WorkflowActionsExample URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
333

Cisco Finesse Configuration APIs
WorkflowAction APIs

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<WorkflowActions>
<WorkflowAction>

<name>WorkflowAction 1</name>
<type>HTTP</name>
<uri>/finesse/api/WorkflowAction/{id}</uri>

</WorkflowAction>
<WorkflowAction>

<name>WorkflowAction 2</name>
<type>DELAY</name>
<uri>/finesse/api/WorkflowAction/{id}</uri>

</WorkflowAction>
</WorkflowActions>

Example Response:

<ApiErrors>
<ApiError>

<ErrorData>Database read/write error</ErrorData>
<ErrorType>Bad Request</ErrorType>
<ErrorMessage>

HTTP Status code: 400 (Bad Request)
Api Error Type: Bad Request
Error Message: Database read/write error

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

WorkflowAction—Create
This API allows an administrator to create a new workflow action.

If you provide two or more duplicate tags during a POST, the value of the last duplicate tag is processed and
all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/WorkflowAction/URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
334

Cisco Finesse Configuration APIs
WorkflowAction—Create

https://finesse1.xyz.com/finesse/api/WorkflowAction/Example URI:

Only administrators can use this API.Security Constraints:

POSTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<WorkflowAction>
...Full WorkflowAction Object...

</WorkflowAction>

HTTP Request:

name (required): The name of the workflow action

type (required): The type of workflow action

handledBy (required): Indicates what handles the action

params (required): List of Params for the workflow action

actionVariables (required): list of actionVariables for the workflow

path (required): The path to use in the action

windowName (optional): The window name to pop open

Request Parameters
(Browser Pop):

name (required): The name of the workflow action

type (required): The type of workflow action

handledBy (required): Indicates what handles the action

params (required): List of Params for the workflow action

actionVariables (required): list of actionVariables for the workflow

path (required): The path to use in the action

method (required): The method to use in the request

authenticationType (optional): The authentication type to use in the request

location (required): Whether the request is to Finesse or a third party

contentType (optional): The value of the content type header to send with the request

body (optional): The body to send with the request

Request Parameters
(HTTP Request):

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
335

Cisco Finesse Configuration APIs
WorkflowAction—Create

200: Success

Finesse successfully created the new workflow action. The server
response contains an empty response body and a location header that
denotes the absolute URL of the new workflow action.

Note

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>Action Type is invalid.</ErrorData>
<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>

HTTP Status code: 400 (Bad Request)
Api Error Type: Invalid Input
Error Message: type is invalid

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

WorkflowAction—Update
This API allows an administrator to update an existing workflow action.

If the attributes (name, description, TriggerSet, ConditionSet, workflowActions) for the specified workflow
do not change, the request does not need to include those attributes. If an attribute is not specified, the current
value is retained. However, you must specify at least one attribute in the request.

If you only want to change the description of the workflow, you can make the following request:
<Workflow>

<description>New description</description>
</Workflow>

If you provide two or more duplicate tags during a PUT, the value of the last duplicate tag is processed and
all other duplicate tags are ignored.

Note

https://<FQDN>/finesse/api/WorkflowAction/<id>URI:

https://finesse1.xyz.com/finesse/api/WorkflowAction/769Example URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
336

Cisco Finesse Configuration APIs
WorkflowAction—Update

<WorkflowAction>
...WorkflowAction Object...

</WorkflowAction>

HTTP Request:

id (required): Maps to the primary key of the workflowAction entry

name (required): The name of the workflow action

type (required): The type of workflow action

handledBy (required): Indicates what handles the action

params (required): List of Params for the workflow action

actionVariables (required): list of actionVariables for the workflow

Request Parameters:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>Duplicate Action name.</ErrorData>
<ErrorType>Database constraint violation</ErrorType>
<ErrorMessage>

HTTP Status code: 400 (Bad Request)
Api Error Type: Database constraint violation
Error Message: An action with the same name already
exists

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

WorkflowAction—Delete
This API allows an administrator to delete an existing workflow action. The administrator references the
existing WorkflowAction object by its ID.

https://<FQDN>/finesse/api/WorkflowAction/<id>URI:

https://finesse1.xyz.com/finesse/api/WorkflowAction/768Example URI:

Only administrators can use this API.Security Constraints:

DELETEHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

—HTTP Request:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
337

Cisco Finesse Configuration APIs
WorkflowAction—Delete

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>Action 768 not found.</ErrorData>
<ErrorType>Not Found</ErrorType>
<ErrorMessage>

HTTP Status code: 404 (Not Found)
Api Error Type: Not Found
Error Message: This is not a valid action

</ErrorMessage>
</ApiError>

</ApiErrors>

Example Failure
Response:

WorkflowAction API Parameters
NotesPossible ValuesDescriptionTypeParameter

The id in the URI
maps to the primary
key of the
WorkflowAction.

—The URI to get a new copy
of the WorkflowAction
object.

Stringuri

Must be unique.

Maximum of
64characters.

—The name of the workflow
action.

Stringname

BROWSER_POP,
HTTP_REQUEST

The type of workflow
action

Stringtype

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
338

Cisco Finesse Configuration APIs
WorkflowAction API Parameters

NotesPossible ValuesDescriptionTypeParameter

For
FINESSE_DESKTOP,
the Finesse workflow
engine runs the
action.

For OTHER, the
action event is
published on the
OpenAJAX hub but
is not run by the
Finesse desktop. This
allows a third-party
gadget to run the
action.

FINESSE_DESKTOP,
OTHER

Indicates what handles the
action when it is triggered
by a workflow.

StringhandledBy

—A list of Param subobjects.Objectparams

Params are flexible
and can contain any
value. Validation is
based on the type of
the WorkflowAction
in which they are
contained. See the
following tables for
more information.

—Includes a name and value
pair.

Object-->Param

—The name of the parameter.String--->name

—The value of the parameter.String--->value

—List of ActionVariable
subobjects.

ObjectactionVariables

You can assign up to
five ActionVariable
parameters to a
workflow.

—Set of information about
one ActionVariable.

Object-->ActionVariable

Maximum of 32
characters.

—The name of the variable.String--->name

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
339

Cisco Finesse Configuration APIs
WorkflowAction API Parameters

NotesPossible ValuesDescriptionTypeParameter

Maximum of 500
characters.

SYSTEM variables
are name references
to the values returned
by SystemVariable
and do not require a
node value.
CUSTOM variables
are self-defining and
require a node and a
unique name that
does not conflict with
any system variable.

—The XPath to extract from
the dialog XML.

String--->node

CUSTOM, SYSTEMIndicates the type of
variable

String--->type

Maximum of 128
characters.

—The value used to test the
variable.

String--->testValue

Param Values (BROWSER_POP)

Required?SizePossible ValuesDescriptionParameter

Yes500The URL path is validated only to make
sure its length is at least 1 and no longer
than the maximum length. It is up to the
user to provide a valid URL. Variables can
be embedded into the URL by using a
dollar sign and curly braces. For example:
http://www.example.com?q=${callVariable1}

causes the workflow engine to substitute
the value of callVariable1 into the path. If
a literal curly brace or dollar sign is needed
in the URL, it must be escaped with a
backslash (for example, \{). A literal
backslash must be escaped with another
backslash (\\).

The path to use in the
BROWSER_POP
action

path

No40Thewindow name is passed to the browser
Window Open method by the work flow
engine. The value can be any string other
than _parent, _self, or _top. It can also be
an empty string or missing entirely, in
which case the workflow engine passes
_blank to the Window Open method.

The window name to
pop open

windowName

Param (HTTP_REQUEST)

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
340

Cisco Finesse Configuration APIs
WorkflowAction API Parameters

Required?SizePossible ValuesDescriptionParameter

Yes500The URL path is validated only to make sure
its length is at least 1 and no longer than the
maximum length. It is up to the user to provide
a valid URL. Variables can be embedded into
the URL by using a dollar sign and curly
braces. For example:
http://www.example.com?q=${callVariable1}

will cause the workflow engine to substitute
the value of callVariable1 into the path. If a
literal curly brace or dollar sign is needed in
the URL, they must be escaped with a
backslash (e.g. \{). A literal backslash must
be escaped with another backslash (e.g. \\).

When location is FINESSE, the protocol, host,
and port should not be specified. These will
be inferred automatically by Finesse when it
runs the REST request. For example, to send
a dialog request for dialog id 32458, the
following URL should be entered:

/finesse/api/Dialog/32458

The path to use
in the
HTTP_REQUEST
action

path

YesPUT, POSTThe method to
use in the
HTTP_REQUEST

method

NoBASIC: A basic access authentication header
is included in the REST request each time it
is made.

NONE: No authentication is used with the
request, no authentication headers or other
negotiation is done as part of the request.

The
authentication
type to use in
the
HTTP_REQUEST

authenticationType

NoFINESSE: The request is made to Finesse and
passes the credentials of the currently
logged-in user

NONE: No credentials are included as part of
the request.

Defines if the
HTTP_REQUEST
is to Finesse or
to a third party
application

location

No500The content type is only validated to ensure it
does not exceed the maximum length. You
must make sure you provide a valid content
type.

If the parameter is empty, no content type
header is sent with the HTTP_REQUEST.

The value of the
content type
header to send
with the
HTTP_REQUEST

contentType

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
341

Cisco Finesse Configuration APIs
WorkflowAction API Parameters

No2000A free form text string that is included in the
body of the request. It may be JSON, XPATH
or any other format. It is not validated. If xml
is included in the value it must be well formed
xml. Variables may be embedded into the
body by using a dollar sign curly braces. For
example:
<foo>${callVariable1}</foo>

causes the workflow engine to substitute the
value of callVariable1 into the body. If a literal
curly brace or dollar sign is needed in the body
it must be escaped with a backslash:
\{

A literal backslash must be escaped with
another backslash :
\\

The body to
send with the
HTTP_REQUEST

body

WorkflowAction API Errors
DescriptionError TypeStatus

The request body is invalid.Bad Request400

API error such as the object is stale or does not exist.Finesse API Error400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

The specified resource cannot be found.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Team
The Team object represents a team and the resources associated with that team. For more information, see
Team, on page 159.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
342

Cisco Finesse Configuration APIs
WorkflowAction API Errors

The administrator uses the Team configuration APIs to assign or unassign resources (such as reason codes,
wrap-up reasons, phonebooks, layout configuration, and workflows) to a specific team.

Team APIs

Team—Get List
This API allows an administrator to get a list of teams. The team must have agents or supervisors assigned to
it for the team to appear in the retrieved list.

https://<FQDN>/finesse/api/TeamsURI:

https://finesse1.xyz.com/finesse/api/TeamsExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

<Teams>
<Team>

...Summary Team Object...
</Team>
<Team>

...Summary Team Object...
</Team>
<Team>

...Summary Team Object...
</Team>

</Teams>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Unauthorized</ErrorType>
<ErrorMessage>The user is not authorized to
perform this operation.</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
343

Cisco Finesse Configuration APIs
Team APIs

Team—Get List of Reason Codes
This API allows an administrator to get a list of reason codes for the specified category assigned to a specific
team. The list is in the same format as defined in the section ReasonCode.

https://<FQDN>/finesse/api/Team/<id>/ReasonCodes?category=<category>URI:

https://finesse1.xyz.com/finesse/api/Team/574/ReasonCodes?category=NOT_READYExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ReasonCodes category="NOT_READY">
<ReasonCode>

... Full Reason Code Object ...
</ReasonCode>
<ReasonCode>

... Full Reason Code Object ...
</ReasonCode>
<ReasonCode>

... Full Reason Code Object ...
</ReasonCode>

....
</ReasonCodes>

Example Response:

<ApiErrors>
<ApiError>

<ErrorData>500</ErrorData>
<ErrorType>finesse.api.team.team_assignment_invalid_
team&</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_invalid_team

Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
344

Cisco Finesse Configuration APIs
Team—Get List of Reason Codes

Team—Update List of Reason Codes
This API allows an administrator to assign or unassign a list of reason codes of the specified category to a
team.

If multiple users try to update the reason code for the same team at the same time, the changes made by the
last user to update overwrite the changes made by the other users.

This list includes all reason codes of the specified category that are assigned to a team. Any reason codes that
you assign or unassign overwrite the current reason code list.

The category attribute of the ReasonCodes tag is not required for the update. If it is included in the request,
it is ignored. However, all the reason codes in the list must have a category specified in the category query
parameter. Inclusion of a reason code whose category does not match results in a Finesse API error (Status
400).

Note

https://<FQDN>/finesse/api/Team/<Id>/ReasonCodes?category=<category>URI:

https://finesse1.xyz.com/finesse/api/Team/574/ReasonCodes?category=NOT_READYExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<ReasonCodes>
<ReasonCode>

<uri>/finesse/api/ReasonCode/123</uri>
</ReasonCode>
<ReasonCode>

<uri>/finesse/api/ReasonCode/456</uri>
</ReasonCode>
<ReasonCode>

<uri>/finesse/api/ReasonCode/789</uri>
</ReasonCode>

....
</ReasonCodes>

HTTP Request:

id (required): The database ID for the team

category (required): The category of reason code (NOT_READY or LOGOUT)

Request Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
345

Cisco Finesse Configuration APIs
Team—Update List of Reason Codes

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorData>category NOT_READ is invalid</ErrorData>
<ErrorType>Invalid Input</ErrorType>
<ErrorMessage>HTTP Status code:400 (Bad Request)
Api Error Type:Invalid Input
Error Message:Category must be NOT_READY
or LOGOUT</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Get List of Wrap-Up Reasons
This API allows an administrator to get a list of wrap-up reasons assigned to a specific team. The list is in the
same format as defined in the section WrapUpReason, on page 267.

https://<FQDN>/finesse/api/Team/<id>/WrapUpReasonsURI:

https://finesse1.xyz.com/finesse/api/Team/574/WrapUpReasonsExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
346

Cisco Finesse Configuration APIs
Team—Get List of Wrap-Up Reasons

<WrapUpReasons>
<WrapUpReason>

... Full WrapUpReason Object ...
</WrapUpReason>
<WrapUpReason>

... Full WrapUpReason Object ...
</WrapUpReason>
<WrapUpReason>

... Full WrapUpReason Object ...
</WrapUpReason>

....
</WrapUpReasons>

Example Response:

<ApiErrors>
<ApiError>

<ErrorData>500</ErrorData>
<ErrorType>finesse.api.team.team_assignment_invalid_
team&</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team
Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Update List of Wrap-Up Reasons
This API allows an administrator to assign or unassign a list of wrap-up reasons to a team.

This API restricts the maximum number of non-global wrap-up reasons that can be assigned to a single team
to 100.

If multiple users try to update the wrap-up reasons for the same team at the same time, the changes made by
the last user to update overwrite the changes made by the other users.

This list includes all wrap-up reasons that are assigned to a team. Any wrap-up reasons that you assign or
unassign overwrite the current wrap-up reason list.

https://<FQDN>/finesse/api/Team/<Id>/WrapUpReasonsURI:

https://finesse1.xyz.com/finesse/api/Team/574/WrapUpReasonsExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
347

Cisco Finesse Configuration APIs
Team—Update List of Wrap-Up Reasons

<WrapUpReasons>
<WrapUpReason>

<uri>/finesse/api/WrapUpReason/123</uri>
</WrapUpReason>
<WrapUpReason>

<uri>/finesse/api/WrapUpReason/456</uri>
</WrapUpReason>
<WrapUpReason>

<uri>/finesse/api/WrapUpReason/789</uri>
</WrapUpReason>

....
</WrapUpReasons>

HTTP Request:

id (required): The database ID for the teamRequest Parameters:

200: Success

400: Bad Request

400: Finesse API Error

400: Maximum Exceeded

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>
<ErrorData>574</ErrorData>
<ErrorType>finesse.api.team.team_assignment_
invalid_team</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Get List of Phone Books
This API allows an administrator to get a list of phone books assigned to a specific team. The list is in the
same format as defined in the section PhoneBook, on page 297.

https://<FQDN>/finesse/api/Team/<id>/PhoneBooksURI:

https://finesse1.xyz.com/finesse/api/Team/574/PhoneBooksExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
348

Cisco Finesse Configuration APIs
Team—Get List of Phone Books

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<PhoneBooks>
<PhoneBook>

... Full PhoneBook Object ...
</PhoneBook>
<PhoneBook>

... Full PhoneBook Object ...
</PhoneBook>
<PhoneBook>

... Full PhoneBook Object ...
</PhoneBook>

....
</PhoneBooks>

Example Response:

<ApiErrors>
<ApiError>

<ErrorData>574</ErrorData>
<ErrorType>finesse.api.team.team_assignment_invalid_
team&</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team
Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Update List of Phone Books
This API allows an administrator to assign or unassign a list of phone books to a team.

If multiple users try to update the phone books for the same team at the same time, the changes made by the
last user to update overwrite the changes made by the other users.

This list includes all phone books that are assigned to a team. Any phone books that you assign or unassign
overwrite the current phone book list.

https://<FQDN>/finesse/api/Team/<Id>/PhoneBooksURI:

https://finesse1.xyz.com/finesse/api/Team/574/PhoneBooksExample URI:

Only administrators can use this API.Security Constraints:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
349

Cisco Finesse Configuration APIs
Team—Update List of Phone Books

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<PhoneBooks>
<PhoneBook>

<uri>/finesse/api/PhoneBook/123</uri>
</PhoneBook>
<PhoneBook>

<uri>/finesse/api/PhoneBook/456</uri>
</PhoneBook>
<PhoneBook>

<uri>/finesse/api/PhoneBook/789</uri>
</PhoneBook>

....
</PhoneBooks>

HTTP Request:

id (required): The database ID for the teamRequest Parameters:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>
<ErrorData>574</ErrorData>
<ErrorType>finesse.api.team.team_assignment_
invalid_team</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Get Layout Configuration
This API allows an administrator to get the layout configuration assigned to a specific team.

https://<FQDN>/finesse/api/Team/<id>/LayoutConfigURI:

https://finesse1.xyz.com/finesse/api/Team/574/LayoutConfigExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
350

Cisco Finesse Configuration APIs
Team—Get Layout Configuration

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<TeamLayoutConfig>
<useDefault>false</useDefault>
<layoutxml>

<finesseLayout xmlns="http://www.cisco.com/vtg/finesse">
<layout>

<role>Agent</role>
...

</layout>
<layout>

<role>Supervisor</role>
...
</layout>

</finesseLayout>
</layoutxml>

</TeamLayoutConfig>

Example Response:

<ApiErrors>
<ApiError>

<ErrorData>574</ErrorData>
<ErrorType>finesse.api.team.team_assignment_invalid_
team&</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team
Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Update Layout Configuration
This API allows an administrator to assign or unassign a layout configuration to a team.

If multiple users try to update the layout configuration for the same team at the same time, the changes made
by the last user to update overwrite the changes made by the other users.

https://<FQDN>/finesse/api/Team/<Id>/LayoutConfigURI:

https://finesse1.xyz.com/finesse/api/Team/574/LayoutConfigExample URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
351

Cisco Finesse Configuration APIs
Team—Update Layout Configuration

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

Example of assigning a team-specific layout:
<TeamLayoutConfig>

<useDefault>false</useDefault>
<layoutxml>

<finesseLayout xmlns="http://www.cisco.com/vtg/finesse">
<layout>

<role>Agent</role>
...

</layout>
<layout>

<role>Supervisor</role>
...
</layout>

</finesseLayout>
</layoutxml>

</TeamLayoutConfig>

Example of assigning the default layout to a team:
<TeamLayoutConfig>

<useDefault>true</useDefault>
</TeamLayoutConfig>

HTTP Request:

id (required): The database ID for the team

useDefault (required): Whether to use the default desktop layout for this team

layoutxml (required if useDefault is false): The XML data that determines the layout
of the Finesse desktop

Request Parameters:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
352

Cisco Finesse Configuration APIs
Team—Update Layout Configuration

<ApiErrors>
<ApiError>
<ErrorData>574</ErrorData>
<ErrorType>finesse.api.team.team_assignment_
invalid_team</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Get List of Workflows
This API allows an administrator to get a list of workflows assigned to a specific team. The list is in the same
format as defined in the section Workflow, on page 313.

https://<FQDN>/finesse/api/Team/<id>/WorkflowsURI:

https://finesse1.xyz.com/finesse/api/Team/574/WorkflowsExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<Workflows>
<Workflow>

... Summary Workflow Object ...
</Workflow>
<Workflow>

... Summary Workflow Object ...
</Workflow>
<Workflow>

... Summary Workflow Object ...
</Workflow>

....
</Workflows>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
353

Cisco Finesse Configuration APIs
Team—Get List of Workflows

<ApiErrors>
<ApiError>

<ErrorData>574</ErrorData>
<ErrorType>finesse.api.team.team_assignment_invalid_
team&</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team
Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team—Update List of Workflows
This API allows an administrator to assign or unassign a list of workflows to a team.

If multiple users try to update the workflows for the same team at the same time, the changes made by the
last user to update overwrite the changes made by the other users.

This list includes all workflows that are assigned to a team. Any workflows that you assign or unassign
overwrite the current workflow list.

Because the order in which workflows are evaluated is important, the order of the workflows in the list is
preserved in the GET method (see Team—Get List of Workflows, on page 353).

Note

https://<FQDN>/finesse/api/Team/<Id>/workflowsURI:

https://finesse1.xyz.com/finesse/api/Team/574/WorkflowsExample URI:

Only administrators can use this API.Security Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output Format:

<Workflows>
<Workflow>

<uri>/finesse/api/Workflow/123</uri>
</Workflow>
<Workflow>

<uri>/finesse/api/Workflow/456</uri>
</Workflow>
<Workflow>

<uri>/finesse/api/Workflow/789</uri>
</Workflow>

....
</Workflows>

HTTP Request:

id (required): The database ID for the teamRequest Parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
354

Cisco Finesse Configuration APIs
Team—Update List of Workflows

200: Success

400: Bad Request

400: Finesse API Error

401: Authorization Failure

401: Invalid Authorization User Specified

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>
<ErrorData>574</ErrorData>
<ErrorType>finesse.api.team.team_assignment_
invalid_team</ErrorType>
<ErrorMessage>HTTP Status code: 404 (Not Found)
Api Error Type:finesse.api.team.team_assignment_
invalid_team Error Message:
This is not a valid team</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

Team API Parameters
NotesPossible ValuesDescriptionTypeParameter

—The URI to get a new copy
of the Team, ReasonCode,
WrapUpReason,
LayoutConfig, orWorkflow
object.

Stringuri

The unique identifier for the
team.

Stringid

—The name of the team.Stringname

NOT_READY,
LOGOUT

Specifies the type of reason
code.

Stringcategory

true, falseDetermines whether to use
the default desktop layout
for this team.

BooleanuseDefault

If useDefault is set to
true and the
layoutxml is provided
in a request, the
layoutxml is ignored.

—The XML data that
determines the desktop
layout.

Stringlayoutxml

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
355

Cisco Finesse Configuration APIs
Team API Parameters

Team API Errors
DescriptionError TypeStatus

The request body is invalid.Bad Request400

API error such as the object is stale or does not exist.Finesse API Error400

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

The specified resource cannot be found.Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

SystemVariable
The SystemVariable object represents a variable that can be extracted from a Finesse event object and displayed
on the Finesse desktop or used in a workflow.

The SystemVariable object is structured as follows:
<SystemVariable>

<name></name>
<node></node>

</SystemVariable>

SystemVariable APIs

SystemVariable—List
This API allows an administrator to get a list of all system variables.

The Outbound variable BACustomerNumber only appears in the response when Finesse is deployed with
Unified CCX.

Note

https://<FQDN>/finesse/api/SystemVariablesURI:

https://finesse1.xyz.com/finesse/api/SystemVariablesExample URI:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
356

Cisco Finesse Configuration APIs
Team API Errors

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

403: Forbidden

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
357

Cisco Finesse Configuration APIs
SystemVariable—List

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
358

Cisco Finesse Configuration APIs
SystemVariable—List

<SystemVariables>
<SystemVariable>

<name>callVariable1</name>
<node>>//Dialog/mediaProperties/callvariables/CallVariable/
name[.="callVariable1"]/../value</node>

</SystemVariable>
<SystemVariable>

<name>callVariable2</name>
<node>//Dialog/mediaProperties/callvariables/CallVariable/
name[.="callVariable2"]/../value</node>

</SystemVariable>
<SystemVariable>

<name>callVariable3</name>
<node>//Dialog/mediaProperties/callvariables/CallVariable/
name[.="callVariable3"]/../value</node>

</SystemVariable>
...Other callVariables (4 through 10)...
<SystemVariable>

<name>BAAccountNumber</name>
<node>//Dialog/mediaProperties/callvariables/CallVariable/
name[.="callVariable3"]/../value</node>

</SystemVariable>
<SystemVariable>

<name>callVariable5</name>
<node>//Dialog/mediaProperties/callvariables/CallVariable/
name[.="BAAccountNumber"]/../value</node>

</SystemVariable>
<SystemVariable>

<name>BABuddyName</name>
<node>//Dialog/mediaProperties/callvariables/CallVariable/
name[.="BABuddyName"]/../value</node>

</SystemVariable>
...Other Outbound Variables...
<SystemVariable>

<name>DNIS</name>
<node>//Dialog/mediaProperties/DNIS</node>

<SystemVariable>
<name>fromAddress</name>
<node>//Dialog/fromAddress</node>

</SystemVariable>
<SystemVariable>

<name>Extension</name>
<node>//User/Extension</node>

</SystemVariable>
<SystemVariable>

<name>loginId</name>
<node>//User/loginId</node>

</SystemVariable>
<SystemVariable>

<name>teamName</name>
<node>//User/teamName</node>

</SystemVariable>
<SystemVariable>

<name>teamId</name>
<node>//User/teamId</node>

</SystemVariable>
<SystemVariable>

<name>firstName</name>
<node>//User/firstName</node>

</SystemVariable>
<SystemVariable>

<name>lastName</name>
<node>//User/lastName</node>

</SystemVariable>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
359

Cisco Finesse Configuration APIs
SystemVariable—List

</SystemVariables>

No API errors are returned. Responses are 401/403/404 Errors.Example Failure
Response:

SystemVariable API Parameters
NotesPossible ValuesDescriptionTypeParameter

The name is used as
a readable, unique
key for the variable.

Maximum of 32
characters.

—A unique name for the
variable.

Stringname

Maximum of 500
characters.

—The XPath to use to extract
the value of this variable
from an XMPP event that
may contain the variable.

Stringnode

SystemVariable API Errors
DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

The user is not authorized to use the API (the user is
not an administrator).

Authorization Failure401

The user attempted to run the API against the
secondary Finesse server.

Configuration APIs cannot be run against the
secondary Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
360

Cisco Finesse Configuration APIs
SystemVariable API Parameters

C H A P T E R 5
Cisco Finesse Serviceability APIs

• SystemInfo, on page 361
• Finesse MaintenanceMode, on page 369
• ConnectedUsersInfo, on page 373
• Diagnostic Portal, on page 378
• RuntimeConfigInfo, on page 381
• Locked Out Users, on page 385

SystemInfo
The SystemInfo object represents the Finesse system and provides high-level configuration and state information
such as the deployment type, the current system state, hostnames of the finesse nodes, and other details.

The SystemInfo object is structured as follows:
<SystemInfo>

<currentTimestamp></currentTimestamp>
<deploymentType></deploymentType>
<lastCTIHeartbeatStatus></lastCTIHeartbeatStatus>
<lastSuccessCTIHeartbeatTime></lastSuccessCTIHeartbeatTime>
<ctiVersion></ctiVersion>
<ctiHeartbeatInterval></ctiHeartbeatInterval>
<ctiTimeInMMode></ctiTimeInMMode>
<ctiMMode></ctiMMode>
<finesseTimeInMMode></finesseTimeInMMode>
<finesseMMode></finesseMMode>
<license></license>
<peripheralId></peripheralId>
<primaryNode>

<host></host>
</primaryNode>
<secondaryNode>

<host></host>
</secondaryNode>
<status></status>
<statusReason></statusReason>
<systemAuthMode></systemAuthMode>
<timezoneOffset></timezoneOffset>
<uri></uri>
<xmppDomain></xmppDomain>
<xmppPubSubDomain></xmppPubSubDomain>
<ctiServers>

<ctiServer>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
361

<host></host>
<connectedDuration></connectedDuration>
<active></active>

</ctiServer>
<ctiServer>

<host></host>
<connectedDuration></connectedDuration>
<active></active>

</ctiServer>
</ctiServers>

</SystemInfo>

SystemInfo APIs

SystemInfo—Get
This API allows a user to get information about the Finesse system.

https://<FQDN>/finesse/api/SystemInfoURI:

https://finesse1.xyz.com/finesse/api/SystemInfoExample URI:

Access via proxy: If this API is accessed via proxy, agents, supervisors, or
administrators credentials are required.

For a non-authenticated API via proxy, refer to the Desktop
Configuration section in the Cisco Finesse Desktop Interface API
Guide.

Note

Access via non-proxy: If this API is not accessed through a proxy, credentials are
not required. However, when the webservice property secureSystemInfo is true,
credentials are required. By default the value of secureSystemInfo is false.

Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
362

Cisco Finesse Serviceability APIs
SystemInfo APIs

https://developer.cisco.com/docs/finesse/#!desktop-interface-api-dev-guide
https://developer.cisco.com/docs/finesse/#!desktop-interface-api-dev-guide
https://true.by/

<SystemInfo>
<currentTimestamp>2020-05-05T10:47:57.691Z</currentTimestamp>
<deploymentType>UCCE</deploymentType>

<lastCTIHeartbeatStatus>success</lastCTIHeartbeatStatus><lastSuccessCTIHeartbeatTime>1588675675720</lastSuccessCTIHeartbeatTime>

<ctiVersion>24</ctiVersion>
<ctiHeartbeatInterval>2</ctiHeartbeatInterval>
<ctiTimeInMMode>-1</ctiTimeInMMode>
<ctiMMode></ctiMMode>
<finesseTimeInMMode>32</finesseTimeInMMode>
<finesseMMode>IN_PROGRESS</finesseMMode>
<license></license>
<peripheralId>5001</peripheralId>
<primaryNode>

<host>finesse25.autobot.cvp</host>
</primaryNode>
<secondaryNode>

<host>finesse125.autobot.cvp</host>
</secondaryNode>
<status>IN_SERVICE</status>
<statusReason/>
<systemAuthMode>NON_SSO</systemAuthMode>
<timezoneOffset>-420</timezoneOffset>
<uri>/finesse/api/SystemInfo</uri>
<xmppDomain>finesse25.autobot.cvp</xmppDomain>
<xmppPubSubDomain>pubsub.finesse25.autobot.cvp</xmppPubSubDomain>
<ctiServers>

<ctiServer>
<host>pga.cisco.com</host>
<connectedDuration>10</connectedDuration>
<active>true</active>

</ctiServer>
<ctiServer>

<host>pgb.cisco.com</host>
<connectedDuration>-1</connectedDuration>
<active>false</active>

</ctiServer>
</ctiServers>

</SystemInfo>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Internal Server Error</ErrorType>
<ErrorMessage>Runtime Exception</ErrorMessage>
<ErrorData></ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

SystemInfo API Parameters
NotesPossible ValuesDescriptionTypeParameter

——The current time (GMT
time) in the following
format:

YYYY-MM-DDThh:MM:ss.SSZ

StringcurrentTimeStamp

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
363

Cisco Finesse Serviceability APIs
SystemInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

—UCCE, UCCXThe type of deployment
for Cisco Finesse.

StringdeploymentType

Once the heartbeat
request is sent, Cisco
Finesse waits for the
heartbeat
confirmation.

success, failureThe heartbeat request
from Finesse server to
CTI server.

StringlastCTIHeartbeatStatus

——The last successful
heartbeat time between
the Cisco Finesse server
and the CTI server.

IntegerlastSuccessCTIHeartbeatTime

——The CTI protocol
version with which the
Cisco Finesse server is
connected to the CTI
server.

IntegerctiVersion

——The heartbeat interval
between the Cisco
Finesse server and the
CTI server in seconds.

IntegerctiHeartbeatInterval

This parameter is
applicable only for
Unified CCE
deployment versions
12.6(1) or later.

—The total time (in
seconds) that the CTI
server is in maintenance
mode.

The time will be
negative if the CTI
server to which the
Finesse server is
connected to is not in
maintenance mode.

IntegerctiTimeInMMode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
364

Cisco Finesse Serviceability APIs
SystemInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

This parameter is
applicable only for
Unified CCE
deployment versions
12.6(1) or later.

INITIATING:
Finesse server
accepts the CTI
maintenance mode
request and waits for
the CTI response.

IN_PROGRESS:
Maintenance mode
request is received
and accepted by the
CTI server. Finesse
server is now going
to connect to the
standby CTI server.

Indicates the status of
the CTI server in
maintenance mode.

StringctiMMode

——The total time (in
seconds) that the Cisco
Finesse server is in
maintenance mode.

The time will be
negative if the Cisco
Finesse server is not in
maintenance mode.

IntegerfinesseTimeInMMode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
365

Cisco Finesse Serviceability APIs
SystemInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

—If there is no value
in this field, then
maintenance mode
is not initiated on
this system.

IN_PROGRESS:
Maintenance mode
request is received
and accepted by the
Cisco Finesse server.
Cisco Finesse is
waiting for all the
agents to be
connected to the
other side.

COMPLETED: All
the agents have
successfully signed
in to the other side.
Cisco Finesse shuts
down the services.

FAILED: The
maintenance mode
did not complete
successfully.

Indicates the status of
the Cisco Finesse server
in maintenance mode.

StringfinesseMMode

This parameter is
blank for Unified
CCE deployments.

STANDARD,
ENHANCED, or
PREMIUM

The Unified CCX
license.

Stringlicense

This parameter is
blank for Unified
CCX deployments.

—The ID of the Unified
CCE peripheral to
which Cisco Finesse is
connected.

StringperipheralId

Available for both the
nodes.

—The hostname or IP
address.

StringprimaryNode - host

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
366

Cisco Finesse Serviceability APIs
SystemInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

—IN_SERVICE: The
system is in service
and usual operations
are accepted.

OUT_OF_SERVICE:
The system is out of
service and usual
operations result in
a 503 Service
Unavailable
response.

The state of the Cisco
Finesse system.

Stringstatus

This parameter is
blank when Finesse
system is
IN_SERVICE.

Possible
out-of-service
scenarios returned
by Cisco Finesse
system:

• Cisco Finesse
Database is
down.

• Cisco Finesse
Notification
Service is
down.

• Cisco Finesse
connection to
CTI Server is
down.

• CTI Peripheral
ID xxx is
down.

• System is
initializing.

• Local Unified
CCX Engine is
not in Service.
(Unified CCX
only)

The reason for which
Cisco Finesse system is
down.

StringstatusReason

Hybrid is for Unified
CCE deployment.

SSO or non-SSOInformation about the
system authentication
mode.

StringsystemAuthMode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
367

Cisco Finesse Serviceability APIs
SystemInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

For example, a value
of 300 means the
server time is GMT +
5 hours. A value of
-300means the server
time is GMT - 5
hours.

—The difference (in
minutes) between the
server time and GMT
time.

IntegertimezoneOffset

——The URI to get a new
copy of the SystemInfo
object.

Stringuri

——The XMPP server
domain.

StringxmppDomain

——The XMPP server
pubsub domain.

StringxmppPubSubDomain

——The list of configured
CTI servers for Finesse.

CollectionctiServers

——Information about a
configured CTI server.

Object-->ctiServer

——The hostname of the
CTI server.

String-->host

——The total time (in
seconds) that the Cisco
Finesse server has been
connected to this
particular CTI server.

The time will be
negative if the Cisco
Finesse server is not
currently connected to
this CTI server.

Integer-->connectedDuration

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
368

Cisco Finesse Serviceability APIs
SystemInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

• Unified CCE
deployments
supporting CTI
protocol version
24 and above -
Agent PG
supports parallel
connections to
both the PG's,
with one in
Activemode and
another in
Passive mode.

• Unified CCX
and Unified
CCE
deployments
with CTI
protocol version
prior to
24—Indicates
the CTI server
on which the
Cisco Finesse is
connected.

true, falseIndicates whether the
Cisco Finesse is
connected to the active
CTI server.

Booleanactive

SystemInfo API Errors
DescriptionError TypeStatus

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Finesse MaintenanceMode
The Finesse MaintenanceMode object represents the state of the Finesse maintenance mode.

The Finesse MaintenanceMode object is structured as follows:
<MaintenanceMode>

<status></status>
<statusReason></statusReason>
<usersLoggedIn>

<desktop></desktop>
<fippa></fippa>
<thirdPartyClients></thirdPartyClients>

</usersLoggedIn>
<pendingUserDisconnections></pendingUserDisconnections>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
369

Cisco Finesse Serviceability APIs
SystemInfo API Errors

<estimatedCompletionTime></estimatedCompletionTime>
</MaintenanceMode>

Finesse MaintenanceMode APIs

Finesse MaintenanceMode—Get
This API allows the user to retrieve the current information about the Finesse maintenance mode.

https://<FQDN>/finesse/api/MaintenanceModeURI:

https://finesse1.xyz.com/finesse/api/MaintenanceModeExample URI:

Administrators, agents, and supervisors can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<MaintenanceMode>
<status>IN_PROGRESS</status>
<usersLoggedIn>

<desktop>385</desktop>
<fippa>10</fippa>
<thirdPartyClients>5</thirdPartyClients>

</usersLoggedIn>
<pendingUserDisconnections>400</pendingUserDisconnections>
<estimatedCompletionTime>300</estimatedCompletionTime>

</MaintenanceMode>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Internal Server Error</ErrorType>
<ErrorMessage>Runtime Exception</ErrorMessage>
<ErrorData></ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Finesse MaintenanceMode—Update
This API allows the user to update the existing information about the Finesse maintenance mode.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
370

Cisco Finesse Serviceability APIs
Finesse MaintenanceMode APIs

https://<FQDN>/finesse/api/MaintenanceModeURI:

https://finesse1.xyz.com/finesse/api/MaintenanceModeExample URI:

Only administrators can use this API.Security
Constraints:

PUTHTTP Method:

Application/XMLContent Type:

XMLInput/Output
Format:

<MaintenanceMode>
<status>IN_PROGRESS</status>

</MaintenanceMode>

HTTP Request:

status(required) : The new state of the maintenance mode the administrator wants to
be in (only IN_PROGRESS is valid).

Request Parameters

200: Success

400: Bad Request, Invalid Input

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<ApiErrors>
<ApiError>

<ErrorType>Internal Server Error</ErrorType>
<ErrorMessage>Runtime Exception</ErrorMessage>
<ErrorData></ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
371

Cisco Finesse Serviceability APIs
Finesse MaintenanceMode—Update

Finesse MaintenanceMode API Parameters
NotesPossible ValuesDescriptionTypeParameter

—IN_PROGRESS:
Maintenance request
is received and
accepted by the
Cisco Finesse server.
Cisco Finesse is
waiting for all the
agents to be
connected to the
alternate node.

COMPLETED: All
the agents have
successfully logged
in to the alternate
node. Cisco Finesse
has shut down the
services.

FAILED: The agent
login to the alternate
node is not
completed or the
maintenance mode
is not completed
within the
configured time.

The state of the Finesse
maintenance mode
request.

Stringstatus

——The information about
the users logged in at
the time when the
maintenance mode
started.

—usersLoggedIn

——The total number of
Finesse desktop users
logged in.

Integer-->desktop

——The total number of
Finesse IP Phone Agent
(IPPA) application users
logged in.

Integer-->fippa

——The total number of
users logged in from a
third-party client.

Integer-->thirdpartyclients

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
372

Cisco Finesse Serviceability APIs
Finesse MaintenanceMode API Parameters

NotesPossible ValuesDescriptionTypeParameter

——The number of agents
that are connected to the
server in maintenance
mode and scheduled to
move to the alternate
node.

IntegerpendingUserDisconnections

——The estimated time (in
seconds) required to
complete the
maintenance operation.

IntegerestimatedCompletionTime

Finesse MaintenanceMode API Errors
DescriptionError TypeStatus

The request is malformed or incomplete.Bad Request400

One of the parameters provided as part of the user input is
invalid or not recognized.

Invalid Input400

Unauthorized (for example, the user is not yet authenticated
in the Web Session).

Authorization Failure401

The authenticated user tried to make a request for another
user.

Invalid Authorization User
Specified

401

The resource specified is invalid or does not exist.Not Found404

Any runtime exception is caught and responded with this
error (for example, when connection is not established with
CTI server or any other component).

Internal Server Error500

ConnectedUsersInfo
The ConnectedUsersInfo object retrieves the real-time list of connected users. Administrators can use this
information to find the number of users and the type of connectivity to the Finesse server to support maintenance
or other administrative activities. This information fetched is not instantaneous and is refreshed every five
seconds.

The ConnectedUsersInfo object is structured as follows:
<ConnectedUsersInfo>
<userSummary>
<desktopUsers></desktopUsers>
<fippaUsers></fippaUsers>
<thirdPartyUsers></thirdPartyUsers>
<totalConnectedUsers></totalConnectedUsers>

</userSummary>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
373

Cisco Finesse Serviceability APIs
Finesse MaintenanceMode API Errors

<uri>/finesse/api/ConnectedUsersInfo</uri>
</ConnectedUsersInfo>

ConnectedUsersInfo APIs

ConnectedUsersInfo—Summary
This API provides the summary of the connected users information.

https://<FQDN>/finesse/api/ConnectedUsersInfoURI:

https://finesse1.xyz.com/finesse/api/ConnectedUsersInfoExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

403: Forbidden

503: Internal Server Error

HTTP Response:

<ConnectedUsersInfo>
<userSummary>
<desktopUsers>1</desktopUsers>
<fippaUsers>2</fippaUsers>
<thirdPartyUsers>0</thirdPartyUsers>
<totalConnectedUsers>3</totalConnectedUsers>

</userSummary>
<uri>/finesse/api/ConnectedUsersInfo</uri>

</ConnectedUsersInfo>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
374

Cisco Finesse Serviceability APIs
ConnectedUsersInfo APIs

Example 1

<ApiErrors>
<ApiError>

<ErrorType>Internal Server Error</ErrorType>
<ErrorMessage>Runtime Exception</ErrorMessage>
<ErrorData></ErrorData>

</ApiError>
</ApiErrors>

Example 2

<ApiErrors>
<ApiError>

<ErrorType>Service Unavailable</ErrorType>
<ErrorData>finesse.api.server.outofService</ErrorData>
<ErrorMessage>SERVER_OUT_OF_SERVICE</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

ConnectedUsersInfo—Get Connected Users Information
This API retrieves a list of agents who are logged in to the Finesse desktop, with detailed information.

https://<FQDN>/finesse/api/ConnectedUsersInfo?detailedList=trueURI:

https://finesse1.xyz.com/finesse/api/ConnectedUsersInfo?detailedList=trueExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Authorization Failure

403: Forbidden

503: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
375

Cisco Finesse Serviceability APIs
ConnectedUsersInfo—Get Connected Users Information

<ConnectedUsersInfo>
<userSummary>

<desktopUsers>1</desktopUsers>
<fippaUsers>0</fippaUsers>
<thirdPartyUsers>0</thirdPartyUsers>
<totalConnectedUsers>1</totalConnectedUsers>
<totalConnectedUsersViaProxy>0</totalConnectedUsersViaProxy>
</userSummary>
<userDetails>

<userDetail>
<loginId>1001002</loginId>
<userType>DESKTOP</userType>
<xmppJID>1001002@finesse25.autobot.cvp/desktop</xmppJID>
<teamName>FunctionalAgents</teamName>
<extension>1001002</extension>
<firstName>JOHN</firstName>
<lastName>SMITH</lastName>
<connectedViaProxy>false</connectedViaProxy>
<connectedDuration>2</connectedDuration>
<connectedHostName>finesse25.autobot.cvp</connectedHostName>
</userDetail>
</userDetails>
<uri>/finesse/api/ConnectedUsersInfo</uri>

</ConnectedUsersInfo>

Example Response:

Example 1

<ApiErrors>
<ApiError>

<ErrorType>Internal Server Error</ErrorType>
<ErrorMessage>Runtime Exception</ErrorMessage>
<ErrorData></ErrorData>

</ApiError>
</ApiErrors>

Example 2

<ApiErrors>
<ApiError>

<ErrorType>Service Unavailable</ErrorType>
<ErrorData>finesse.api.server.outofService</ErrorData>
<ErrorMessage>SERVER_OUT_OF_SERVICE</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure
Response:

ConnectedUsersInfo API Parameters
NotesPossible ValuesDescriptionTypeParameter

——The container holding
information about the
agents who are
logged-in on to
publisher or subscriber.

IntegerConnectedUsersInfo

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
376

Cisco Finesse Serviceability APIs
ConnectedUsersInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

——The container which
holds summary
information of agents
who are logged in.

StringuserSummary

——Count of Finesse
Desktop agents who are
logged in.

Integer--> desktopUsers

——Count of Finesse IP
Phone Agents who are
logged in.

Integer-->fippaUsers

——Count of third-party
users who are logged in.

Integer-->thirdPartyUsers

——Total number of
connected users in real
time.

Integer--> totalConnectedUsers

——List of user details.StringuserDetails

——The container having
the list of users, their
Jabber Identifiers, and
type.

String-->userDetail

——Login Id of the user.String--> loginId

—DESKTOP

FIPPA

THIRDPARTY

Type of the user.

• Desktop

• Finesse IP Phone
Agent

• Third-Party

String-->userType

——Full Jabber Identifier
(JID) of the user.

Integer-->xmppJID

——Name of the team the
agent belong to.

String-->teamName

——Agent's phone extensionString-->extension

——First Name of the agent.String-->first Name

——Last name of the agent.String-->last Name

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
377

Cisco Finesse Serviceability APIs
ConnectedUsersInfo API Parameters

NotesPossible ValuesDescriptionTypeParameter

——Total duration (in
seconds) for which the
agent has been logged
in.

Long-->connectedDuration

——Finesse host through
which the agent is
connected.

String-->connectedHostName

ConnectedUsersInfo API Errors
DescriptionError TypeStatus

Unauthorized.Authorization Failure401

Only users with administrator privilege allowed to run this.Forbidden403

Either the Finesse server is out of service, or there is a
runtime exception.

Internal Server Error503

Diagnostic Portal

Diagnostic Portal APIs
Diagnostic Portal APIs are primarily to integrate Finesse with the Cisco Prime Contact Center Module and
get information about the health of the Finesse system. You can access these APIs only through HTTPS.

The Diagnostic Portal APIs are not usable unless Finesse has initially gone IN_SERVICE, after which Finesse
can go OUT_OF_SERVICE and the APIs should continue to work.

Note

Diagnostic Portal—Get Performance Information
The Diagnostic Portal—Get Performance Information API allows an administrator to get performance
information to a Diagnostic Portal object.

https://FQDN/finesse-dp/rest/DiagnosticPortal/GetPerformanceInformationURI:

https://finesse1.xyz.com/finesse-dp/rest/DiagnosticPortal/GetPerformanceInformationExample URI:

A user must be signed in as an administrator to use this API.Security
Constraints:

GETHTTP Method:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
378

Cisco Finesse Serviceability APIs
ConnectedUsersInfo API Errors

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

All requests that reach the Finesse Diagnostic Portal web application return
a 200 response. However, requests that are not successfully handled return
XML that includes an error code and optionally, an error string.

Note

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<dp:GetPerformanceInformationReply
xmlns:dp="http://www.cisco.com/vtg/diagnosticportal" ReturnCode="0">
<dp:Schema Version="1.0"/>

<dp:PerformanceInformation>
<dp:PropertyList>

<dp:Property Name="Tomcat/Heap Memory Utilized"
Value="1739233744"/>

<dp:Property Name="Tomcat/Non Heap Memory Utilized"
Value="269373496"/>

<dp:Property Name="Active Totals/Logged In Agents" Value="1"/>
<dp:Property Name="Active Totals/Current Calls" Value="0"/>
<dp:Property Name="Running Totals/Calls Received or Initiated"

Value="17803"/>
<dp:Property Name="Running Totals/Calls Failed" Value="0"/>
<dp:Property Name="CTI Statistics/Events In Queue" Value="0"/>
<dp:Property Name="CTI Statistics/Outgoing Responses Queue"

Value="0"/>
<dp:Property Name="CTI Statistics/Decoding Responses Queue"

Value="0"/>
<dp:Property Name="Tomcat/Average Request Process Time"

Value="0"/>
<dp:Property Name="Tomcat/Longest Request Process Time"

Value="174"/>
<dp:Property Name="Tomcat/Thread Count" Value="323"/>
<dp:Property Name="Tomcat/Peak Thread Count" Value="481"/>
<dp:Property Name="Average System Load" Value="0.12"/>

</dp:PropertyList>
</dp:PerformanceInformation>

</dp:GetPerformanceInformationReply>

From the Cisco Finesse Release 12.5(1), CTI Statistics or Incoming
Responses Queue is removed due to the architecture changes in the CTI
event processing.

Note

Successful
Response:

<?xml version="1.0" encoding="UTF-8" ?>
<dp:GetProductLicenseReply ReturnCode="1" ErrorString="License file
license.txt could not be
read" xmlns:dp="http://www.cisco.com/vtg/diagnosticportal">

<dp:Schema Version="1.0"/>
</dp:GetProductLicenseReply>

Example Failure
Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
379

Cisco Finesse Serviceability APIs
Diagnostic Portal—Get Performance Information

Diagnostic Portal—Get Product Version
This API allows an administrator to get product version information for Finesse.

https://FQDN/finesse-dp/rest/DiagnosticPortal/GetProductVersionURI:

https://finesse1.xyz.com/finesse-dp/rest/DiagnosticPortal/GetProductVersionExample URI:

A user must be signed in as an administrator to use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

All requests that reach the Finesse Diagnostic Portal web application return
a 200 response. However, requests that are not successfully handled return
XML that includes an error code and optionally, an error string.

Note

401: Authorization Failure

403: Forbidden

404: Not Found

500: Internal Server Error

HTTP Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dp:GetProductVersionReply ReturnCode="0">

xmlns:dp="http://cisco.com/vtg/diagnosticportal" ReturnCode="0"
<dp:Schema Version="1.0"/>
<dp:ProductVersion Name="Cisco Finesse" Major="12" Minor="6"

Maintenance="1" VersionString="12.6(1)"/>
<dp:ComponentVersionList/>

</dp:GetProductVersionReply>

Successful
Response:

<?xml version="1.0" encoding="UTF-8" ?>
<dp:GetProductLicenseReply ReturnCode="1" ErrorString="License file
license.txt could not be read" xmlns:dp="http://www.cisco.com/vtg/
diagnosticportal">
<dp:Schema Version="1.0"/>
</dp:GetProductLicenseReply>

Example Failure
Response:

Diagnostic Portal API Errors
DescriptionError TypeStatus

The user is not authorized to access this API.Authorization Error401

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
380

Cisco Finesse Serviceability APIs
Diagnostic Portal—Get Product Version

DescriptionError TypeStatus

The user is not authorized to use the API (the user is
not an administrator).

Forbidden403

The resource is not found (for example, the
DiagnosticPortal has been deleted).

Not Found404

Any runtime exception is caught and responded with
this error.

Internal Server Error500

RuntimeConfigInfo

RuntimeConfigInfo APIs

RuntimeConfigInfo—Get
This API allows an administrator to access run time information.

https://<FQDN>/finesse/api/RuntimeConfigInfoURI:

https://finesse1.xyz.com/finesse/api/RuntimeConfigInfoExample URI:

Only administrators can use this API.Security
Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output
Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
381

Cisco Finesse Serviceability APIs
RuntimeConfigInfo

<RuntimeConfigInfo>
<activeDialogCount>0</activeDialogCount>
<activeTaskCount>0</activeTaskCount>
<averageConfiguredMediaPerAgent>0</averageConfiguredMediaPerAgent>
<averageLoggedInMediaPerAgent>0</averageLoggedInMediaPerAgent>
<averageSkillGroupCountPerAgent>0</averageSkillGroupCountPerAgent>
<connectedUsersInfo>
<userSummary>
<desktopUsers>3</desktopUsers>
<fippaUsers>1</fippaUsers>
<thirdPartyUsers>0</thirdPartyUsers>
</userSummary>
</connectedUsersInfo>
<maxSkillGroupCountPerAgent>0</maxSkillGroupCountPerAgent>
<timeToInService>11</timeToInService>
<totalLoggedInAgentsInNode>0</totalLoggedInAgentsInNode>
<uniqueConfiguredSkillGroups>0</uniqueConfiguredSkillGroups>
<uri>/finesse/api/RuntimeConfigInfo</uri>
</RuntimeConfigInfo>

Example Response:

<ApiErrors>
<ApiError>

<ErrorType>Authorization Failure</ErrorType>
<ErrorMessage>UNAUTHORIZED</ErrorMessage>
<ErrorData>jsmith</ErrorData>

</ApiError>
</ApiErrors>

Example Failure
Response:

RuntimeConfigInfo API Parameters
NotesPossible

Values
DescriptionTypeParameter

——The count of active calls
present in the node.

IntegeractiveDialogCount

——The count of active tasks
present in the node.

IntegeractiveTaskCount

This parameter is
not applicable for
Unified CCX.
However, the
value is
considered as 1.

—The average of the
configured media channels
for the logged in agents
(voice).

For example, Agent 1 has
logged in to the voice
channel and has configured
for voice and chat. Agent 2
has logged in to the voice
channel and has configured
for voice, email, and chat.
Result is (2+3)/ 2 = 2

IntegeraverageConfiguredMediaPerAgent

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
382

Cisco Finesse Serviceability APIs
RuntimeConfigInfo API Parameters

NotesPossible
Values

DescriptionTypeParameter

This parameter is
not applicable for
Unified CCX.
However, the
value is
considered as 1.

—The average of the logged
in media channels by the
agent who has logged in
(voice).

For example, Agent 1 has
logged in to the voice
channel and chat. Agent 2
has logged in the voice
channel along with email.
Result is (2+2)/ 2 = 2

IntegeraverageLoggedInMediaPerAgent

——The count of the average
configured skill groups
among all the logged in
agents for that node.

For example,

• Agent 1—3 configured
skill groups

• Agent 2—2 configured
skill groups

• Agent 3—1 configured
skill groups

Result is (3+2+1)/ 3 = 2

IntegeraverageSkillGroupCountPerAgent

——Information of the agents
logged in to Cisco Finesse.

CollectionconnectedUsersInfo

——Summary information of the
agents logged in to Cisco
Finesse.

Collection→ userSummary

——The number of desktop
agents logged in to Cisco
Finesse.

Integer→ desktopUsers

——The number of Finesse
IPPA agents logged in to
Cisco Finesse.

Integer→fippaUsers

——The number of third-party
agents logged in to Cisco
Finesse.

Integer→ thirdPartyUsers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
383

Cisco Finesse Serviceability APIs
RuntimeConfigInfo API Parameters

NotesPossible
Values

DescriptionTypeParameter

——The count of the maximum
configured skill groups
among all the logged in
agents for that node.

For example,

• Agent 1—3 configured
skill groups

• Agent 2—2 configured
skill groups

• Agent 3—1 configured
skill groups

Result is 3 (maximum
count)

IntegermaxSkillGroupCountPerAgent

——The time taken by Cisco
Finesse to connect with the
CTI server in seconds.

IntegertimeToInService

——The count of the logged in
agents for the voice channel
only.

IntegertotalLoggedInAgentsInNode

——The count of the unique skill
groups among all the logged
in agents for that node.

IntegeruniqueConfiguredSkillGroups

——The URI to get a new copy
of the RuntimeConfigInfo
object.

Stringuri

RuntimeConfigInfo API Errors
DescriptionError TypeStatus

Unauthorized (for example, the user is not yet
authenticated in the Web Session).

Authorization Failure401

The user attempted to run the API against the
secondary Cisco Finesse server.

Configuration APIs cannot be run against the
secondary Cisco Finesse server.

Forbidden403

Any runtime exception is caught and responded with
this error.

Internal Server Error500

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
384

Cisco Finesse Serviceability APIs
RuntimeConfigInfo API Errors

Locked Out Users
This API lists the locked-out users.

https://<FQDN>/finesse/api/LockedOutUsersURI:

https://finesse1.xyz.com/finesse/api/LockedOutUsersExample URI:

Only administrators can use this API.Security Constraints:

GETHTTP Method:

—Content Type:

XMLInput/Output Format:

—HTTP Request:

200: Success

401: Unauthorized

403: Forbidden

500: Internal Server Error

HTTP Response:

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>
<LockedOutUsers>

<LockedOutUser>
<loginId>1001004</loginId>
<firstName>AGENT</firstName>
<lastName>1001004</lastName>

<lastFailureTime>1634810571512</lastFailureTime>

<failureCount>5</failureCount>
<lockStatus>true</lockStatus>

</LockedOutUser>
<LockedOutUser>

<loginId>1001003</loginId>
<firstName>AGENT</firstName>
<lastName>1001003</lastName>

<lastFailureTime>1634810557306</lastFailureTime>

<failureCount>5</failureCount>
<lockStatus>true</lockStatus>

</LockedOutUser>
<uri>/finesse/api/LockedOutUsers</uri>

</LockedOutUsers>

Example Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
385

Cisco Finesse Serviceability APIs
Locked Out Users

<ApiErrors>
<ApiError>

<ErrorType>Service
Unavailable</ErrorType>

<ErrorData>finesse.api.server.outofService</ErrorData>

<ErrorMessage>SERVER_OUT_OF_SERVICE</ErrorMessage>

</ApiError>
</ApiErrors>

Example Failure Response:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
386

Cisco Finesse Serviceability APIs
Locked Out Users

C H A P T E R 6
Cisco Finesse Notifications

• About Cisco Finesse Notifications, on page 387

About Cisco Finesse Notifications
The Cisco Finesse Web Service sends notifications to clients that subscribe to that class of resource.

For example, a client that is subscribed to User notifications receives a notification when an agent signs in or
out of the Finesse desktop, information about an agent changes, or an agent's state changes.

The preceding example illustrates some cases where notifications are sent. It is not intended to be an exhaustive
list.

Note

Notification payloads are XML-encoded. If these payloads contain any special XML characters, you must
ensure that the client decodes this information correctly before processing it further.

Note

Notification Frequency
Finesse publishes notifications when a change occurs in the resource characteristics.

Subscription Management
Finesse clients can interface directly with the Cisco Finesse Notification Service to send subscribe and
unsubscribe requests. Clients subscribe to notification feeds published to their respective nodes (such as
/finesse/api/User/1000) by following the XEP-0060 standard.

Each agent is automatically subscribed to the following notification feeds, where {id} represents the agent
ID for that agent:

• User - /finesse/api/User/{id}

• Dialogs - /finesse/api/User/{id}/Dialogs

• Media - /finesse/api/User/{id}/Media/{mrd-id}

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
387

• SystemInfo - /finesse/api/SystemInfo

To receive notifications for feeds to which they are not automatically subscribed, clients must explicitly
subscribe to the node on which the notifications are published. For example, agent state change notifications
for all agents on a specific team are published to the node /finesse/api/Team/{id}/Users. Clients must request
a subscription to this node to receive notifications on this feed.

To avoid increasing notification traffic for other users, use a full JID (username@domain/resource) when
making explicit subscriptions.

Make sure to unsubscribe to any explicit subscriptions before disconnecting the XMPP session. Any
subscriptions that are left behind persist on that node in the Cisco Finesse Notification Service.

The following example shows how to subscribe to agent state change notifications for a specific team:

<iq type='set'
from='CharlesNorrad@finesse-server.cisco.com'
to='pubsub.finesse-server.cisco.com'
id='sub1'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<subscribe

node='/finesse/api/Team/TheA/Users'
jid='ChuckieNorrad@finesse-server.cisco.com'/>

</pubsub>
</iq>

The following example shows how to unsubscribe to agent state change notifications for a specific team:

<iq type='set'
from='ChuckieNorrad@finesse-server.cisco.com'
to='pubsub.finesse-server.cisco.com'
id='unsub1'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<unsubscribe

node='/finesse/api/Team/TheA/Users'
jid='userid@finesse-server.cisco.com'/>

</pubsub>
</iq>

Perform a GET using the SystemInfo API (https://<server>/finesse/api/SystemInfo) to obtain connection
details. The returned payload provides the domain and pubsub addresses used to interact with the Cisco Finesse
Notification Service.

<SystemInfo>
<status>IN_SERVICE</status>
<xmppDomain>xmppserver.cisco.com</xmppDomain>
<xmppPubSubDomain>pubsub.xmppserver.cisco.com</xmppPubSubDomain>

</SystemInfo>

Users are identified in the following manner: userid@xmppserver.cisco.com

Stanzas are sent to the pubsub domain (pubsub.xmppserver.cisco.com).

Clients should ensure that any subscriptions that are no longer required are cleaned up.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
388

Cisco Finesse Notifications
Subscription Management

Subscription Persistence
All subscriptions are stored in a database and persist through the following shutdown events:

• Finesse experiences a CTI failover.

• The Cisco Finesse Notification Service restarts.

• Cisco Finesse Tomcat restarts.

In each of the preceding events, the client does not need to resubscribe to explicit subscriptions.

However, subscriptions do not persist across multiple Finesse servers. If a client fails over to an alternate
Finesse server, that client must resubscribe to any explicit subscriptions.

Resources

User Notification
Finesse sends a User notification when information about a user changes.

XMLFormat:

/finesse/api/User/{id}Node:

/finesse/api/User/{id}Source:

UserData:

<Update>
<event>{put|delete}</event>
<source>/finesse/api/User/{id}</source>
<data>

<user>
<!-- full User object -->
</user>

</data>
</Update>

Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
389

Cisco Finesse Notifications
Subscription Persistence

<Update>
<event>put</event>
<source>/finesse/api/User/csmith</source>
<data>

<User>
<dialogs>/finesse/api/User/1001001/Dialogs</dialogs>
<extension></extension>
<firstName>AGENT</firstName>
<lastName>1001001</lastName>
<loginId>1001001</loginId>
<loginName>agent1</loginName>
<pendingState></pendingState>
<reasonCodeId>2</reasonCodeId>
<ReasonCode>
<uri>/finesse/api/ReasonCode/{id}</uri>
<code>10</code>
<label>Team Meeting</label>

</ReasonCode>
<settings>
<wrapUpOnIncoming>OPTIONAL</wrapUpOnIncoming>
<wrapUpOnOutgoing>REQUIRED</wrapUpOnOutgoing>

</settings>
<roles>
<role>Agent</role>

</roles>
<state>LOGOUT</state>
<stateChangeTime></stateChangeTime>
<teamId>5000</teamId>
<teamName>FunctionalAgents</teamName>
<uri>/finesse/api/User/1001001</uri>

</User>
</data>

</Update>

Sample Notification
Payload:

• Addition of a user

Addition of a user
• Deletion of a user

• State change

• First or last name change

• Role change

• Pending state change

Notification Triggers:

Dialog Notification

Finesse sends a Dialog notification when information (or an action) changes for a call to which the user belongs
or when the user adds or removes a dialog.

For the purpose of notifications, the fromAddress and toAddress parameters of the Dialog object are defined
as follows:

• fromAddress: The extension of the caller who initiated the original call. If an unmonitored caller placed
the call, the fromAddress is the unmonitored caller's extension. If an agent placed the call, the fromAddress
is the agent's extension. For an Outbound Option Dialer call, the fromAddress is the extension of the

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
390

Cisco Finesse Notifications
Dialog Notification

agent on the outbound call. For a reservation call in Preview Outbound mode, the fromAddress is the
dialer port. .

For a reservation call in Direct Preview Outbound mode, the fromAddress is the dialer port.

• toAddress: The dialed number of the original call. If the caller calls a route point, the toAddress is the
route point. If the caller calls an agent directly, the toAddress is the agent's extension. For an Outbound
Option Dialer call, the toAddress is the customer phone number called by the dialer. For a reservation
call in Outbound Option Preview mode, the toAddress is the extension of the agent who received the
call.

For a reservation call in Direct Preview Outbound mode, the toAddress is the extension of the agent on
the outbound call.

When a call is transferred, the fromAddress and toAddress in subsequent dialog notifications are those of the
surviving call. For example, if an agent who is on a call places a consult call and then transfers the original
call, the fromAddress and toAddress in the subsequent dialog notifications are those of the original call because
the original call is the surviving call. However, if the agent puts the consult call on hold, retrieves the original
call, and then transfers the consult call, the fromAddress and toAddress in subsequent dialog notifications are
those of the consult call. In this case, the consult call is the surviving call.

When an agent who is on a call places a consult call, the original call will be on hold and the consult call will
be active. Once the call is complete where the agent either transfers or places the call on conference, the
surviving call's dialog notifications will contain the dropped call's dialog id in the secondary id field.

During Dialog notifications, there are two types of notifications that get sent to the Dialog node.

• When a dialog is added or removed from the Dialog collection of the user.

XMLFormat:

/finesse/api/User/{id}/DialogsNode:

/finesse/api/User/{id}/Dialogs (when a Dialog is added or removed from the Dialog
collection for the user)

Source:

DialogsData:

<Update>
<data>
<dialogs>
<Dialog>
<!-- full Dialog object -->

</Dialog>
</dialogs>

</data>
<event>{POST|DELETE}</event>
<requestId>xxxxxxxxx</requestId>
<source>/finesse/api/User/{id}/Dialogs</source>

</Update>

Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
391

Cisco Finesse Notifications
Dialog Notification

Sample
Notification
Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
392

Cisco Finesse Notifications
Dialog Notification

<Update>
<data>

<dialogs>
<Dialog>

<associatedDialogUri></associatedDialogUri>
<fromAddress>1112554</fromAddress>
<id>2130715746</id>
<secondaryId>2130715747</secondaryId>
<mediaProperties>

<mediaId>1</mediaId>
<DNIS>90101</DNIS>
<callType>CONSULT</callType>
<dialedNumber>90101</dialedNumber>
<outboundClassification></outboundClassification>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value>1</value>

</CallVariable>
....
<CallVariable>

<name>callVariable2</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable3</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable4</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable5</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable6</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable7</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable8</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable9</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>
</CallVariable>
<CallVariable>

<name>callVariable10</name>

<value>0123456789ABCDEFGHIJ0123456789ABCDEFGHIJ</value>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
393

Cisco Finesse Notifications
Dialog Notification

</CallVariable>
</callvariables>
<queueNumber>5022</queueNumber>
<queueName>UCM_PIM.Func.Agents.SG</queueName>
<callKeyCallId>217</callKeyCallId>
<callKeySequenceNum>1</callKeySequenceNum>
<callKeyPrefix>152018</callKeyPrefix>

</mediaProperties>
<mediaType>Voice</mediaType>
<participants>

<Participant>
<actions>

<action>UPDATE_CALL_DATA</action>
<action>DROP</action>

</actions>
<mediaAddress>1112554</mediaAddress>
<mediaAddressType>AGENT_DEVICE</mediaAddressType>

<startTime>2016-05-03T21:49:36.512Z</startTime>
<state>INITIATING</state>
<stateCause></stateCause>

<stateChangeTime>2016-05-03T21:49:36.512Z</stateChangeTime>
</Participant>

</participants>
<state>INITIATING</state>
<toAddress>90101</toAddress>
<uri>/finesse/api/Dialog/2130715746</uri>

</Dialog>
</dialogs>

</data>
<event>POST</event>
<requestId>edc7064f-1178-11e6-8bd0-005056000005</requestId>
<source>/finesse/api/User/112554/Dialogs</source>

</Update>

• Incoming call

• Ending a call

Notification
Triggers:

• When dialog properties associated with the specified Dialog id is modified.

XMLFormat:

/finesse/api/User/{id}/DialogsNode:

/finesse/api/Dialog/{id} (when a Dialog within the Dialogs collection for the user
is modified)

Source:

DialogData:

<Update>
<data>
<dialog>
<!-- full Dialog object -->

</dialog>
</data>
<event>{PUT}</event>
<requestId>xxxxxxxxx</requestId>
<source>/finesse/api/Dialog/16804377</source>

</Update>

Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
394

Cisco Finesse Notifications
Dialog Notification

Sample Notification
Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
395

Cisco Finesse Notifications
Dialog Notification

<Update>
<data>

<dialog>
<associatedDialogUri></associatedDialogUri>
<fromAddress>1081001</fromAddress>
<id>16804377</id>
<mediaProperties>

<mediaId>1</mediaId>
<DNIS>1081002</DNIS>
<callType>AGENT_INSIDE</callType>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value></value

<queueNumber>5022</queueNumber>
<queueName>UCM_PIM.Func.Agents.SG</queueName>
<callKeyCallId>217</callKeyCallId>
<callKeySequenceNum>1</callKeySequenceNum>
<callKeyPrefix>152018</callKeyPrefix>
<dialedNumber>1081002</dialedNumber>
</mediaProperties>
<mediaType>Voice</mediaType>
<participants>

<Participant>
<actions>

<action>TRANSFER_SST</action>
<action>CONSULT_CALL</action>
<action>HOLD</action>
<action>UPDATE_CALL_DATA</action>
<action>SEND_DTMF</action>
<action>DROP</action>

</actions>
<mediaAddress>1081001</mediaAddress>

<mediaAddressType>AGENT_DEVICE</mediaAddressType>
<startTime>2014-02-04T15:33:16.653Z</startTime>

<state>ACTIVE</state>
<stateCause></stateCause>

<stateChangeTime>2014-02-04T15:33:16.653Z</stateChangeTime>
</Participant>
<Participant>

<actions>
<action>UPDATE_CALL_DATA</action>
<action>DROP</action>
<action>RETRIEVE</action>

</actions>
<mediaAddress>1081002</mediaAddress>

<mediaAddressType>AGENT_DEVICE</mediaAddressType>
<startTime>2014-02-04T15:33:16.653Z</startTime>

<state>HELD</state>
<stateCause></stateCause>

<stateChangeTime>2014-02-04T15:33:27.584Z</stateChangeTime>
</Participant>

</participants>
<state>ACTIVE</state>
<toAddress>1081002</toAddress>
<uri>/finesse/api/Dialog/16804377</uri>

</dialog>
</data>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
396

Cisco Finesse Notifications
Dialog Notification

<event>PUT</event>
<requestId>xxxxxxxxx</requestId>
<source>/finesse/api/Dialog/16804377</source>

</Update>

• Modification of participant state (for example, when a participant answers
or hangs up a call)

• A new participant on the call

• Modification of the call data or actions

Notification Triggers:

Dialogs/Media Notification
Finesse sends a Dialogs/Media notification when information (or an action) changes for a nonvoice dialog to
which the user belongs.

For an interruptible Media Routing Domain configured to accept interrupts, Finesse sends only a Media state
change when an agent is interrupted in that MRD. It does not send Dialogs/Media notifications with the action
list modified to reflect the fact that actions not permitted on the tasks in that media. The state change is the
only indication to the Finesse applications that no actions are allowed on the interrupted dialogs.

During Dialog notifications, there are two types of notifications that get sent to the Dialog node.

• When a dialog is added or removed from the Dialog collection of the user.

Important

XMLFormat:

/finesse/api/User/{id}/Dialogs/MediaNode:

/finesse/api/User/{id}/ Media/{mrdId}/Dialogs (when a Dialog is added or
removed from the Dialog collection for the user, for example offered or closed)

Source:

DialogsData:

<Update>
<data>
<dialogs>
<Dialog>
<!-- full Dialog object -->

</Dialog>
</dialogs>

</data>
<event>{POST|DELETE}</event>
<requestId>xxxxxxxxx</requestId>
<source>/finesse/api/User/{id}/Media{mrdld}/Dialogs</source>

</Update>

Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
397

Cisco Finesse Notifications
Dialogs/Media Notification

<Update>
<data>

<dialogs>
<Dialog>

<associatedDialogUri>/finesse/api/Dialog/3216_5432_1</associatedDialogUri>

<id>1234_5423_1</id>
<mediaType>Cisco_Chat_MRD</mediaType>
<mediaProperties>

<mediaId>5002</mediaId>
<dialedNumber></dialedNumber>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value>Chuck Smith</value>

</CallVariable>
<CallVariable>

<name>callVariable2</name>
<value>Cisco Systems, Inc.</value>

...Other CallVariables ...
</callvariables>
<queueNumber>5022</queueNumber>

<queueName>UCM_PIM.Func.Agents.SG</queueName>
<callKeyCallId>217</callKeyCallId>
<callKeySequenceNum>1</callKeySequenceNum>

<callKeyPrefix>152018</callKeyPrefix>
</mediaProperties>
<participants>

<Participant>
<actions>

<action>ACCEPT</action>
</actions>
<mediaAddress>1001001</mediaAddress>

<startTime>2015-11-19T06:04:27.864Z</startTime>
<state>OFFERED</state>

<stateChangeTime>2015-11-19T06:04:27.864Z</stateChangeTime>
</Participant>

</participants>
<state>OFFERED</state>
<uri>/finesse/api/Dialog/1234_5423_1</uri>

</Dialog>
</dialogs>

</data>
<event>POST</event>
<requestId>xxxxxxxxx</requestId>
<source>/finesse/api/User/10010012/Media{5002}/Dialogs</source>

</Update>

Sample Notification
Payload

• Incoming dialogNotification Triggers:

• When dialog properties associated with the specified Dialog id is modified.

XMLFormat:

/finesse/api/User/{id}/Dialogs/MediaNode:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
398

Cisco Finesse Notifications
Dialogs/Media Notification

/finesse/api/Dialog/{id} (when a Dialog within the Dialogs collection for the
user is modified, for example accepted, started, paused, or wrapped up)

Source:

DialogData:

<Update>
<data>
<dialog>

<!-- full Dialog object -->
</dialog>

</data>
<event>{PUT}</event>
<requestId>xxxxxxxxx</requestId>
<source>/finesse/api/Dialogs{id}</source>

</Update>

Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
399

Cisco Finesse Notifications
Dialogs/Media Notification

Update>
<data>

<dialog>
<associatedDialogUri/>
<id>151705_33542697_1</id>
<mediaProperties>

<mediaId>5000</mediaId>
<dialedNumber>mark_test_dn</dialedNumber>
<callvariables>

<CallVariable>
<name>callVariable1</name>
<value>cv1_value</value>

</CallVariable>
<CallVariable>

<name>callVariable2</name>
<value>cv2_value</value>

</CallVariable>
<CallVariable>

<name>user.finesse.ecc1</name>
<value>ecc1</value>

</CallVariable>
</callvariables>
<queueNumber>5022</queueNumber>
<queueName>UCM_PIM.Func.Agents.SG</queueName>
<callKeyCallId>217</callKeyCallId>
<callKeySequenceNum>1</callKeySequenceNum>
<callKeyPrefix>152018</callKeyPrefix>

</mediaProperties>
<mediaType>Cisco_Chat_MRD</mediaType>
<participants>

<Participant>
<actions>

<action>START</action>
<action>CLOSE</action>
<action>TRANSFER</action>

</actions>
<mediaAddress>1001010</mediaAddress>

<startTime>2016-05-10T20:25:12.302Z</startTime>

<state>ACCEPTED</state>

<stateChangeTime>2016-05-10T20:25:17.372Z</stateChangeTime>
</Participant>

</participants>
<state>ACCEPTED</state>
<uri>/finesse/api/Dialog/151705_33542697_1</uri>

</dialog>
</data>
<event>PUT</event>
<requestId/>
<source>/finesse/api/Dialog/{id}</source>

</Update>

Sample Notification
Payload

• Modification of participant state (for example, when a participant accepts
or closes a dialog)

Notification Triggers:

Dialog CTI Error Notification
Call operations performed on a dialog (such as MAKE_CALL, HOLD, RETRIEVE, ANSWER, END,
TRANSFER, CONSULT, and CONFERENCE) may result in CTI errors. The notification system sends these

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
400

Cisco Finesse Notifications
Dialog CTI Error Notification

errors as asynchronous updates. Error notifications include the error type and the CTI error code and error
constant. The error type is “Call Operation Failure”.

XMLFormat:

/finesse/api/User/{id}/DialogsNode:

/finesse/api/Dialog/{id}Source:

apiErrorsData:

<Update>
<data>

<apiErrors>
<apiError>

<errorData>[CTI Error Code]</errorData>
<errorMessage>[CTI Error Constant]</errorMessage>

<errorType>Call Operation Failure</errorType>
</apiError>

</apiErrors>
</data>
<event>PUT</event>
<requestId></requestId>
<source>/finesse/api/Dialog/[ID]</source>

</Update>

Payload:

<Update>
<data>

<apiErrors>
<apiError>

<errorData>34</errorData>

<errorMessage>CF_RESOURCE_OUT_OF_SERVICE</errorMessage>
<errorType>Call Operation Failure</errorType>

</apiError>
</apiErrors>

</data>
<event>PUT</event>
<requestId></requestId>
<source>/finesse/api/Dialog/12345</source>

</Update>

Sample Notification
Payload

The notification system delivers this error notification if call operations on a
Dialog (such as MAKE_CALL, HOLD, RETRIEVE, ANSWER, END,
TRANSFER, CONSULT, and CONFERENCE) result in a CTI error

Notification Triggers:

Asynchronous Errors

When accessing the Finesse REST API through the Finesse JavaScript library, asynchronous errors have a
status code of 400. When receiving the asynchronous error directly through XMPP, the error message has the
format described in the description above for Dialog CTI Error Notification.

Note

Deployment TypeReasonErrorType

Unified CCEAttempt to exceedmaximum allowed conference participants.Call Operation Failure

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
401

Cisco Finesse Notifications
Dialog CTI Error Notification

Team Notification
Finesse sends a team notification when the agent name or agent state changes for an agent who belongs to
that team.

XMLFormat:

/finesse/api/Team/{id}/UsersNode:

/finesse/api/User/{id}Source:

Summary version of the User objectData:

<Update>
<event>{put}</event>
<source>/finesse/api/User/{id}</source>
<requestId>xxxxxxxxx</requestId>
<data>

<user>
<uri>/finesse/api/User/{id}</uri>
<loginId>{id}</loginId>
<firstName>Jack</firstName>
<lastName>Brown</lastName>
<state>NOT_READY</state>

<stateChangeTime>2012-03-01T17:58:21.123Z</stateChangeTime>
<ReasonCode>

<uri>finesse/api/ReasonCode/1</uri>
<code>10</code>
<label>Team Meeting</label>
<category>NOT_READY</category>
<id>1</id>

</ReasonCode>
</user>

</data>
</Update>

Payload:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
402

Cisco Finesse Notifications
Team Notification

<Update>
<event>put</event>
<source>/finesse/api/Team/1004</source>
<requestId>xxxxxxxxx</requestId>
<data>

<team>
<uri>/finesse/api/Team/1004</uri>
<id>1004</id>
<name>Shiny</name>
<users>

<User>
<uri>/finesse/api/User/1234</uri>
<loginId>1004</loginId>
<firstName>Charles</firstName>
<lastName>Norrad</lastName>
<pendingState></pendingState>
<state>LOGOUT</state>

<stateChangeTime>2012-03-01T17:58:21.123Z</stateChangeTime>
</User>
<User>

<uri>/finesse/api/User/9876</uri>
<loginId>9876</loginId>
<firstName>Jack</firstName>
<lastName>Brown</lastName>
<state>NOT_READY</state>

<stateChangeTime>2012-03-01T17:58:21.134Z</stateChangeTime>
<ReasonCode>

<uri>/finesse/api/ReasonCode/1</uri>
<code>10</code>
<label>Team Meeting</label>
<category>NOT_READY</category>
<id>1</id>

</ReasonCode>
</User>

... other users ...
</users>

</team>
</data>

</Update>

Sample Notification
Payload:

• Agent name is changed for an agent who belongs to the team
• Agent state is changed for an agent who belongs to the team

Notification Triggers:

Queue Notifications
Finesse sends a queue notification every 10 seconds (if queue statistics change).

Finesse sends notifications for this node only for a stand-alone Finesse deployment with Unified CCE.
Notifications for this node are not sent for a coresident Finesse deployment with Unified CCX.

Note

XMLFormat:

/finesse/api/Queue/{id}Node:

/finesse/api/Queue/{id}Source:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
403

Cisco Finesse Notifications
Queue Notifications

Queue objectData:

<Update>
<event>{put}</event>
<source>/finesse/api/Queue/{id}</source>
<requestId>xxxxxxxxx</requestId>
<data>

<Queue>
<uri>/finesse/api/Queue/{id}</uri>
<name>Sales</name>
<statistics>

<callsInQueue>3</callsInQueue>

<startTimeOfLongestCallInQueue>2012-02-15T17:58:21Z</startTimeOfLongestCallInQueue>

<agentsReady>1</agentsReady>
<agentsNotReady>2</agentsNotReady>
<agentsTalkingInbound>3</agentsTalkingInbound>
<agentsTalkingOutbound>4</agentsTalkingOutbound>
<agentsTalkingInternal>5</agentsTalkingInternal>
<agentsWrapUpNotReady>6</agentsWrapUpNotReady>
<agentsWrapUpReady>7</agentsWrapUpReady>

</statistics>
</Queue>

</data>
</Update>

Payload (PUT):

<Update>
<event>{delete}</event>
<source>/finesse/api/Queue/{id}</source>
<requestId></requestId>
<data>

<Queue>
<uri>/finesse/api/Queue/{id}</uri>

</Queue>
</data>

</Update>

Payload (DELETE):

<Update>
<event>put</event>
<source>/finesse/api/Queue/1004</source>
<requestId>xxxxxxxxx</requestId>
<data>

<Queue>
<uri>/finesse/api/Queue/1004</uri>
<name>Sales</name>
<statistics>

<callsInQueue>3</callsInQueue>

<startTimeOfLongestCallInQueue>2012-02-15T17:58:21Z</startTimeOfLongestCallInQueue>

<agentsReady>1</agentsReady>
<agentsNotReady>2</agentsNotReady>
<agentsTalkingInbound>3</agentsTalkingInbound>
<agentsTalkingOutbound>4</agentsTalkingOutbound>
<agentsTalkingInternal>5</agentsTalkingInternal>
<agentsWrapUpNotReady>6</agentsWrapUpNotReady>
<agentsWrapUpReady>7</agentsWrapUpReady>

</statistics>
</Queue>

</data>
</Update>

Sample Notification
Payload (PUT):

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
404

Cisco Finesse Notifications
Queue Notifications

<Update>
<event>delete</event>
<source>/finesse/api/Queue/1004</source>
<requestId></requestId>
<data>

<Queue>
<uri>/finesse/api/Queue/1004</uri>

</Queue>
</data>

</Update>

Sample Notification
Payload (DELETE):

Finesse publishes a notification

• every 10 seconds, if queue statistics change

• when a queue name changes

• when a queue is deleted

Notification Triggers:

User/Queue Notification
Finesse sends a User/Queues notification when a queue is added or removed from the user's list of queues or
if a queue assigned to that user is removed from the system.

Finesse sends notifications for this node only for a stand-alone Finesse deployment with Unified CCE.
Notifications for this node are not sent for a coresident Finesse deployment with Unified CCX.

Note

XMLFormat:

/finesse/api/User/{id}/QueuesNode:

/finesse/api/User/{id}/QueuesSource:

User/Queues objectData:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
405

Cisco Finesse Notifications
User/Queue Notification

<Update>
<event>{post}</event>
<source>/finesse/api/User/{id}/Queues</source>
<requestId></requestId>
<data>

<Queues>
<Queue>

<uri>/finesse/api/Queue/{id}</uri>
<name>Sales</name>
<statistics>

<callsInQueue>3</callsInQueue>

<startTimeOfLongestCallInQueue>2012-02-15T17:58:21Z</startTimeOfLongestCallInQueue>

<agentsReady>1</agentsReady>
<agentsNotReady>2</agentsNotReady>
<agentsTalkingInbound>3</agentsTalkingInbound>
<agentsTalkingOutbound>4</agentsTalkingOutbound>
<agentsTalkingInternal>5</agentsTalkingInternal>
<agentsWrapUpNotReady>6</agentsWrapUpNotReady>
<agentsWrapUpReady>7</agentsWrapUpReady>

</statistics>
</Queue>
... more queues ...

</Queues>
</data>

</Update>

Payload (POST):

<Update>
<event>{delete}</event>
<source>/finesse/api/User/{id}/Queues</source>
<requestId></requestId>
<data>

<Queues>
<Queue>

<uri>/finesse/api/Queue/{id}</uri>
</Queue>
<Queue>

<uri>/finesse/api/Queue/{id}</uri>
</Queue>
<Queue>

<uri>/finesse/api/Queue/{id}</uri>
</Queue>
... more queues ...

</Queues>
</data>

</Update>

Payload (DELETE):

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
406

Cisco Finesse Notifications
User/Queue Notification

Update>
<event>post</event>
<source>/finesse/api/User/1001001/Queues</source>
<requestId></requestId>
<data>

<Queues>
<Queue>

<uri>/finesse/api/Queue/1215</uri>
<name>Sales</name>
<statistics>

<callsInQueue>3</callsInQueue>

<startTimeOfLongestCallInQueue>2012-02-15T17:58:21Z</startTimeOfLongestCallInQueue>

<agentsReady>1</agentsReady>
<agentsNotReady>2</agentsNotReady>
<agentsTalkingInbound>3</agentsTalkingInbound>
<agentsTalkingOutbound>4</agentsTalkingOutbound>
<agentsTalkingInternal>5</agentsTalkingInternal>
<agentsWrapUpNotReady>6</agentsWrapUpNotReady>
<agentsWrapUpReady>7</agentsWrapUpReady>

</statistics>
</Queue>
... more queues ...

</Queues>
</data>

</Update>

Sample Notification
Payload (POST):

<Update>
<event>delete</event>
<source>/finesse/api/User/1001001/Queues</source>
<requestId></requestId>
<data>

<Queues>
<Queue>

<uri>/finesse/api/Queue/1326</uri>
</Queue>
<Queue>

<uri>/finesse/api/Queue/1364</uri>
</Queue>
<Queue>

<uri>/finesse/api/Queue/1389</uri>
</Queue>
... more queues ...

</Queues>
</data>

</Update>

Sample Notification
Payload (DELETE):

• A queue is added or removed from the user's list of queues.

• A queue assigned to the user is removed from the system.

Notification Triggers:

Media Notification
Finesse sends a Media notification when information about a user in a Media Routing Domain changes.

XMLFormat:

/finesse/api/User/{id}/MediaNode:

/finesse/api/User/{id}/Media/{mrdId}Source:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
407

Cisco Finesse Notifications
Media Notification

MediaData:

<Update>
<event>{put|delete}</event>
<source>/finesse/api/User/{id}/Media/{mrdId}</source>
<data>

<Media>
<!-- full Media object -->
</user>

</data>
</Update>

Payload:

<Update>
<event>put</event>
<source>/finesse/api/User/1001004/Media/5000</source>
<requestId>xxxx-xxxx</requestId>
<data>

<Media>
<uri>/finesse/api/User/1001004/Media/5000</uri>
<description>Chat MRD</description>
<dialogLogoutAction>CLOSE</dialogLogoutAction>
<id>5000</id>
<interruptible>true</interruptible>
<maxDialogLimit>10</maxDialogLimit>
<name>Cisco_Chat_MRD</name>
<ReasonCode>

<category>NOT_READY</category
<code>10</code>
<forAll>true</forAll>
<id>16</id>
<label>Team Meeting</label>
<uri>/finesse/api/ReasonCode/16</uri>

</ReasonCode>
<reasonCodeId>16</reasonCodeId>
<routable>true</routable>
<state>NOT_READY</state>
<stateChangeTime>2015-09-11T06:55:14.782Z</stateChangeTime>

</Media>
</data>

</Update>

Sample
Notification
Payload:

• State changeNotification
Triggers:

Media and Dialogs/Media Asynchronous Error Notification
If an operations performed on a Media or nonvoice Dialog results in an asynchronous error, the error
notifications include the error type, error code, and error constant. The ErrorMedia parameter indicates the
Media Routing Domain to which the error applies.

XMLFormat:

/finesse/api/User/{id}/Media

/finesse/api/User/{id}/Dialogs/Media

Node:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
408

Cisco Finesse Notifications
Media and Dialogs/Media Asynchronous Error Notification

/finesse/api/User/{id}/Media/{mrdId}

/finesse/api/User/{id}/ Media/{mrdId}/Dialogs (when a Dialog is added or
removed from the Dialog collection for the user, for example offered or closed.)

/finesse/api/Dialog/{id} (when a Dialog within the Dialogs collection for the
user is modified, for example accepted, started, paused, or wrapped up.)

Source:

Media

Dialog

Data:

<Update>
<data>
<apiErrors>
<apiError>
<errorData>[Error Code]</errorData>
<errorMedia>5001</errorMedia>
<errorMessage>[Error Constant]</errorMessage>
<errorType>[Error Type]</errorType>

</apiError>
</apiErrors>

</data>
<event>PUT</event>
<requestId>xxx-xxxx</requestId>
<source>/finesse/api/User/{id}/Media/{mrdId}</source>

</Update>

Payload:

<Update>
<data>
<apiErrors>
<apiError>
<errorData>1</errorData>
<errorMedia>5001</errorMedia>

<errorMessage>E_ARM_STAT_AGENT_ALREADY_LOGGED_IN</errorMessage>
<errorType>Agent already logged into MRD</errorType>

</apiError>
</apiErrors>

</data>
<event>PUT</event>
<requestId>xxx-xxxx</requestId>
<source>/finesse/api/User/1001001/Media/5001</source>

</Update>

Sample Notification
Payload:

The notification system returns this error if an operation on aMedia or nonvoice
Dialog results in an asynchronous error.

Notification Triggers:

Media and Dialogs/Media Error Code Descriptions

Errors for Agent State and Mode Changes

Common Agent State and Mode Change Errors

This table describes common errors returned if agent state or mode changes fail.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
409

Cisco Finesse Notifications
Media and Dialogs/Media Error Code Descriptions

DescriptionError
Code

Error Constant

The specified agent is not configured in CCE.2E_ARM_STAT_AGENT_NOT_FOUND

The specified Media Routing Domain is not
configured in CCE.

3E_ARM_STAT_MRD_LIST_ENTRY_NOT_FOUND

The specified agent is not logged into the MRD.

This error is not returned when logging the agent
into an MRD.

6E_ARM_STAT_AGENT_NOT_LOGGED_IN

Agent Login Errors

DescriptionError CodeError Constant

The specified agent is already logged in to this
MRD.

1E_ARM_STAT_AGENT_ALREADY_LOGGED_IN

The agent cannot log in to the voice MRD. The
application attempted to log an agent into the voice
MRD using theMedia API instead of the User API.

11E_ ARM_STAT_CANT_LOGIN_TO_VOICE_MRD

The MRD and peripheral specified in the agent
login request are not members of the application
path associated with the Finesse server that sent
the request.

27E_ARM_STAT_LOGIN_NOT_ALLOWED_FOR_APP_PATH

This code is used in the Packaged CCE deployment.
When the PG reaches the Maximum Concurrent
Number of Logged in Agents for that peripheral,
all the ARMMediaLoginReqs for that Peripheral
are rejected with this status code.

34E_ARM_STAT_PERFORMANCE_LIMIT_EXCEEDED

The log in request failed because the Central
Controller is offline.

36E_ARM_STAT_CC_OFFLINE

The log in request timed out.37E_ ARM_STAT_LOGIN_TIMEOUT

The agent log in request to the precision queue
failed.

38E_ARM_STAT_PQ_LOGIN_FAILED

There is already a pending request for the agent to
log in to the Media Routing Domain.

41E_ARM_STAT_LOGIN_REQUEST_ALREADY_PENDING

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
410

Cisco Finesse Notifications
Errors for Agent State and Mode Changes

Agent Not Ready Errors

DescriptionError
Code

Error Constant

There is already a pending request to make this
agent Not Ready in this Media Routing Domain.

9E_ARM_STAT_ALREADY_HAVE_PENDING_MAKE_AGENT_NOT_READY

The agent cannot be made Not Ready because the
agent has a pending incoming task; Finesse has
received an offered dialog for the agent.

14E_ARM_STAT_DO_THIS_WITH_TASK_SENT_RECENTLY

The specified agent is already in the Not Ready
state.

If reason codes are enabled, then an agent state
change from Not Ready to Not Ready with a
different reason code is allowed.

39E_ARM_STAT_ALREADY_IN_REQUESTED_AGENT_STATE

Agent Mode Change Errors

DescriptionError
Code

Error Constant

There is already a pending request to make this
agent Not Routable in thisMedia Routing Domain.

8E_ARM_STAT_ALREADY_HAVE_PENDING_MAKE_AGENT_NOT_ROUTABLE

The agent is already in the requested mode.40E_ARM_STAT_ALREADY_IN_REQUESTED_AGENT_MODE

Internal Errors

If you receive these errors, Contact Cisco Technical Support for assistance.

Error CodeError Constant

5E_ARM_STAT_NO_ACTIVE_SKILL_GROUPS_IN_MRD_LIST_ENTRY

Errors for Dialogs

Common Dialog Errors

This table describes common errors returned if Dialog actions fail.

DescriptionError CodeError Constant

The specified agent is not configured in CCE.2E_ARM_STAT_AGENT_NOT_FOUND

The specified Media Routing Domain is not
configured in CCE.

3E_ARM_STAT_MRD_LIST_ENTRY_NOT_FOUND

The specified agent is not logged into the MRD.6E_ARM_STAT_AGENT_NOT_LOGGED_IN

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
411

Cisco Finesse Notifications
Errors for Dialogs

DescriptionError CodeError Constant

The specified dialog cannot be found.18E_ARM_STAT_TASK_OBJECT_NOT_FOUND

TheMedia Routing Domain ID does not match the
MRD ID for this skill, service, or dialog.

20E_ARM_STAT_INCONSISTENT_MEDIA_ROUTING_DOMAIN_IDS

The dialog has been interrupted by a dialog in a
different MRD. Typically, this code indicates that
a voice call interrupted the agent working on a chat
or an email.

30E_ARM_STAT_NOT_VALID_AFTER_INTERRUPT_ADVISORY_ACCEPT

The dialog API request is made and the
synchronous response received but the dialog is
removed before contacting CCE.

6030INVALID_DIALOG_ID: <DIALOG ID>

Internal Errors

If you receive these errors, Contact Cisco Technical Support for assistance.

Error CodeError Constant

19E_ARM_STAT_INVALID_MESSAGE_SEQUENCE

21E_ARM_STAT_NO_OFFER_OR_PRE_CALL_RECEIVED

22E_ARM_STAT_INCONSISTENT_AGENT_IDS

32E_ARM_STAT_SKILL_GROUP_NOT_FOUND

33E_ARM_STAT_SERVICE_NOT_FOUND

Notification Parameters

Possible ValuesDescriptionData TypeName

The entire User, Team, Dialog,
Queue, or Media object in its most
current, updated form.

The Team object includes all of its
agents.

For the User/Queues object,
specifies a list of queues that were
added or deleted from the user's
list.

Provides the new representation of
the modified User, Team, Dialog,
Queue, User/Queues, or Media
object. This information is not
provided when a user is deleted.

For a Dialog or Media Error
notification, provides the list of
ApiError objects that represent the
failure conditions detected by the
server.

ObjectData

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
412

Cisco Finesse Notifications
Notification Parameters

Possible ValuesDescriptionData TypeName

PUT: A property of the User,
Dialog, Team, Queue, or Media
object that was modified.

DELETE: A User, Dialog, Team,
Queue, or Media object has been
deleted. For a User/Queues
modification, the queues removed
from the user's list of queues.

POST: A User, Dialog, Team,
Queue, or Media object has been
added. For a User/Queues
modification, specifies the queues
that were added to the user's list of
queues.

The type of modification that
occurred to the User, Team, Dialog,
Queue, User/Queues, or Media
object.

StringEvent

/finesse/api/User/{id}

/finesse/api/Dialog/{id}

/finesse/api/Team/{id}

/finesse/api/User/{id}/Dialogs

/finesse/api/User/{id}/Dialogs/Media

/finesse/api/Queue/{id}

/finesse/api/User/{id}/Queues

/finesse/api/User/{id}/Media

The resource location for the User,
Dialog, Team, Queue,
User/Queues, or Media object that
was modified.

StringSource

An opaque, unique string, used to
correlate the originating request
with the resulting event

The requestId that was returned
when the triggering REST API
request was made. If the event was
unsolicited, this tag is empty. This
tag is empty for a User/Queues
notification.

StringRequestId

Managing Notifications in Third-Party Applications
For applications that aren’t gadgets in the Cisco Finesse Desktop or in a third-party OpenSocial container,
use one of the following methods to establish a connection with the Cisco Finesse Notification Service to
subscribe to XMPP events:

• Any client-side XMPP library that supports WebSockets such as Strophe.js using the port 8445.

• Cisco Finesse Desktop EventTunnel (for browser applications only)

• XMPP over TCP based on Smack over port 5222 or 5223 (TLS)

Finesse uses the following base XMPP features:

1. session establishment

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
413

Cisco Finesse Notifications
Managing Notifications in Third-Party Applications

2. presence

3. roster management

These are supported over BOSH (http-bind)/WebSocket/smack protocols.

In addition, the only XMPP extension feature supported is (XEP-0060) Pubsub.XMPP extensions natively
supported by Openfire. For example, (XEP – 0198) Stream management, (XEP-0163) PEP, (XEP-0256)
Last Activity, aren’t used by Finesse and wherever possible are disabled. Custom clients should ensure
that only supported features are used when interacting with OpenFire.

• Finesse by default uses WebSocket to connect to Cisco Finesse Notification Service. For better
performance, third-party XMPP clients should connect to the Cisco Finesse Notification Service over
WebSocket.

• For all types of connection methods, Cisco Finesse Notification Service expects XMPP client ping every
20 seconds.

Note

This section describes how to use the Cisco Finesse Desktop EventTunnel method. This method requires
knowledge of how to use postMessage to pass messages between different frames in the browser.

The EventTunnel.js file is located at https://<hostname>:<port>/tunnel/EventTunnel.js
(the hostname is of the Cisco Finesse server and the port is 8445 or 7443 for HTTPS). This class is designed
to be loadedwithin an iframe. This class loads in the browser application and uses postMessage to communicate
between frames.

Access BOSH and WebSockets as follows:

BOSH: https://<hostname>:<port>/http-bind

WebSocket: ws(s)://<hostname>:<port>/ws

Cisco Finesse, Release 12.5(1) onward, the 7071 port (BOSH/WebSocket for HTTP) is disabled by default.
Use the utils finesse set_property webservices enableInsecureOpenfirePort true command to enable this
port.

For more information, see the Service Properties section in the Cisco Finesse Administration Guide.

Note

Using the EventTunnel, the application can perform the following operations:

• Establish the XMPP connection

• Subscribe to XMPP nodes

• Unsubscribe from XMPP nodes

The following is a sample file that you can use to instantiate and initialize the EventTunnel in the iframe:
<!DOCTYPE HTML>
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<script type="text/javascript">

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
414

Cisco Finesse Notifications
Managing Notifications in Third-Party Applications

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

//Set the JabberWerx connect to unsecure because the custom authentication
//on the XMPP server does not support encrypted credentials.
var jabberwerx_config = {unsecureAllowed: true};
<script type="text/javascript">

//Set the JabberWerx connect to unsecure because the custom authentication
//on the XMPP server does not support encrypted credentials.
var jabberwerx_config = {unsecureAllowed: true};
</script>

<script type="text/javascript" src="thirdparty/jquery/jquery-1.5.min.js"></script>
<script type="text/javascript" src="thirdparty/strophe/strophe.js"></script>
<script type="text/javascript" src="thirdparty/strophe/strophe.pubsub.min.js"></script>
<script type="text/javascript" src="thirdparty/util/converter.js"></script>
<script type="text/javascript" src="EventTunnel.js"></script>
<script type="text/javascript">
jQuery(document).ready(function () {

var tunnel = new finesse.EventTunnel();
tunnel.init();

});
</script>
</head>
</html>

Connect to XMPP over HTTP (BOSH/WebSocket) using Finesse EventTunnel
To initialize the XMPP connection, the following information must be passed to the EventTunnel before it
can proceed:

1. Agent ID

2. XMPP Domain

3. Agent Password

4. XMPP PubSub Domain

5. Agent XMPP Resource (Optional)

The postMessage payload has the following message structure:

message = type + "|" + message;

where type is a number that has the following mapping:

DescriptionValueMessage Type

XMPP events received by the EventTunnel and published out to the parent
frame

0EVENT

Agent XMPP ID1ID

Agent XMPP password2PASSWORD

Agent XMPP resource3RESOURCEID

Status of the XMPP connection published by the EventTunnel4STATUS

Domain of the XMPP service5XMPPDOMAIN

PubSub domain of the XMPP service6PUBSUBDOMAIN

Request to subscribe to an XMPP node7SUBSCRIBE

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
415

Cisco Finesse Notifications
Connect to XMPP over HTTP (BOSH/WebSocket) using Finesse EventTunnel

DescriptionValueMessage Type

Request to unsubscribe form an XMPP node8UNSUBSCRIBE

Request to subscribe to XMPP presence9PRESENCE

Request to disconnect the XMPP connection. This request attempts to
unsubscribe the application from all nodes to which it subscribed during the
session and then disconnects the session.

11DISCONNECT_REQ

For example, a postMessage call to send the agent ID is as follows:
message = "1|1001001" // 1 - type: ID, 1001001 - agent ID
tunnelFrame.postMessage(message, tunnelOrigin); // where tunnelFrame is the frame

// corresponding to the iframe hosting
// the EventTunnel and tunnelOrigin is
// the URL of the EventTunnel i.e.
// http://<host>:<port> where host is
// the host of the Cisco Finesse
// server and port is the port of
// the Cisco Finesse Notification
// Service, either 7071 for http or
// 7443 for https

Be sure to also wire up a callback to receive messages using postMessage from the EventTunnel frame, for
example:
if (window.addEventListener) { //Firefox, Opera, Chrome, Safari

window.addEventListener("message", cb, false);
} else { //Internet Explorer

window.attachEvent("onmessage", cb);
}

where cb is the callback that handles anymessages received using postMessage and that can parse the messages
sent by the EventTunnel.

Connect to XMPP over TCP
Any third party XMPP client can connect to the Finesse Notification Service through TCP sockets for sending
and receiving notifications. You can connect to ports 5222 (non-secure connection) and 5223 (secure
connection).

Cisco Finesse, Release 12.5(1) onward, the 5222 port (non-secure connection) is disabled by default. Set the
utils finesse set_property webservices enableInsecureOpenfirePort to true to enable this port.

For more information, see Service Properties section in Cisco Finesse Administration Guide at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

Note

Connect to Secure Port 5223 over SSL/TLS

Third party clients need to add the Finesse Notification certificate to their respective trust stores. Finesse
Notification Service shares the same certificate with Cisco Finesse Tomcat. To download the certificate:

1. Sign in to the Cisco Unified Operating System Administration through the URL
(https://FQDN:8443/cmplatform, where FQDN is the fully qualified domain name of the primary Finesse
server and 8443 is the port number).

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
416

Cisco Finesse Notifications
Connect to XMPP over TCP

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

2. Click Security > Certificate Management.

3. Click Find to get the list of all the certificates.

4. In the Certificate List screen, chooseCertificate from the Find Certificate List where drop-down menu,
enter tomcat in the begins with option and click Find.

5. Click the FQDN link which appears in theCommon Name column parallel to the listed tomcat certificate.

6. In the pop-up that appears, click the option Download .PEM File to save the file on your desktop.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
417

Cisco Finesse Notifications
Connect to XMPP over TCP

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
418

Cisco Finesse Notifications
Connect to XMPP over TCP

C H A P T E R 7
Finesse High Availability

• Failure Scenarios , on page 419
• Desktop Presence and Forced Logout, on page 420
• Failure Handling for Task Routing Clients, on page 422

Failure Scenarios
The following table lists possible failure scenarios and describes how a client can determine when a failure
occurs.

Notification mechanismScenario

Client loses XMPP connection to the Cisco Finesse Notification
Service.

This condition can occur while the Cisco Finesse
Notification Services is running if the client loses
network connectivity to the server (for example, a
client experiences a complete loss of network
connectivity).

Note

Cisco Finesse Notification Service goes
down.

In a Unified CCX
deployment, this service is
called the Cisco Unified
CCX Notification Service.

Note

The 'finesse' user presence becomes UNAVAILABLE (if desktop
is still connected to the Cisco Finesse Notification Service).

Cisco Finesse Tomcat goes down.

The 'finesse' user presence becomes UNAVAILABLE (if desktop
is still connected to the Cisco Finesse Notification Service).

Finesse web app goes down.

Finesse sends a SystemInfo notification of status
OUT_OF_SERVICE (if desktop is still connected to the Cisco
Finesse Notification Service).

Finesse loses connection to the CTI
server.

Recovery

When any of the preceding failure scenarios are detected, the course of action is to attempt or detect recovery
of the server on which the scenario occurred, as well as to check for the availability of an alternate server
using the following criteria (when applicable):

1. The XMPP connection is down.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
419

Periodically check the SystemInfo object for IN_SERVICE status. After the system is IN_SERVICE,
attempt to re-establish the XMPP connection.

2. If desktop is still connected and a SystemInfo OUT_OF_SERVICE notification is received:

As long as the XMPP connection remains available, wait for a SystemInfo notification that the system is
IN_SERVICE.

3. A 'finesse' user UNAVAILABLE presence is received.

As long as the XMPP connection remains available, wait for an AVAILABLE presence notification for
the 'finesse' user. Then wait for the SystemInfo IN_SERVICE notification.

Desktop Presence and Forced Logout
The Finesse server subscribes to the presence of the XMPP users of the Finesse desktop to monitor the health
of the connection between the server and desktop.

Under certain conditions, Finesse sends a forced logout with a reason code of 255 to the CTI server.

In a Unified CCE deployment, the actual behavior of the desktop under these conditions depends on the setting
for Logout on Agent Disconnect (LOAD).

In a Unified CCX deployment, the agent is logged out.

Finesse takes up to 120 seconds to detect when an agent closes the browser or the browser crashes and Finesse
waits 60 seconds before sending a forced logout request to the CTI server. Under these conditions, Finesse
can take up to 180 seconds to sign out the agent.

Note

The following table lists the conditions under which Finesse sends a forced logout to the CTI server:

Race ConditionsServer ActionDesktop
Behavior

Scenario

Finesse receives a
presence notification of

When you close
the browser or

The client
closes, the

1. The agent closes the browser window.
Finesse receives a presence notification

Unavailable from thenavigate away
from the Finesse

browser
crashes, or the

of Unavailable for the user. Finesse tries
to sign the agent out; however, that agent
is already signed out.

client. Finesse waits 60
seconds, and then sends
a forced logout request to
the CTI server.

desktop, the
Finesse desktop
makes a
best-effort attempt

agent clicks the
Back button on
the browser. 2. If the browser crashes, it can take the

Finesse server up to 120 seconds to detect
that the client is gone and send a presenceto notify the

server. notification to Finesse. A situation can
occur where the client signs in to the
secondary Finesse server before the
primary Finesse server receives the
presence notification caused by the
browser crash. In this case, the agent may
be signed out or put into Not Ready state
on the secondary Finesse server.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
420

Finesse High Availability
Desktop Presence and Forced Logout

3. If the Finesse desktop is running over a
slower network connection, Finessemay
not always receive an Unavailable
presence notification from the client
browser. In this situation, the behavior
mimics a browser crash, as described in
the preceding condition.

—Finesse receives a
presence notification of

—The client
refreshes the
browser Unavailable from the

client. Finesse waits 60
seconds before sending a
forced logout request to
the CTI server to allow
the browser to reconnect
after the refresh.

A situation can occur where the forced logout
does not happen before the client signs in to

The primary Finesse
server receives a

Because the
connection to the

The client
encounters a

the secondary Finesse server. If the agent ispresence notification ofFinesse servernetwork glitch
on a call, the primary Finesse server sends
the forced logout request after the call ends.

Unavailable from the
client. Because Finesse

temporarily goes
down, the client
fails over to the

(Finesse is in
service)

In a Unified CCE deployment, the agent is
signed out or put into Not Ready state when

is in service, it sends a
forced logout request to
the CTI server for the
agent.

secondary Finesse
server. the call ends, even though the client is already

signed in to the secondary Finesse server. In
a Unified CCX deployment, the agent is
signed out.

Load parameter = 0The Finesse server
forwards the forced

Finesse desktop
sends a forced

In a Unified
CCE • When the agent's current state is Not

Ready, Ready or Wrap-Up, the agent'slogout request to the CTI
server.

logout request to
the CTI server.

deployment,
when Refresh
Token has
expired

state after force logout is changed to Not
Ready – Force Not Ready.

• When the agent's current state is
Talking, the Agent goes into Not-Ready
– Force Not Ready state after the call
ends.

Load parameter = 1

• When the agent's current state is Not
Ready, Ready or Wrap-Up, the agent
goes to Logged Out – System Failure.

• When the agent's current state is
Talking, the Agent goes to Logged Out
– System Failure immediately even
though the call is still active.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
421

Finesse High Availability
Desktop Presence and Forced Logout

Failure Handling for Task Routing Clients
Task Routing applications that use the Finesse APIs must be able to handle failure scenarios involving Finesse
and CCE services.

To recover REST and XMPP connections, follow the steps described for failure recovery earlier in this chapter.

Once you recover the connections, performmore actions to recover nonvoice media state and nonvoice dialogs.
The actions you perform depend on whether your application is built with the Finesse REST APIs or the
finesse.min.js javascript library.

Recovery Actions for Finesse REST APIs

If your application is built with Finesse REST APIs, perform these actions to recover nonvoice media state
and nonvoice dialogs:

• Use the Media GET API to synchronize your application with the state of the agent in the application's
media. For example:
https://finesse_server/finesse/api/User/userId/Media/mediaId.

• If the maxDialogLimit, interruptAction, or dialogLogoutAction settings do not match the settings set by
your application at sign-in time, use the Media Sign In API to reset the settings. The Sign In API returns
an "agent already logged in" error. This error is expected. The API call does not affect the agent's state
in the media. The call does, however, reset the agent's maxDialogLimit, interruptAction, and
dialogLogoutAction settings in the media.

• Use the nonvoice Dialog LIST method to synchronize the application with the set of dialogs that the
agent currently is assigned. For example:
https://finesse_server/finesse/api/User/userId/Media/ mediaId/Dialogs.

Typically, the set of dialogs does not change when you use this command. However, in some failure
cases, such as double PG failures, the set of dialogs changes when you use this method.

Recovery Actions for Finesse.min.js Javascript Library

Media settings (maxDialogLimit, interruptAction, and dialogLogoutAction) can become out of sync after a
failure.

If your application is built with finesse.min.js, when getting the media object for the application, tell the media
object the media options. The finesse.min.js library uses these settings to ensure that the media object associated
with your application's agent has the correct settings after recovering from a failure.

For example:
media = _mediaList.getMedia({

id: mrdID,
onLoad: handleMediaLoad,
onError: handleMediaError,
onChange: handleMediaChange,
mediaOptions: {

maxDialogLimit: 3,
interruptAction: "IGNORE",
dialogLogoutAction: "CLOSE"

}
});

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
422

Finesse High Availability
Failure Handling for Task Routing Clients

C H A P T E R 8
Finesse Desktop Gadget Development

• Finesse Gadgets, on page 423
• Best Practices for Gadget Development, on page 430
• Supported OpenSocial Features, on page 432
• Gadget Caching, on page 436
• Notifications on Finesse Desktop, on page 436
• Finesse Notifications in Third-Party Containers, on page 436
• Finesse Topics, on page 437
• Finesse Container Timer, on page 442
• Handling Special Characters in CSS, on page 444
• Subscription Management on Finesse Desktop, on page 445
• Gadget Height Management, on page 445

Finesse Gadgets
Gadgets are web-based software components based on HTML, CSS, and JavaScript. They allow developers
to write web applications that work anywhere on the web without modification. They are defined using a
declarative XML syntax that is processed by a gadget server into a format that allows them to be embedded
into the following contexts:

• standalone web pages

• web applications

• other gadgets

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
423

Do not use the following JavaScript methods as they block the Finesse agent desktop until the pop up is
dismissed. The Finesse backend process can also be interrupted by thesemethods whichmay lead to unexpected
behavior.

• window.alert()

• window.prompt()

• window.confirm()

• window.showModalDialog()

Note

Prerequisites to Develop Gadgets

For Finesse Gadget development, a basic understanding of the following is necessary:

• How web applications work

• XML

• HTML

• JavaScript

Gadget Description
The gadgets API consists of simple building blocks:

XML: is a general purpose markup language. It describes structured data in a way that both humans and
computers can read and write.

XML is the language used to write gadget specifications. A gadget is an XML file, placed on the internet
where Google can find it. The XML file that specifies a gadget contains instructions on how to process and
render the gadget. The XML file contains all data and code for the gadget, or it can have references (URLs)
on where to find the rest of the elements.

HTML: is the markup language used to format pages on the internet. The static content of a gadget is written
in HTML. HTML looks similar to XML, but is used to format web documents rather than to describe structured
data.

JavaScript: is a scripting language used to add dynamic behavior to your gadgets.

Gadget XML

A gadget and its XML are synonymous. The gadget XML contains all information needed to identify and
render a web application. The XML gadget specification consists of the following:

Content

The <Content> section specifies the programming logic and the HTML elements that determine the appearance
of the gadget. It defines the type of content, and either holds the content itself or has a link to external content.
The gadget attributes and user preferences are combined with programming logic and formatting information
to become a running gadget.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
424

Finesse Desktop Gadget Development
Gadget Description

<Content> provides the actual HTML, CSS, and JavaScript to be rendered by the gadget. Code is provided
directly in the gadget XML content section for rendering and control flow. The code is processed by a gadget
server and rendered in an IFRAME.
<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Sample Gadget"
…

</ModulePrefs>
<UserPref name="scheme" display_name="scheme" default_value="" datatype ="hidden"/>
<UserPref name="host" display_name="host" default_value="" datatype ="hidden"/>
<UserPref name="hostPort" display_name="hostPort" default_value="" datatype ="hidden"/>

<Content type="html">
<![CDATA[

<!DOCTYPE html>
<!-- Styling -->
<link rel="stylesheet" href="SampleGadget_Final.css" type="text/css" />
…
…
<script type="text/javascript">
…
</script>

]]>
</Content>

</Module>

User Preferences

The <UserPrefs> section allows you to pass custom properties to the gadget from the gadget XML. The
custom properties have to be suffixed with the datatype attribute as hidden.

For example, <UserPref name="myname" display_name="Name" required="true" datatype=“hidden”

/>.

The user preferences are defined in the XML specifications as follows:
<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Sample Gadget"
…

</ModulePrefs>
<UserPref name="scheme" display_name="scheme" default_value="" datatype ="hidden"/>
<UserPref name="host" display_name="host" default_value="" datatype ="hidden"/>
<UserPref name="hostPort" display_name="hostPort" default_value="" datatype ="hidden"/>

<Content type="html">
<![CDATA[

<!DOCTYPE html>
<!-- Styling -->
<link rel="stylesheet" href="SampleGadget_Final.css" type="text/css" />

<!-- Finesse Library -->
<script type="text/javascript"
src="__UP_scheme__://__UP_host__:__UP_hostPort__/desktop/assets/js/finesse.min.js"></script>

…
…
<script type="text/javascript">
…
</script>

]]>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
425

Finesse Desktop Gadget Development
Gadget Description

</Content>
</Module>

Note that for each User Preference, “hangman variables” can be substituted into supported gadget specification
fields. Hangman variables are of the form __<TYPE>_<ID>__, and are replaced with string values. For each
provided User Pref with key foo and value bar, hangman expansion __UP_foo__ = bar. Hence, in the above
code user preference scheme is available as __UP_scheme__. Similarly, for other User Preferences the
hangman variables are dynamically substituted. Also, as the datatype value is specified as hidden, the user
preferences pop up for the agent to enter their own data does not show up on the gadget.

User preferences are accessed from your gadget using the user preferences JavaScript API, for example:
<script type="text/javascript">
var prefs = new gadgets.Prefs();
var someStringPref = prefs.getString("StringPrefName");
var someIntPref = prefs.getInt("IntPrefName");
var someBoolPref = prefs.getBool("BoolPrefName");

</script>

Gadget JavaScript

Contains the business logic for the gadget. It can be written inside the gadget XML under the content section
or an external JavaScript file can be created which can then be referred to using the src attribute in the <script>
tag.

Gadget CSS

Contains the complete styling of the gadget. Similar to the JavaScript, CSS can also be referred to as an
external file using href attribute in <link> tag.

Gadget Behavior

Rendering a gadget at the page level removes the title bar from the gadget layout.

Components

Components are simple scripts that are loaded into the desktop directly at predefined positions as directed by
the layout, without an enclosing frame and its document.

Components have been introduced in the desktop to overcome a few rendering limitations and performance
considerations inherent to gadgets.

Components are listed in the desktop layout using the <component> tag. Currently, the layout validations
prevent custom components from being created. Hence, only default components are allowed in the desktop
layouts. The default desktop functionalities are currently registered as components to provide flexibility and
to reduce the load on the server.

Simple Example Gadget
Do the following to create and deploy a gadget:

• Use any text editor to write your gadget specification.

• Host the gadget on any web server. See Enable or Reset 3rdpartygadget Account, on page 449.

• Add the gadget to the Finesse Container which can run gadgets. See Upload Third-Party Gadgets, on
page 450.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
426

Finesse Desktop Gadget Development
Simple Example Gadget

Example Gadget

Use the following lines of code to build a simple gadget. This gadget displays the message "Hello, world!".
Copy the following lines of code into a new file named hello_world.xml:
<?xml version="1.0" encoding="UTF-8" ?>
<Module>
<ModulePrefs title="hello world example" />
<Content type="html">

<![CDATA[
Hello, world!

]]>
</Content>

</Module>

Note the following about the "Hello World" example:

• Gadgets are specified in XML. The first line is the standard way to start an XML file. This must be the
first line in the file.

• The <Module> tag indicates that this XML file contains a gadget.

• The <ModulePrefs> tag contains information about the gadget such as its title, description, author, and
other optional features.

• The line <Content type="html"> indicates that the gadget's content type is HTML.

• <![CDATA[...insert HTML here...]]> is used to enclose HTML when a gadget's content type is html.
It tells the gadget parser that the text within the CDATA section should not be treated as XML. The
CDATA section typically contains HTML and JavaScript.

• </Content> signifies the end of the Content section.

• </Module> signifies the end of the gadget definition.

For a Finesse specific example, download the LearningSampleGadget from https://github.com/CiscoDevNet/
finesse-sample-code/tree/master/LearningSampleGadget, which provides step by step instructions in learning
some of the objects in the finesse.min.js library.

Note

Portions of this page are reproduced from work created and shared by Google, see
https://developers.google.com/terms/site-policies and used according to terms described in the Creative
Commons 3.0 Attribution License, see https://creativecommons.org/licenses/by/3.0/. For more information
about OpenSocial gadgets, see https://developers.google.com/gadgets/docs/overview. Note that not all
OpenSocial gadget features are available in the Finesse container.

Note

Gadget Limitations
Cisco Finesse, Release 12.5(1) allows an agent or a supervisor to drag-and-drop a gadget to the required
position on the desktop layout. The drag-and-drop feature is not applicable for gadgets that do not have a
defined title.

Example: Gadget without Title

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
427

Finesse Desktop Gadget Development
Gadget Limitations

https://github.com/CiscoDevNet/finesse-sample-code/tree/master/LearningSampleGadget
https://github.com/CiscoDevNet/finesse-sample-code/tree/master/LearningSampleGadget
https://developers.google.com/terms/site-policies
https://creativecommons.org/licenses/by/3.0/
https://developers.google.com/gadgets/docs/overview

<ModulePrefs>
<Require feature="pubsub-2"></Require>
<Require feature="setprefs"></Require>
<Require feature="osapi"></Require>
<Require feature="dynamic-height"></Require>

</ModulePrefs>

Example: Gadget with Title

<ModulePrefs title="SampleGadget"
description="Hello">

<Require feature="settitle"/>
<Require feature="pubsub-2"></Require>
<Require feature="setprefs"></Require>
<Require feature="osapi"></Require>
<Require feature="dynamic-height"></Require>

</ModulePrefs>

Import Finesse JavaScript API
For gadgets to work properly, they need to import the Finesse JavaScript library hosted on the Finesse server.

Hosting Third-Party Gadgets on Web Server

To import the JavaScript library, the Finesse FQDN needs to be provided inside the import statement. For
building the finesse.min.js URL, we need to retrieve the following properties from the gadget preferences:

1. scheme: https

2. hostname: FQDN of the Finesse server

3. port: port of the Finesse service

These properties are inside the gadget preferences as part of Finesse container initialization. In your gadget
XML:

• Define the user preferences that will be used for building the finesse.min.js import statement.
<UserPref name="scheme" display_name="scheme" default_value="" datatype ="hidden"/>
<UserPref name="host" display_name="host" default_value="" datatype ="hidden"/>
<UserPref name="hostPort" display_name="hostPort" default_value="" datatype ="hidden"/>

• Import the finesse.min.js file.
<script type="text/javascript"

src="__UP_scheme__://__UP_host__:__UP_hostPort__/desktop/assets/js/finesse.min.js">
</script>

Hosting Third-Party Gadgets on Finesse Server

Third-party gadgets can be hosted on the Finesse server inside the 3rdpartygadget directory. See Upload
Third-Party Gadgets, on page 450.

Since the third-party gadget is hosted on the Finesse server, you can import the Finesse JavaScript API with
a relative URL.
<script type=”text/javascript”src=”/desktop/assets/js/finesse.min.js”></script>

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
428

Finesse Desktop Gadget Development
Import Finesse JavaScript API

alternateHosts Configuration
The <gadget> element in the Finesse Layout XML provides an attribute to specify alternate hosts from which
the gadget can be loaded. This allows the Cisco Finesse desktop to load the gadget using a different host if
the primary server is unavailable.

The alternateHosts attribute contains a comma-separated list of FQDNs that will be used if the
primary-host-FQDN is unavailable.
<gadget alternateHosts="host1,host2,host3,...">

https://<primary-host-FQDN>/<gadget-URL>
</gadget>

The alternateHosts attribute is only applicable for gadgets with an absolute URL. That is URLs containing
the FQDN of a host, an optional port, and the complete URL path to the gadget. For example: <gadget
alternateHosts="host1,host2">https://primary host/relative_path</gadget>

If loading the gadget from the primary-host fails, the Cisco Finesse container attempts to load the gadget from
the alternate hosts in the order specified in the alternateHosts attribute.

The Cisco Finesse desktop may fail to load the gadget even if some of the hosts are reachable. In such cases,
refresh the Cisco Finesse desktop.

When the gadget is specified with a relative URL, for example: <gadget
>/3rdpartygadgets/relative_path</gadget>, the alternateHosts attribute does not apply and is ignored by
the Cisco Finesse desktop.

If the host serving the gadget fails after the Cisco Finesse desktop was successfully loaded, the desktop must
be refreshed in order to load the gadget from an alternate host. The gadget does not implement its own failover
mechanism.

Note

Headless Gadget Configuration
Headless gadgets are gadgets which do not need a display space, but can be loaded and run like a background
task in the browser. The Hidden attribute (optional) is used to support headless gadgets in the layout XML.
When an attribute is set to "hidden=true", then the gadget is loaded by the container, but will not be displayed.
The default value set for the attribute is "false".

Multi-Tab Gadgets
The Multi-Tab gadgets feature allows the user to view multiple gadgets in a tabular structure. The sequence
of the tabs is based on the order in the desktop layout. Tabbed gadgets allow users to maximize the space on
the Finesse desktop by consolidating multiple gadgets into a single space. It also allows the users to maximize
or minimize the gadget as well as restore or collapse the gadget based on their viewing preference.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
429

Finesse Desktop Gadget Development
alternateHosts Configuration

For more information on configuring the multi-tab gadget layout, see Cisco Finesse Administration Guide at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

For more information, see container services introduced as a part of this feature — hideMyGadget(),
hideMyGadgetNotification(), setMyGadgetTitle(title), showMyGadget(), showMyGadgetNotification() is
available at Container Services, on page 457.

.

Best Practices for Gadget Development
Each new gadget adds more load to the Cisco Finesse server and caution must be observed when adding
gadgets to all users. Gadgets must comply with certain performance guidelines to allow the best possible
performance, which results in faster Cisco Finesse failover.

For more information on deployment practices and guidelines to ensure optimal failover performance, see
Guidelines for Optimal Desktop Failover and Failover Planning sections in Cisco Finesse Administration
Guide at https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/
products-maintenance-guides-list.html.

In Unified CCE, Cisco Finesse deployments with more than eight gadgets per agent for themaximum supported
2000 users, must deploy the Cisco Finesse OVA with 8 CPUs to ensure faster failover time.

The actual number of gadgets that require the Cisco Finesse OVA with 8 CPUs depends on the gadgets and
the number of requests that they invoke. In Unified CCE, Cisco Finesse deployments must be monitored for
CPU consumption.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
430

Finesse Desktop Gadget Development
Best Practices for Gadget Development

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

General Gadget Development Guidelines

The following are the general gadget guidelines that are applicable for both gadgets uploaded in Cisco Finesse
3rd party folder and gadgets hosted in 3rd party servers.

• Use XML-based gadget URLs instead of dynamic JSP-based gadget URLs to prevent extra calls to the
Finesse server.

• Bundle and pack the resources for faster downloads.

• Use finesse.min.js, which is compressed and smaller in size over finesse.js.

• Prevent loading the Finesse desktopwithbypassServerCache=true&nocache as a query parameter
in the desktop URL.

• Ensure static resources used by the gadget is cached by the browser.

• External gadget hosting servers must prefer CA-signed certificates for easy integration with the browser.
If they are self-signed, then import those certificates into the agent browser.

For more information, see Accept Security Certificates section in Cisco Finesse Agent and Supervisor
Desktop User Guide at https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/
products-user-guide-list.html.

• Gadgets must cache configuration data retrieved after the gadget load, and reuse them after failover using
DesktopCache JavaScript API. Use the DesktopCache JavaScript API to prevent calls being made
to the external servers during failover.

Guidelines for Gadgets Uploaded to Finesse 3rdpartygadget Account

• Application data that are not susceptible to change across sessions can be cached in the browser using
DesktopCache API and reused.

• Add exclusions for finesse.js and the 3rd party JavaScript files in the gadget XML.

Guidelines for Gadgets Hosted on 3rd Party Servers

• If a gadget is loaded from a 3rd party server, then make REST API calls directly to that server without
proxying the requests through Shindig (avoid gadget.makeRequest() calls).

• Load the static data as scripts or HTML and not as active-content (JSP files).

Guidelines for JSP Gadgets

• Efficient failover requires converting all the JSP-based gadgets to XML-based gadgets.

• In Unified CCXRelease 12.5(1), all the CUIC and LiveData gadgets are converted to XML-based gadgets.

• In Unified CCE, after upgrading CUIC to Release 12.5(1) use the CLI command utils finesse layout
updateCuicGadgetUrl to change the JSP references of CUIC gadgets to XML with no functional
changes.

For more information, seeCisco Finesse Administration Guide at https://www.cisco.com/c/en/us/support/
customer-collaboration/finesse/products-maintenance-guides-list.html.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
431

Finesse Desktop Gadget Development
Best Practices for Gadget Development

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

The webproxy in Cisco Finesse cannot cache any JSP content.Note

Gadget Deployment Guidelines

• Verify the new gadgets by accessing a configured layout using nocache query parameter in the desktop
URL.

• When gadgets are successfully deployed, access the changed layout to verify the gadgets.

Supported OpenSocial Features
The Finesse Desktop supports OpenSocial Core Gadget Specification 1.1.

Gadget Specification XML Features
The following table lists supported features that can be specified in the Gadget Specification XML or are
available as an API for use in the JavaScript code of a gadget.

DescriptionName

The <Locale> element specifies the locales that the gadget supports. The
Finesse Desktop Gadget Container takes the locale provided by the browser
and renders the gadget with the specific message bundle when available.

Locale

The Scrolling attribute of the ModulePrefs tag renders the gadget frame with
a value of auto for scrolling.

When the content exceeds the viewport, the browser renders a vertical or
horizontal scrollbar. For a better user experience, use the
gadgets.window.adjustHeight API to dynamically resize the gadget as needed
instead of using this feature.

ModulePrefs: Scrolling

The string provided is used for the title of the gadget shown in the title bar.

You can also use the gadgets.window.setTitle API to set the title at runtime,
which may offer more flexibility.

ModulePrefs: Title

Displays a loading message while the gadget is loading.loadingindicator

Required Module pref Feature
Finesse requires that all gadgets use the following module pref feature:

<Require feature="pubsub-2" />: This feature is required for the gadget to load in the OpenAjax Hub.

Before you can access the authorization string through the gadget prefs, you must first import the Finesse
JavaScript library.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
432

Finesse Desktop Gadget Development
Supported OpenSocial Features

Loading Indicator Feature
The loading indicator is an OpenSocial feature that displays a loading message over gadgets while they are
loading. This feature allows you to provide a consistent user experience within Finesse.

Requesting the Loading Indicator

Use the following to request the loading indicator in the gadget ModulePrefs:
<ModulePrefs>
<Require feature="loadingindicator">
<Param name="manual-dismiss">false</Param>
<Param name="loading-timeout">10</Param>

</Require>
</ModulePrefs>

NotesPossible
Values

DescriptionTypeParameter

Optional
parameter.

Default is 10.

integersThe number of seconds to wait before displaying
the Retry button. If the loading indicator is
dismissed within this time, the Retry button does
not appear.

Set this to a number that is appropriate for your
gadget.

Integerloading-timeout

Optional
parameter.

Default is false.

true,
false

This parameter determines whether the gadget
dismisses the loading indicator. If set to false, the
feature code dismisses the loading indicator when
the gadget has loaded. However, the indicator may
be dismissed too soon because the gadget may
load before all gadget initialization code is
complete. To manually dismiss the loading
indicator, set this parameter to true, and then
configure the gadget to call
gadgets.loadingindicator.dismiss() after the gadget
is loaded and initialized.

Booleanmanual-dismiss

When the gadget is loading, if the loading timeout is reached, the loading indicator changes to a timeout
message and displays a Retry button that the user can click to reload the gadget.

Figure 11: Loading Indicator - Timeout

You can change any of the strings displayed by the loading indicator by configuring the gadget to call the
following JavaScript methods:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
433

Finesse Desktop Gadget Development
Loading Indicator Feature

• gadgets.loadingindicator.updateLoadingMessage(text)

• gadgets.loadingindicator.updateTimeoutMessage(text)

• gadgets.loadingindicator.updateRetryButtonText(text)

APIs Available to Gadget JavaScript
The following table lists the available APIs and methods.

DescriptionParametersName

Adjusts the height of the gadget.opt_height (integer)—Preferred height
in pixels. This parameter is optional. If
the opt_height is not specified, the API
attempts to fit the gadget to its content.

<static> gadgets.window.adjustHeight(opt_height)

Sets the title of the gadget.title (string)—Preferred title of the
gadget.

<static> gadgets.window.setTitle(title)

Fetches content from the provided URL
and feeds that content into the callback
function.

The makeRequest call to
the Shindig server is a
POST request.

Note

url (string)—Address from which
content is fetched.

callback (function)—Run after content
from the url is fetched.

opt_params (Map<String,
String>)—Additional optional
parameters to pass to the request.

<static> gadgets.io.makeRequest (url, callback,
opt_params)

Sets the view type of the gadget. If the
parameter value equals "canvas", the
gadget is requesting to be maximized
within the tab on which it resides. If any
other value is provided, the gadget is
requesting to be restored to its default
view.

view (string)—The view type to which
the gadget is requesting to change.

<static> gadgets.views.requestNavigateTo (view)

Dismisses the loading indicator so that
the message is no longer visible.

None<static> gadgets.loadingindicator.dismiss()

Displays a loading indicator message
over the gadget.

None<static> gadgets.loadingindicator.showLoading()

Displays an error message over the
gadget stating that the gadget failed to
load, along with a Retry button. When
the user clicks the Retry button, the
container reloads the gadget.

None<static> gadgets.loadingindicator.showRetry()

Changes the message that appears when
the gadget is loading.

text (string)—Text to display as the
loading message.

<static>
gadgets.loadingindicator.updateLoadingMessage(text)

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
434

Finesse Desktop Gadget Development
APIs Available to Gadget JavaScript

DescriptionParametersName

Changes the message that appears when
the gadget loading times out.

text (string)—Text to display when the
gadget loading has timed out.

<static>
gadgets.loadingindicator.updateTimeoutMessage(text)

Changes the message that appears on the
Retry button.

text (string)—Text to display on the
Retry button.

<static>
gadgets.loadingindicator.updateRetryButtonText(text)

Gadget Preferences
The gadgets.Prefs class provides access to user preferences, module dimensions, and messages. Clients can
access their preferences by constructing an instance of gadgets.Prefs (and optionally, passing in their module
ID). Gadget preferences can then be set using the standard OpenSocial gadget APIs.

var myPrefs = new gadgets.Prefs();
myPrefs.set(“counter”, count +1);

In the Finesse Desktop, gadget preferences persist in the browser. After a gadget sets its preferences, anytime
that gadget is constructed in the same browser, these preferences continue to be available through the APIs.

var myPrefs = new gadgets.Prefs();
helloValue = myPrefs.getString(“hello”);

Do not use preferences to persist critical application data. This data is stored in the browser and may be
manually purged by the user at will. This storage is meant for preferences (similar to the type of information
that is typically stored inside a cookie), and not for complex application data. Additionally, when the browser
runs out of the allocated storage space, this data is purged.

Note

If special characters are expected in the value of the preference, they should be escaped inbound and unescaped
outbound, as shown in the following example:

var myPrefs = new gadgets.Prefs(),
myPrefs.set("hello", gadgets.util.escapeString("!@#$%^&*()<>?");
…
var myPrefs = new gadgets.Prefs(),
helloValue = gadgets.util.unescapeString(myPrefs.getString("hello"));

Do not use special characters within the name of the preference. The use of special characters within the name
of the preference is not supported.

Note

Caveats
Although OpenSocial is a web standard, gadgets may exhibit different behaviors in various OpenSocial
containers. You should always thoroughly test gadgets in Finesse to ensure that functionality is in accordance
with customer requirements. The Finesse team will document known issues as they are discovered to help
customers and partners build gadgets for the Finesse Desktop.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
435

Finesse Desktop Gadget Development
Gadget Preferences

Gadget Caching
When gadget caching is enabled, the contents are cached in the Finesse server cache and Finesse gadget
container. If changes are made to the code of an existing gadget, then perform one of the following:

• Restart Cisco Finesse tomcat.

• Pass a nocache parameter in the URL to clear the cache and use the CLI command utils webproxy
cache clear shindig to clear the Shindig cache.

You can pass the nocache parameter at the root level or at the desktop web application. For example,

• https://server?nocache

• https://server/desktop?nocache

• https://server/desktop/container?nocache

Notifications on Finesse Desktop
The Finesse desktop contains support for OpenSocial Core Gadget Specification 1.1. OpenSocial Core Gadget
Specification 1.1 supports an intergadget notification system that is based on the OpenAjax Hub 2.0
Specification.

The Finesse desktop automatically establishes a XMPP connection to the Notification Service upon sign-in.
The Finesse desktop publishes notifications that it receives from the Notification Service to OpenAjax Hub
topics. An OpenAjax topic is a string name that identifies a particular topic type to which a client can subscribe
or publish. Gadgets must subscribe to these topics to receive notifications.

If the XMPP connection is disconnected, the Finesse desktop attempts to recover based on the recovery
strategy. If the XMPP connection cannot be re-established, the Finesse Desktop triggers a failover to the
alternate Finesse server.

Review theOpenSocial andOpenAjaxHub specifications before you implement gadget support for notifications
on the Finesse Desktop.

Finesse Notifications in Third-Party Containers
Strict requirements must be followed to leverage the Finesse Desktop notification framework on a third-party
container.

1. Clients must add a specific Finesse gadget, which establishes the XMPP connection and publishes
notifications to Finesse-specific OpenAjax topics

2. Third-party containers (that is, those other than the Finesse Desktop) must provide support for the
OpenSocial Core Gadget Specification 1.1 to ensure that gadgets can subscribe to Finesse-specific
notifications through the OpenAjax Hub.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
436

Finesse Desktop Gadget Development
Gadget Caching

Finesse Topics
A gadget that is within the Finesse environment has the ability to subscribe or publish to a set of Finesse
Desktop topics via OpenAjax Hub. The following sections provide details for the available topics.

Connection Information
finesse.info.connectionTopic Name

Gadgets subscribe to this topic.Topic Type

Gadgets subscribe to the finesse.info.connection topic to receive status information about the XMPP connection,
which is automatically established by the Finesse Desktop or a Finesse Desktop gadget (within a non-Finesse
container). Connection status information can be used to determine the state of the connection so that a gadget
can act appropriately. Additionally, a resource ID is provided in the published data to allow the gadget to
construct a subscribe request to the Finesse Web Services. Connection information is published every time
there is a connection state change.

The published data is a JavaScript object with the following properties:

{
status: string,
resourceID: string

}

The status parameter describes the XMPP connection status. It can have any one of the following values:

• connected

• connecting

• disconnected

• disconnecting

• reconnecting

• unloading

A XMPP connection status of "unloading" indicates that an action in the browser (such as refreshing the
browser or clicking the back button) caused the XMPP connection to initiate the unloading process.

Note

The resourceID parameter is a unique identifier for the XMPP connection. Although the resourceID parameter
is provided with every connection status change, the ID is not available until after a XMPP connection has
been successfully established. It is possible that the XMPP connection reconnects with a different resourceID.

A situation can occur where a gadget is loaded after the Finesse Desktop or gadget has already published
connection information. In this case, have the gadget publish a request to a Finesse request topic, which forces
the Finesse Desktop to publish the connection information again. For more information, see Finesse Requests.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
437

Finesse Desktop Gadget Development
Finesse Topics

Finesse Notifications
finesse.api.[resourceObject].[resourceID]Topic Name

Gadgets subscribe to this topic.Topic Type

If a user has any subscriptions for a particular notification, either created by the Finesse Desktop or by an
explicit subscribe request (see Subscription Management on the Finesse Desktop), the Cisco Finesse Notification
Service delivers updates through the establishedXMPP connection. The Finesse Desktop automatically handles
the management of the XMPP event connection to the Notification Service. Any notifications that are delivered
through the connection are converted to JavaScript Object, and then published by the Finesse Desktop to an
OpenAjax Hub topic. The name of the topic matches the node on the Finesse Notification Service on which
the notification was published. However, to comply with OpenAjax topic conventions, all slashes (/) are
replaced with dots (.) and the leading slash is removed.

To receive notifications, the gadgets must

1. Subscribe to the OpenAjax topic for a particular notification feed. This action ensures that no notifications
are missed after sending the subscription request to Finesse Web Services.

2. If required, make a request to the Cisco Finesse Notification Service to create a subscription for the
notification feed (see Subscription Management on the Finesse Desktop).

When connecting to the Cisco Finesse Notification Service, you must always specify a resource to identify
your connection. Issues occur if the resource is omitted when the connection is created.

The resource “desktop” is reserved for the Finesse Desktop. Do not use this resource for other connections
as it causes a conflict with the Finesse Desktop.

In Finesse, each notification type has an equivalent topic to which gadgets can subscribe. For a list of available
Finesse notifications, see Cisco Finesse Notifications and look under the "node" property. These notifications
are structured as follows:

{
content : Raw object payload as a String,
object : JavaScript object representation of the payload

}

Finesse Requests
finesse.info.requestsTopic Name

Gadgets publish to this topic.Topic Type

Communication between gadgets and the Finesse Desktop or other gadgets is done through inter-gadget
notification via OpenAjax Hub. A gadget can send an operation request to the Finesse Desktop by publishing
a request object to the Finesse request topic.

The gadget must construct an object to be published to the request topic with the following structure:

{
type: string,

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
438

Finesse Desktop Gadget Development
Finesse Notifications

data: object
}

The type parameter describes the request type.

The data parameter provides additional information for the Finesse Desktop to respond to the request. The
contents of this data depends on the type of request.

The following sections describe the different types of requests supported.

More request types may be added in the future.Note

ConnectionInfoReq
Sending an "ConnectionInfoReq" request forces the Finesse Desktop to publish a connection information
object to all gadgets subscribed to the finesse.info.connection topic. This request allows gadgets to determine
the current state of the XMPP connection and retrieve the resource ID. The gadget must be subscribed to the
connectionInfo topic to receive the event.

The gadget should publish the following object to the topic finesse.info.requests:

{
type: “ConnectionInfoReq”,
data: { }

}

It is possible that the gadget may come up before the Finesse Desktop is ready to start responding to a request
to send connection information. For this reason, gadgets should subscribe to the finesse.info.connection topic
regardless. When the Finesse Desktop or gadget is ready, it starts publishing connection information
immediately.

The topic finesse.info.connection is shared across all subscribed gadgets. Gadgets that subscribe to this topic
may receive duplicate notifications. Gadgets must be able to handle duplicate notifications appropriately.

Note

ConnectionReq
Sending a "ConnectionReq" forces the Finesse Desktop to attempt to establish a XMPP connection with the
Notification Service. This request can only go through if either no active connection currently exists or if the
current connection is in the "disconnected" state.

The gadget should publish the following object to the topic finesse.info.requests:

{
type: "ConnectionReq",
data: {

id: ID,
password: password,
xmppDomain: xmppDomain

},
}

The id and password parameters specify the ID and password of the XMPP user for which to establish an
XMPP connection. The xmppDomain parameter specifies the domain of the XMPP server.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
439

Finesse Desktop Gadget Development
ConnectionInfoReq

SubscribeNodeReq
Sending a "SubscribeNodeReq" request causes themanagedXMPP connection to send an XEP-0060 standard
subscribe request (described in About Cisco Finesse Notifications) to subscribe to the notification feed for
the specified node. The response to this request is published on the response topic
finesse.info.responses.{invokeID}, where the invokeIDmust be generated by the gadget to identify this unique
request and subscription. For more details, see Finesse Responses. The Cisco gadgets use an
RFC1422v4-compliant universally unique identifier (UUID) for this invokeID.

To guarantee that the gadget receives the response, it must subscribe to the response topic (on the OpenAjax
Hub) of its self-generated invokeID before sending the following object to the topic finesse.info.requests:

{
type: "SubscribeNodeReq",
data: {

node: "/finesse/api/Team/{id}/Users" // the node of interest
},
invokeID: "xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx"

}

The node parameter specifies the node to subscribe to. The invokeID parameter is self-generated and is used
to track this particular subscription. This parameter is also used as part of the OpenAjax topic to which the
response of the request is published.

UnsubscribeNodeReq
Sending an "UnsubscribeNodeReq" request causes the managed XMPP connection to send an XEP-0060
standard unsubscribe request (described in section 7.1 About Cisco Finesse Notifications) to unsubscribe from
the specified node. The response of this request is published on the response topic
finesse.info.responses.{invokeID}, where the invokeIDmust be generated by the gadget to identify this unique
request. For more details, see Finesse Responses. The Cisco gadgets use an RFC1422v4-compliant UUID for
this invokeID. For more details, see the Finesse SDK.

To guarantee that the gadget receives the response, it must subscribe to the response topic (on the OpenAjax
Hub) of its self-generated invokeID before sending the following object to the topic finesse.info.requests:

{
type: "UnsubscribeNodeReq",
data: {

node: "/finesse/api/Team/{id}/Users",
subid: "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

},
invokeID: "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxy"

}

The node parameter specifies the node to subscribe to. The subid parameter specifies the subscription to
remove, which is uniquely identified by the invokeID that was used in the subscribe request. The invokeID
parameter is self-generated and is used as part of the OpenAjax topic to which the response of the request is
published.

Finesse Responses
finesse.info.responses.{invokeID}Topic Name

Gadgets subscribe to this topic.Topic Type

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
440

Finesse Desktop Gadget Development
SubscribeNodeReq

Responses to requests are published to these channels. When a request is made, the gadget generates and
specifies a unique invokeID as part of the request. This invokeID is used as the trailing token in the topic to
which the response of the request is published.

Because this topic is only used to communicate the response of a single request and never used again, be sure
to unsubscribe from the topic as part of the callback handler in the subscribe request. For example:

// Generate invokeID and construct request
var UUID = _util.generateUUID(),
data = {

type: "ExampleReq",
data: {},
invokeID: UUID

},

// Subscribe to the response channel to ensure we don't miss the response
OAAsubid = gadgets.Hub.subscribe("finesse.info.responses."+ UUID, function (topic, data) {

// Unsubscribe from the response topic to prevent memory leaks
// Do this before processing the response in case the processing throws an exception
gadgets.Hub.unsubscribe(OAAsubid);

// Process the response here
});

// Publish the request after we have registered our response callback on the response topic
gadgets.Hub.publish("finesse.info.requests", data);

Workflow Action Event
finesse.containerservices.workflowActionEventTopic Name

Gadgets subscribe to this topic.Topic Type

Gadgets subscribe to the finesse.containerservices.workflowActionEvent topic to receive workflow action
events to run as a result of workflow evaluations.

Third-party gadgets subscribing directly to the OpenAjax Hub for the Workflow Action Event topic might
cause the Finesse Workflow Engine to lose its subscription and no longer be able to run workflow actions.
Third party gadgets should instead implement something like the following:

Note

var _containerServices = finesse.containerservices.ContainerServices.init();
_containerServices.addHandler("finesse.containerservices.workflowActionEvent",

function(data) {
// Perform logic on "data", which is a WorkflowActionEvent object
});

The published data is a JavaScript object with the following properties:

{
uri: string,
name: string,
type: string,
params: [

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
441

Finesse Desktop Gadget Development
Workflow Action Event

{
name: string,
value: string,
expandedValue: string

}
],
actionVariables: [
{
name: string,
node: string,
type: string,
testValue: string,
actualValue: string

}
]

}

DescriptionField

In the uri, the id maps to the primary key of the WorkflowAction entry.uri

The name of the workflow action.name

The type of workflow action. Possible value is BROWSER_POP.type

List of Param subobjects (see below).params

List of ActionVariable subobjects (see below). There can be at most 5 Action Variable subobjects
assigned to a workflow action.

actionVariables

The Param subobject uses the following fields:

DescriptionField

The name of the parameter.name

The value of the parameter.value

The value of the parameter with variables substituted with their values.expandedValue

The ActionVariable subobject uses the following fields:

DescriptionField

The name of the variable.name

The XPath to extract from the dialogs XML.node

Indicates if this is a SYSTEM or CUSTOM variable.type

The value used to test the variable.testValue

The actual value of the variable in context of the events used by the workflow evaluation.actualValue

Finesse Container Timer
Because too many timers that run concurrently can cause issues for JavaScript, you should not use setTimeout()
or setInterval() directly. The Finesse container provides a service (the TimerTickEvent) that you can leverage
for your third-party gadgets.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
442

Finesse Desktop Gadget Development
Finesse Container Timer

Finesse publishes the TimerTickEvent to the OpenAJAX hub every 1000 milliseconds. To use this service:

• Have the gadget subscribe to the TimerTickEvent:
finesse.containerservices.ContainerServices.addHandler(finesse.containerservices.ContainerServices.Topics.
TIMER_TICK_EVENT, callback);

• Define a callback method (see boilerplate gadget tick code - _timerTickHandler()) and, optionally, an
update method (see boilerplate gadget tick code - _processTick()).

Cisco provides a boilerplate gadget tick code that you can use to define the callback method.

Boilerplate gadget tick code:

//Gadget defined field: _lastProcessedTimerTick
_lastProcessedTimerTick = null,

//Gadget defined field: _maxTimerCallbackThreshold
_maxTimerCallbackThreshold = 500,

//Gadget defined field: _forceTickProcessingEvery (10 seconds)
_forceTickProcessingEvery = 10000,

/**
* Processes a timer tick - updating the UI.
* @param start is the time that the tick was received
* @returns {boolean} true
*/

_processTick = function (start) {

//Developer's add UI update logic here
//...
//...

_lastProcessedTimerTick = start;

return true;
},

/**
* Timer tick callback handler.
* @param data
*/

_timerTickHandler = function (timerTickEvent) {
var start, end, diff, discardThreshold, processed;

start = (new Date()).getTime();
processed = false;

//Prevent starvation of timer logic
if (_lastProcessedTimerTick === null) {

processed = _processTick(start);
} else {

if ((_lastProcessedTimerTick + _forceTickProcessingEvery) <= start) {
//Force processing at least every _forceTickProcessingEvery milliseconds
processed = _processTick(start);

}

end = (new Date()).getTime();
diff = end - start;
if (diff > _maxTimerCallbackThreshold) {
_clientLogs.log("GadgetXYZ took too long to process timer tick (_maxTimerCallbackThreshold

exceeded).");

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
443

Finesse Desktop Gadget Development
Finesse Container Timer

}
},

If you choose not to use the boilerplate gadget tick code, you should ensure the following:

• Callback calculates entry and exit time.

• Callback for timer tick is quick (log when callback takes to long - only when exceeding threshold).

• Callback provides discard capability (as outlined in the boilerplate gadget tick code) to prevent events
from piling up.

• Callback adds a _lastProcessedTimerTick and uses it to force an update to occur at regular intervals (such
as every 10 seconds). The intent is to prevent starvation in a heavily-loaded system that cannot respond
quickly enough, such that all events are being discarded.

Because the timer callback triggers every 1 second and the JavaScript engine is single-threaded, it is important
to process as quickly as possible. Using the boilerplate code makes gadget development issues more obvious
and easier to debug.

Note

Handling Special Characters in CSS
When using CSS in a gadget, the Finesse Desktop Gadget Container restricts the following special characters:

@ ^ $ * :: ~

If the CSS contains any of the special characters listed above, copy the following JavaScript code into your
gadget’s *.js file:

/**
* Injects css or js files into DOM dynamically.
* This is to bypass gadget container's restriction for special chars in CSS 3 files.
* E.g. @Keyframes
*/
injectResource : function (url){

var node = null;
// url null? do nothing
if(!url) {

return;
}
// creates script node for .js files
else if(url.lastIndexOf('.js')=== url.length-3){

node = document.createElement("script");
node.async = false;
node.setAttribute('src', url);

}
// creates link node for css files
else if(url.lastIndexOf('.css')== url.length-4){

node = document.createElement("link");
node.setAttribute('href', url);
node.setAttribute('rel', 'stylesheet');

}
// inserts the node into dom
if(node) {
document.getElementsByTagName('head')[0].appendChild(node);

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
444

Finesse Desktop Gadget Development
Handling Special Characters in CSS

}
}

In your gadget’s *.xml file, call the injectResource function that you have copied above. The parameter to
the injectResource function is the path to your css file:
<script type="text/javascript">

<your gadget namespace>.injectResource('<path to CSS file>/<CSS filename>.css');
</script>

Subscription Management on Finesse Desktop
Because the Finesse desktop provides a managed XMPP connection to the Cisco Finesse Notification Service,
the ability to subscribe or unsubscribe to a particular notification feed is also provided as an interface using
the SubscribeNodeReq and UnsubscribeNodeReq requests described in Finesse Requests.

Gadget Height Management
The height of the gadget is managed in several ways. As the gadget is essentially an iFrame HTML element,
the height of the gadget refers to the height of the iFrame. This height can be set and modified by the following
options.

• Finesse desktop layout XML (fixed height)

• Gadget API (dynamic height)

Setting Gadget Height—Desktop Layout XML
The gadget height is provided in pixels as a query parameter to the gadget URL in the Finesse desktop layout
XML. The query parameter used in the XML is gadgetHeight. This is recommended if the height of the
content inside the gadget does not change frequently.

In the following example, the initial height of the gadget, when it gets rendered on the client, is set to 150
pixels.

Example

<gadget>https://my-server.com/gadgets/SampleGadget/SampleGadget.jsp?gadgetHeight=150</gadget>

In the above example, the gadget content cannot define the height of the gadget. You would want the gadget
to take the height of the content dynamically. But since the gadget is an iFrame, it has limited capabilities to
adjust height automatically. Setting the gadget height through Finesse desktop layout XML gives you a gadget
with fixed height with no resizing capabilities.

Setting Gadget Height—Using Gadget API
Youmight have a gadget whose content is dynamic, such as a grid that is being populated with data dynamically.
The number of rows can increase or decrease in real-time. If you have a gadget with highly dynamic content,
then fixed height may result in a lot of extra white space or there is not enough space to show the whole
content inside the gadget. These issues can be resolved with the gadgets.window.adjustHeight(opt_height)
API.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
445

Finesse Desktop Gadget Development
Subscription Management on Finesse Desktop

Figure 12: Extra White Space

Figure 13: Space Constraint

You can set the height of the gadget dynamically from inside the gadget itself by passing the height in pixels
to the gadgets.window.adjustHeight(opt_height) API.

For example, consider a gadget which shows the details of a customer currently on the call. This gadget is
supposed to have two views to display the information.

Minimal view—Displays minimum information which is default option. This displays only 10 fields out of
50 which are the most critical information about the customer such as, customer id, first name, last name, and
email address.

Enlarged view—Displays maximum information which displays all the 50 fields related to the customer
information.

A simple button can be used to toggle these views. The minimal view takes less space. Hence a gadget with
lesser height would suffice. The enlarged view takes more space to fit in the content in a user-friendly manner
(no or minimal scrollbars).

Example of Toggle View

var view = 'minimal'; // view is minimal by default
function toggleView() {

if (view === 'minimal') {
view = 'enlarged';
// add more fields to the DOM here and do something else which is also required.
// Once you have the DOM updated with the content use the adjustHeight API to adjust

the height of the iFrame in px according your need

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
446

Finesse Desktop Gadget Development
Setting Gadget Height—Using Gadget API

gadgets.window.adjustHeight(500);
} else {

// here we are going back to minimal view
view = 'minimal';
// remove the extra fields from here and do something else which is also required.
// Once you have the DOM updated with the content use the adjustHeight API to adjust

the height of the iFrame in px according your need
gadgets.window.adjustHeight(100);

}
}

In the above example, the dynamic nature of the view is limited to two fixed sizes, one is the minimal view
which can always fit in an iFrame of height 100 pixels and the other is the enlarged view with more details
which can fit in an iFrame of height 500 pixels.

Calling the gadgets.window.adjustHeight() without Parameter

Consider a gadget with a grid which displays the real-time data of the signed-in users in a team to a Supervisor.
This grid would dynamically update whenever a user of that team signs-in or signs-out. The size of the grid
can vary from one row to n number of rows. To calculate the height of the gadget with respect to the changing
number of rows in the grid you must call the gadgets.window.adjustHeight(opt_height)API without any
parameter.

Whenever gadgets.window.adjustHeight(opt_height) API is called without the height parameter, it
calculates the height of the content inside the iFrame and applies that height to the iFrame. It is recommended
that the gadget calls this API in the gadget code, which can manipulate the DOM to change the size of the
content inside it.

Example of Adjust Height without Parameter

team.getUsers({
onLoad: function(users) {

// load the grid first time
for (user in users.getCollection()) {

if (user.getState() === 'LOGGED_IN') {
// render each row of logged in users

}
}
// calling the adjustHeight API will automatically calculate the height of the

content and apply it to the iFrame
gadgets.window.adjustHeight();

},
onCollectionAdd: function(user) {

// add the newly added user to the grid
if (user.getState() === 'LOGGED_IN') {

// add this row to the grid
}
// adjusts the height each time a row is added, so that the content is fully visible

in the iFrame
gadgets.window.adjustHeight();

}
});

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
447

Finesse Desktop Gadget Development
Setting Gadget Height—Using Gadget API

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
448

Finesse Desktop Gadget Development
Setting Gadget Height—Using Gadget API

C H A P T E R 9
Third-Party Gadgets

• Enable or Reset 3rdpartygadget Account, on page 449
• CSS Requirements, on page 449
• Upload Third-Party Gadgets, on page 450
• Permissions, on page 452
• Replication, on page 452
• Migration, on page 452
• Backup and Restore, on page 452
• Restrictions, on page 452
• CORS Support for Finesse REST APIs, on page 453
• Maintenance Mode, on page 453

Enable or Reset 3rdpartygadget Account
Use the following CLI command to enable (or reset) the password for the 3rdpartygadget account:

utils reset_3rdpartygadget_password

You are prompted to enter a password. After you enter a password, you are prompted to confirm the password.

You must set the password before you can upload gadgets using SFTP.

You must enable or reset the password for the 3rdpartygadget account on install. The password must be
between 5 and 32 characters long and must not contain spaces or double quotes (").

Note

CSS Requirements
By default, Finesse rewrites the linked CSS in your gadget, which in some cases is not desirable as it results
in a loss of functionality if the CSS you are loading refers to other asynchronous elements. As a result, for all
third-party gadgets, you can bypass the content rewriting for CSS by including the following in your gadget
XML:

1. Add the optional feature "content-rewrite" to disable the CSS rewrite:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
449

<Optional feature="content-rewrite">
<Param name="expires">86400</Param>
<Param name="include-url">.*</Param>
<Param name="exclude-url">.css</Param>

</Optional>

2. Include UserPref for "externalServerHost":
<UserPref name="externalServerHost"/>

3. To reference the CSS file, perform one of the following:

• If the gadget is hosted on the Finesse server, reference the CSS file using externalServerHost:
<link rel="stylesheet"
href="__UP_externalServerHost__/3rdpartygadget/files/<yourgadgetname>/<path to CSS
file>/<CSS filename>.css"
type="text/css"/>

where you must update <yourgadgetname> to the filename of your gadget under the 3rdpartygadget
/files folder and update the remaining path variables to the location of the CSS file for your
gadget.

• If the gadget is hosted on a server external to Finesse, reference the CSS file using the URL:
<link rel="stylesheet"
href="[https:]//<hostname>/<path to CSS file>/<CSS filename>.css"
type="text/css"/>

where you must update the URL variables to the location of the CSS file on your external server,
and where specifying the protocol (https) is optional. (If you omit the protocol, Finesse uses the
default protocol of the page.)

Finesse Desktop Gadget Container restrains special characters while loading a CSS3 file. See Handling Special
Characters in CSS, on page 444

Note

Upload Third-Party Gadgets
After you set the password for the 3rdpartygadget account, you can use SFTP to upload third-party gadgets
to the Finesse server, as illustrated in the following example. Note that third-party gadget files must be .xml
files. It does not support .jsp files.

Finesse allows you to upload third-party gadgets to your own web server, however, you must ensure that the
Finesse server has access to your web server.

Note

my_workstation:gadgets user$ sftp 3rdpartygadget@<finesse>
3rdpartygadget@<finesse>'s password:
Connected to <finesse>.
sftp> cd /files
sftp> put HelloWorld.xml
Uploading HelloWorld.xml to /files/HelloWorld.xml

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
450

Third-Party Gadgets
Upload Third-Party Gadgets

HelloWorld.xml
sftp> exit

After you upload a gadget, it is available under the following URL:

https://<finesse>/3rdpartygadget/files/

To access the gadget uploaded in the previous example, use the following URL:

https://<finesse>/3rdpartygadget/files/HelloWorld.xml

When you add a gadget to the desktop layout, that gadget can be referenced using a relative path. For more
information on adding third party gadgets to the Finesse desktop layout, see the section Manage Desktop
Layout in the Cisco Finesse Administration Guide.

To include the gadget that was uploaded in the previous example in the desktop layout, add the following
XML (highlighted) to the layout:

<finesseLayout xmlns="http://www.cisco.com/vtg/finesse">
<layout>
<role>Agent</role>
<page>
<gadget>/desktop/gadgets/CallControl.jsp</gadget>
<gadget>/3rdpartygadget/files/HelloWorld.xml</gadget>

</page>
...

</layout>
<layout>
<role>Supervisor</role>
<page>
<gadget>/desktop/gadgets/CallControl.jsp</gadget>
<gadget>/3rdpartygadget/files/HelloWorld.xml</gadget>

</page>
...

</layout>
</finesseLayout>

You cannot delete, rename or change permissions of a folder while using SFTP in 3rd party gadget accounts
for Unified CCX deployments. To perform these actions, SELinux has to be in permissive mode. This can be
accomplished by running the following CLI command:

utils os secure permissive

Note

Because of browser caching and caching in the Finesse web server, you may need to clear the browser cache
or restart the Cisco Finesse Tomcat service before gadget changes take effect. If you make a change to a
gadget and the change is not reflected on the Finesse desktop, clear your browser cache.

If you do not see the changes after you clear the browser cache, use the following CLI command to restart
the Cisco Finesse Tomcat service:

admin:utils service restart Cisco Finesse Tomcat

Note

Third-Party Gadget Limitations

Third-party gadgets must be .xml files. You cannot use .jsp files.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
451

Third-Party Gadgets
Upload Third-Party Gadgets

Permissions
If a newly uploaded third-party gadget does not render via the desktop layout or when you launch it directly
in a browser, the gadget files may not have the correct permissions. If gadget files do not have read permissions
for everyone else (for example, the file permission is 770), Cisco Finesse Tomcat cannot read them. The
minimum file permission should be 644.

If a gadget file does not have the correct permissions, when you launch it directly in the browser, you receive
a 404 “Resource not available” error. When you try to launch the gadget via the desktop layout, you receive
an error message that states the requested resource is not available.

To change file permissions on the Finesse server, use SFTP (CLI or client program) as shown in the following
example:

$ sftp 3rdpartygadget@172.27.184.59
3rdpartygadget@172.27.184.59's password:
Connected to 172.27.184.59.
sftp> cd files
sftp> ls -l
---------- 1 751 751 0 Dec 6 19:40 MyGadget.xml
sftp> chmod 644 MyGadget.xml
Changing mode on /files/MyGadget.xml
sftp> ls -l
-rw-r--r-- 1 751 751 0 Dec 6 19:40 MyGadget.xml
sftp>

Replication
You must set the password for the 3rdpartygadget account on both the primary and secondary Finesse servers.

Gadgets must be manually uploaded to both the primary and secondary Finesse servers.

Migration
When you perform an upgrade, third-party gadgets are migrated to the new version.

The 3rdpartygadget account password is not migrated across upgrades. After an upgrade, you must reset the
password for the 3rdpartygadget account before you can make changes to third-party gadgets. You must reset
the password on both the primary and secondary Finesse servers.

Backup and Restore
Third-party gadgets are preserved when you perform a DRS backup and restore.

Restrictions
Any attempt to GET JavaServer Pages (jsp) using the URL https://<finesse>/3rdpartygadget/files is blocked.
You will receive a 403 (Access Denied) error code when attempting to retrieve a jsp.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
452

Third-Party Gadgets
Permissions

CORS Support for Finesse REST APIs
Cross-Origin Resource Sharing (CORS) is a verification mechanism that uses additional HTTP headers to let
a user gain permission to access selected resources from a server on a different origin (domain) than the site
currently in use. By default, CORS support is disabled for Cisco Finesse and Cisco Finesse Notification
Service. The CORS support can be enabled by the Administrator for specific origins listed in the allowed
origin list using CLIs. For more information see, Cisco Finesse Admin guide 12.0(1) located at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-user-guide-list.html. CORS
requests that are originating from the allowed origin list will be honored as per CORS RFC.

Maintenance Mode
Third-party gadget developers can register with client services to receive notifications
(FINESSE_MAINTENANCE_MODE_EVENT) whenmaintenancemode is scheduled. These notifications are
triggered 15 seconds before the desktop reload. The DesktopCache API can be used to save and restore the
gadget state after reloading to the alternate node of the Cisco Finesse server.

If a third-party gadget is logged in to a voice/non-voice Media Routing Domain (MRD), the gadget must send
a NOT_READY message with reason code: 50045 to the Finesse server after a successful migration during
maintenance mode. This message does not change the agent state.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
453

Third-Party Gadgets
CORS Support for Finesse REST APIs

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-user-guide-list.html

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
454

Third-Party Gadgets
Maintenance Mode

C H A P T E R 10
Cisco Finesse JavaScript APIs

• Client Services, on page 455
• Container Services, on page 457
• Task Activity Notification, on page 480
• ClientLogger, on page 482
• Digital Channel, on page 483
• Gadget Configuration, on page 492
• Interfaces, on page 493
• REST Services, on page 494
• ShortcutKey Service, on page 568
• Utilities, on page 574
• JSON Schema, on page 590

Client Services
Class finesse.clientservices.ClientServices

Allows clients to make the Cisco Finesse API requests and use Cisco Finesse events by using the JavaScript
functions that are provided by this module. This service layer establishes a notification connection that is
shared between all the gadgets and the desktop for its eventing needs. It uses events for client subscriptions
and constructs API requests.

Methods

getNotificationConnectionState()

Retrieves the current state of the BOSH/WebSocket connection.

Example

finesse.clientservices.ClientServices.getNotificationConnectionState();

Returns

{String} The current state of the BOSH/WebSocket connection from the following options:.

• Connected—When the connection is established between client and openfire.

• Recovered —When the connection is re-established after a failure.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
455

• Failing —When the notification service or the Cisco Finesse server is down.

getRestHost()

Retrieves the destination host where the REST requests are proxied through Shindig. This method can be used
before making REST requests to retrieve the hostname.

Example

finesse.clientservices.ClientServices.getRestHost();

Returns

{String} The hostname of Cisco Finesse.

init(config)

Initiates the ClientServices module with the specified configuration parameters. For more information, see
Gadget Configuration, on page 492.

Example

finesse.clientservices.ClientServices.init(finesse.gadget.Config)

Throws

{Error} If the valid parameter is missing during initialization.

registerOnConnectHandler(handler)

Adds a handler to be invoked when the following conditions are met:

• Cisco Finesse goes IN_SERVICE wherein all the operations of Cisco Finesse is performed or accepted.

• BOSH/WebSocket connection is established and the client application communicates with the Cisco
Finesse Notification Service through BOSH/WebSocket to receive notifications. The loss of this connection
means that the server is UNAVAILABLE or that the client cannot reach the server.

• Cisco Finesse user presence becomes available. The presence indicates whether Finesse has an active
connection to the Cisco Finesse Notification Service (Unified CCE) or the Cisco Unified CCXNotification
Service (Unified CCX). An UNAVAILABLE presence for the Cisco Finesse XMPP user means that the
connection is lost.

For more information.

If these conditions are met when this function is called, the handler is invoked immediately.

Example

_cs = finesse.clientservices.ClientServices;
_cs.registerOnConnectHandler(_connectionConnectHandler);

_connectionConnectHandler = function () {
// Perform the logic
}

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
456

Cisco Finesse JavaScript APIs
Client Services

RequiredDescriptionTypeName

YesThe function that is invoked when the conditions are met.
Registers only one handler at a time. Handlers registered earlier
are overwritten.

Functionhandler

registerOnDisconnectHandler(handler)

Adds a handler or callback to be invoked when any of the following occurs:

• Cisco Finesse is no longer IN_SERVICE

• BOSH/WebSocket connection is lost

• Cisco Finesse user presence becomes UNAVAILABLE

If any of these conditions are met at the time this function is called, the callback is invoked immediately.

Example

_cs = finesse.clientservices.ClientServices;
_cs.registerOnDisconnectHandler(_connectionDisconnectHandler);

_connectionDisconnectHandler = function () {
// Perform the logic
}

Parameters

RequiredDescriptionTypeName

YesThe function that is invoked when the conditions are met. Registers
only one handler at a time. Handlers registered earlier are
overwritten.

Functionhandler

Container Services
Class finesse.containerservices.ContainerServices

Provides container level services for gadget developers. Gadgets can utilize the container dialogs and event
handling to add or remove a service.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
containerServices.addHandler(

finesse.containerservices.ContainerServices.Topics.ACTIVE_TAB,
function() {

clientLogs.log("Gadget is now visible"); // log to Finesse logger
// automatically adjust the height of the gadget to show the html
gadgets.window.adjustHeight();

}
);
containerServices.makeActiveTabReq();

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
457

Cisco Finesse JavaScript APIs
Container Services

Methods

activateMyTab()

Activates the tab in the container in which the gadget is present.

Example

finesse.containerservices.ContainerServices.activateMyTab();

activateTab(tabId)

Activates a particular tab in the container.

Example

finesse.containerservices.ContainerServices.activateTab(tabId);

Parameters

RequiredDescriptionTypeName

YesThe Id (not the label text) of the tab is activated. If the
Id is invalid, no action occurs.

StringtabId

addHandler(topic, callback)

Adds a handler for the specific Container Services topic. For more information on topics, see Container
Services Topics, on page 466.

Example

finesse.containerservices.ContainerServices.addHandler(finesse.containerservices.ContainerServices.Topics.
TIMER_TICK_EVENT,callback);

Parameters

RequiredDescriptionTypeName

YesHub topic that the gadget wants to listen to. For more
information on topics, see Container Services Topics, on
page 466.

Stringtopic

YesAn asynchronous callback function that is invokedwhen the
hub topic is notified.

Functioncallback

collapseMyGadget()

Collapses the gadget by hiding its contents for gadgets that are collapsible. In the collapsed state, only the
gadget header is displayed.

Example

finesse.containerservices.ContainerServices.collapseMyGadget();

To make the gadget collapsible, add <Optional feature="collapsible" /> in to the ModulePrefs inside
the gadget XML.

Example: Enable Collapse Feature

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
458

Cisco Finesse JavaScript APIs
Container Services

<ModulePrefs title="Sample Gadget" description="Sample Gadget">
<Optional feature="collapsible" />

</ModulePrefs>

Ensure that the gadget height is set using gadgets.window.adjustHeight before making a call to
finesse.containerservices.ContainerServices.collapseMyGadget.

Note

enableTitleBar()

Displays the title bar for a page-level gadget which is not visible by default. This is not applicable for a
tab-level gadget and can be used within a gadget.

Example

containerServices = finesse.containerservices.ContainerServices.init();
containerServices.enableTitleBar();

expandMyGadget()

Expands the gadget which is collapsed to display its contents.

Example

finesse.containerservices.ContainerServices.expandMyGadget();

Ensure that the gadget height is set using gadgets.window.adjustHeight before making a call to
finesse.containerservices.ContainerServices.expandMyGadget.

Note

getMyGadgetId()

Retrieves the Id of the gadget.

Example

finesse.containerservices.ContainerServices.getMyGadgetId();

Returns

{Number} Id of the gadget

getMyGadgetView()

Returns the current view details of the gadget. To identify if the gadget is in canvas (maximized) or default
(restored) state, you must use this at the gadget inital load time. In all the other scenarios, gadget can use
finesse.containerservices.ContainerServices.Topics.GADGET_VIEW_CHANGED_EVENT to get to the gadget
view change events.

Example

containerServices = finesse.containerservices.ContainerServices.init();
var viewConfig = containerServices.getMyGadgetView();
var newgadgetHeight = viewConfig.maxAvailableHeight;

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
459

Cisco Finesse JavaScript APIs
Container Services

Returns

{Object} The gadget details that include the following:

• gadgetId—The Finesse gadget ID

• tabId—The tab ID of the container or the gadget

• maxAvailableHeight—Maximum available height that can be used by the gadget iframe

• view—'canvas' or 'default', where canvas is maximized and default is restored state of a gadget

getMyTabId()

Retrieves the tabId of the container or gadget.

Example

finesse.containerservices.ContainerServices.getMyTabId();

Returns

{String} The tabId of the container or gadget.

hideCertificateBanner(id)

Hides the Certificate Banner. The banner is hidden when all the gadgets that invoked showCertificateBanner
have made a corresponding invocation to hideCertificateBanner, or when the user closes the banner
manually.

Example

// For Gadgets
containerServices = finesse.containerservices.ContainerServices.init();
containerServices.hideCertificateBanner();

// For non gadget Client
containerServices.hideCertificateBanner(id);

Parameters

RequiredDescriptionTypeName

Yes, when
invoked by a
non-gadget
client

System generated unique ID to identify a banner. This id
parameter is used by the desktop when the banner has to be
invoked by a non-gadget client. Gadgets do not send this
parameter.

Stringid

hideDialog()

Hides the user interface modal dialog.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
containerServices.hideDialog();

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
460

Cisco Finesse JavaScript APIs
Container Services

hideMyGadget()

Makes the current gadget inaccessible by hiding it from the Multi-Tab gadget header.

This operation has no effect and does not cause any errors when the gadget is not hosted within a Multi-Tab
gadget.

Note

Example

finesse.containerservices.ContainerServices.hideMyGadget();

hideMyGadgetNotification()

Removes the current gadget's notifications from the Multi-Tab gadget header.

This operation has no effect and does not cause any errors when the gadget is not hosted within a Multi-Tab
gadget.

Note

Example

finesse.containerservices.ContainerServices.hideMyGadgetNotification();

init()

Initiates the ContainerServices module.

The init methodmust be called before using the ContainerServices object for invoking any other functionality.Note

Example

finessse.containerServices.ContainerServices.init();

Returns

{finesse.containerServices.ContainerServices}The initiated finesse.containerServices.ContainerServices
reference.

isTabbedGadget()

Checks if the gadget is configured inside a multi-tab gadget.

Example

containerServices = finesse.containerservices.ContainerServices.init();
containerServices.isTabbedGadget();

Returns

{Boolean} True if the gadget is hosted inside a multi-tab gadget.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
461

Cisco Finesse JavaScript APIs
Container Services

makeActiveTabReq()

Requests to activate the tab in which the gadget is present.

Example

finesse.containerservices.ContainerServices.makeActiveTabReq();

publish(topic, data)

Publishes data to the specified topic on the OpenAjax hub. Since gadgets reside in different iFrames, message
publication is the only way to communicate with each other. This method gives a mechanism for the gadgets
to have their data published through custom topics, which in turn can be used by other gadgets by subscribing
to the same topic.

For example, OnClick is an element in one gadget which triggers an action in another gadget that is achieved
by using this method.

Example

finesse.containerservices.ContainerServices.publish('CUSTOMTOPIC', data);
finesse.containerservices.ContainerServices.addHandler("CUSTOMTOPIC", function(data) {

// Perform the logic
});

Parameters

RequiredDescriptionTypeName

YesHub topic that the gadget wants to listen to. For
more information on topics, see Container
Services Topics, on page 466.

Stringtopic

YesThe data to be published for the specified topic
on the OpenAjax hub.

Objectdata

reloadMyGadget()

Reloads the current gadget. This method is useful when the gadget encounters an error.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
containerServices.reloadMyGadget();

reloadMyGadgetFromUrl(url)

Updates the URL for this gadget and reloads the gadget. This method allows the gadget to be reloaded from
a different URL which can be useful for third-party gadgets implementing a failover mechanism.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
containerServices.reloadMyGadgetFromUrl(url);

Parameters

RequiredDescriptionTypeName

YesThe URL that the gadget should reload from.Stringurl

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
462

Cisco Finesse JavaScript APIs
Container Services

removeHandler(topic, callback)

Removes previously added handler for the specified Container Services topic.

Example

finesse.containerservices.ContainerServices.removeHandler(finesse.containerservices.ContainerServices.Topics.
TIMER_TICK_EVENT,callback);

Parameters

RequiredDescriptionTypeName

YesHub topic that the gadget wants to listen to. For more
information on topics, see Container Services Topics, on page
466.

Stringtopic

NoAn asynchronous callback function to be removed for the
specified Container Services topic.

Functioncallback

setMyGadgetTitle(title)

Sets the title of the current gadget.

Example

finesse.containerservices.ContainerServices.setMyGadgetTitle('Recent History');

Parameters

RequiredDescriptionTypeName

YesThe title of the current gadget.Stringtitle

showCertificateBanner(callback)

Displays the Certificate Banner with the message Gadget certificates are yet to be
accepted.

Example

// For Gadgets
containerServices = finesse.containerservices.ContainerServices.init();
containerServices.showCertificateBanner(function(){

// Do something when the banner hides
});

// For non gadget Client , id is required to hide the certificate banner
// which is returned when showCertificateBanner is called
var id = containerServices.showCertificateBanner(function(){

// Do something when the banner hides
});

Parameters

RequiredDescriptionTypeName

YesCallback is invoked when user closes the banner
manually.

Functioncallback

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
463

Cisco Finesse JavaScript APIs
Container Services

Returns

{String} id—System generated unique ID to identify a banner. This id parameter is used by the desktop
when the banner has to be invoked by a non-gadget client. Gadgets do not send this parameter.

showDialog(options)

Shows the user interface modal dialog with the specified parameters. The parameters are:

• Title of the modal dialog

• Message inside the modal dialog

• Label for the button to close the modal dialog

• If the modal dialog should block other dialogs

• If the modal dialog is draggable

• If the modal dialog is fixed-size

Figure 14: Sample UI Modal Dialog

Custom JavaScript-based modal dialogs and alerts negatively affects the functionality of the Finesse desktop
and is not recommended to be used.

Note

Example

var containerServices = finesse.containerservices.ContainerServices.init();
containerServices.showDialog({

title: 'Error Occurred',
message: 'Something went wrong',
close: function() {
}

});

Parameters

RequiredDescriptionTypeName

YesTitle of the modal dialog.Stringtitle

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
464

Cisco Finesse JavaScript APIs
Container Services

RequiredDescriptionTypeName

YesOptions for the modal dialog.

• close—Callback function that gets invoked
when the close button of the modal dialog is
clicked.

• message—Message to be displayed in the
modal dialog.

• isBlocking—Indicates whether the modal
dialog blocks other dialogs from being shown.

Objectoptions

Returns

{Object} The modal dialog object of the modal dialog DOM (Document Object Model) element.

showMyGadget()

If hidden, makes the tab corresponding to this gadget visible in the Multi-Tab gadget.

This operation has no effect and does not cause any errors, when the gadget is not hosted within a Multi-Tab
gadget.

Note

Example

finesse.containerservices.ContainerServices.showMygadget();

showMyGadgetNotification()

When hosted in a Multi-Tab gadget, a notification will appear on the tab corresponding to this gadget.

This operation has no effect and does not cause any errors, when the gadget is not hosted within a Multi-Tab
gadget.

Note

Example

finesse.containerservices.ContainerServices.showMyGadgetNotification();

finesse.containerservices.ContainerServices.showMyGadgetNotification(messageDetails);

messageDetails is a method that has the following parameters:

messageFrom, message, isDismissable, timeout, icon, type, pristine

tabVisible()

Retrieves the visibility of the current gadget only after the initialization of the gadget.

Example

finesse.containerservices.ContainerServices.tabVisible();

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
465

Cisco Finesse JavaScript APIs
Container Services

Returns

{Boolean} The visibility of the gadget.

Container Services Topics
Class finesse.containerservices.ContainerServices.Topics

Set of topics used for subscribing events from ContainerServices. The method to subscribe to topics is
finesse.containerservices.ContainerServices.containerServices.addHandler();. For more
information, see addHandler(topic, callback), on page 458.

Table 10: Field Details

DescriptionTopic Name

Listens to an active call event. Callback is invoked when
an agent voice state changes from Ready or Not Ready to
any other non-callable state or vice versa.

There are two types of responses:

• Active call—ActiveCallStatusEvent {status: true,
type: "info"}

• End or inactive call—ActiveCallStatusEvent {status:
false, type: "info"}

ACTIVE_CALL_STATUS_EVENT

Listens to changes to the active tab. Callback is invoked
when the tab containing the gadget becomes active.

The method to use when the gadget is in the active tab
finesse.containerservices.ContainerServices.makeActiveTabReq()

ACTIVE_TAB

Listens to notifications related to Finesse maintenance
mode changes. Callback is invoked when the desktop
migration is scheduled or about to happen. Callback
contains the status of the maintenance. For more
information see the section Maintenance Mode, on page
453

There are two types of statuses:

• SCHEDULED: Notified when the migration is
scheduled by the Cisco Finesse server.

• MIGRATING: Notified that the agent is migrating
after 15 seconds.

FINESSE_MAINTENANCE_MODE_EVENT

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
466

Cisco Finesse JavaScript APIs
Container Services Topics

DescriptionTopic Name

Listens to changed events of the gadget view. Callback is
invoked when a gadget view changes.

There are two types of views:

• Default (set by the developer)

• Canvas (full-screen view)

The callback passes
finesse.containerservices.GadgetViewChangedEvent.

For more information, see Finesse Desktop Gadget
Development section in Cisco Finesse Web Services
Developer Guide at https://developer.cisco.com/docs/
finesse/#!rest-api-dev-guide.

GADGET_VIEW_CHANGED_EVENT

Listens to the TimerTick event. Callback is invoked when
this event is run. Cisco Finesse publishes TimerTickEvent
to OpenAjax hub every 1000 milliseconds.

The callback passes
finesse.containerservices.TimerTickEvent.

For more information, seeFinesse Container Timer section
in Cisco Finesse Web Services Developer Guide at
https://developer.cisco.com/docs/finesse/
#!rest-api-dev-guide.

TIMER_TICK_EVENT

Listens to workflow action traffic events. When the trigger
and the conditions defined for a workflow are completed,
then a workflow action event is published, which is used
to run the workflow action.

The callback passes
finesse.containerservices.WorkflowActionEvent.

For more information, see Workflow Action Event section
in Cisco Finesse Web Services Developer Guide at
https://developer.cisco.com/docs/finesse/
#!rest-api-dev-guide.

WORKFLOW_ACTION_EVENT

Finesse Toaster
Class finesse.containerservices.FinesseToaster

FinesseToaster is a utility class that displays Cisco FinesseToaster notifications. FinesseToaster is a built-in
browser notification that appears at the bottom of the screen, and is typically used to notify the user of important
events when the agent desktop browser tab is not active. FinesseToaster uses the HTML5 Notification API
to display the notification. For more details on HTML5 Notification API and browser compatibility, see
https://developer.mozilla.org/en-US/docs/Web/API/notification#Browser_compatibility.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
467

Cisco Finesse JavaScript APIs
Finesse Toaster

https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide
https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide
https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide
https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide
https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide
https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide
https://developer.mozilla.org/en-US/docs/Web/API/notification#Browser_compatibility

Internet Explorer does not support the toaster functionality.Note

Figure 15: Sample Finesse Toaster Notification

Methods

init(config, logger)

Initiates the Cisco Finesse Toaster module for the gadget to be able to display notifications.

Example

finesse.containerservices.FinesseToaster.init("config,logger");

Parameters

RequiredDescriptionTypeName

YesThe configuration data which is either the finesse.container.Config
or finesse.gadget.Config.

Objectconfig

NoThe finesse.cslogger.ClientLogger object for the client logging
messages.

For example, you can use finesse.cslogger.ClientLogger as a
parameter.

Objectlogger

Returns

{finesse.containerservices.FinesseToaster} The initiated finesse.containerServices.FinesseToaster
reference.

showToaster(title, options)

Displays Cisco FinesseToaster notification to the user.

Example

finesse.containerservices.FinesseToaster.showToaster(
'Incoming Alert', {

body: 'There is new message'
}

);

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
468

Cisco Finesse JavaScript APIs
Finesse Toaster

RequiredDescriptionTypeName

YesThe title of the Cisco FinesseToaster notification.Stringtitle

YesOptions for the Cisco FinesseToaster notification.

• body—The text in the Cisco FinesseToaster notification

• icon—The URL of the image for the icon in the Cisco
FinesseToaster notification

Cisco FinesseToaster notification default icons. The
constant lists are:

• TOASTER_DEFAULT_ICONS.INCOMING_CALL_ICON

• TOASTER_DEFAULT_ICONS.INCOMING_CHAT_ICON

• TOASTER_DEFAULT_ICONS.INCOMING_TEAM_MESSAGE

• autoClose—Duration in milliseconds, the Cisco
FinesseToaster notification remains opened. The default
value is 8000 milliseconds.

The autoClose parameter is applicable only
for Chrome and Firefox browsers in
Windows OS. In macOS, Chrome and
Firefox browsers automatically close the
toaster notification. In macOS, the autoClose
value is ignored and the browser
automatically closes the toaster notification.

Note

• showWhenVisible—Determines how the Cisco Finesse
Toaster notification is displayed based on the visibility of
the Cisco Finesse desktop.

• true—Shows the Cisco Finesse Toaster notification
irrespective of whether the Cisco Finesse desktop is
active or not.

• false (default)—Shows the Cisco Finesse Toaster
notification only when the Cisco Finesse desktop is
inactive.

Objectoptions

Popover Service
Class finesse.containerservices.PopoverService

Cisco Finesse voice component and gadgets hosting digital services uses the
finesse.containerservices.PopoverService to display a popover for incoming calls and chat events.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
469

Cisco Finesse JavaScript APIs
Popover Service

The popover is different from Cisco Finesse toaster notification. Toaster is a built-in browser notification,
and it appears only if the agent desktop's browser tab is in the background.

Note

Figure 16: Sample Popover to Answer a Call

Object Definitions

The finesse.containerservices.PopoverService class uses specific data objects as inputs. The properties and
their values of the object are JSON Schema compliant. The format is defined below.

actionData

The actionData object defines the set of actions that can be taken and the buttons to be displayed popover.
finesse.containerservices.PopoverSchema.getActionDataSchema()

Sample actionData Object

actionData = {
"dismissible": false,
"keepMaximised": false,
"clientIdentifier": 'popup1', // A string to uniquely identify a specific popover
"requiredActionText": "Please answer the call from your phone",
"buttons": // Optional. Max 2

[{
"id": "No",
"label": "Decline",
"type": "Affirm",
"hoverText": "NOOO",
"confirmButtons": [// confirmButtons is an optional property in actionData

{
"id": "Yes",
"label": "Reject - Return to campaign",
"hoverText": "YESSSS"

},
{

"id": "No",
"label": "Close - Remove from campaign",
"hoverText": ""

}
]

}]
};

The payload details are explained in the table below.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
470

Cisco Finesse JavaScript APIs
Popover Service

DescriptionTypeKey

Determines whether the popover must be manually
dismissed.

• True—Popover to be dismissed automatically after
the specified time is lapsed.

• False—User to take action on the displayed popover
based the buttons defined. For example, Answer or
Decline.

Booleandismissible

Determines whether the popover must be maximized or
minimized.

• True—Shows the popover minimized when there is
more than one popover.

• False—Shows the popover maximized when there
is more than one popover.

BooleankeepMaximised

Unique identifier across all popovers. Used in the callback
for popover events.

StringclientIdentifier

The text in the popover that describes the user action.StringrequiredActionText
(optional)

Options for the action buttons (maximum two) in the
popover.

Arraybuttons (optional)

Unique identifier across all popovers. Used in the callback
for popover events.

String-->id

The text of the action button.String-->label

The color of the button.

• Affirm—Green button refers to affirm

• Decline—Light gray button refers to decline.

Enum-->type

The tooltip when you hover the mouse pointer over the
'requiredActionText' (popover) when the text is truncated.

String-->hoverText (optional)

The confirmation message with the buttons in response
to the user action.

Object-->confirmButtons (optional)

Unique identifier of the confirmation button.String–-->id

The label on the button.String–-->label

The tooltip message on the confirmation button.String–-->hoverText

The following method can be used to get the schema for the actionData object.
finesse.containerservices.PopoverSchema.getActionDataSchema().

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
471

Cisco Finesse JavaScript APIs
Popover Service

bannerData

The bannerData object helps to configure the data displayed on the popover.
finesse.containerservices.PopoverSchema.getBannerDataSchema()

Sample bannerData Object

bannerData = {
"icon": { // Mandatory

"type": "collab-icon",
"value": "chat"

},
"content": [// Optional. first 6 name/value pairs is shown in popover

{
"name": "Customer Name",
"value": "Michael Littlefoot"

},
{

"name": "Phone Number",
"value": "+1-408-567-789"

},
{

"name": "Account Number",
"value": "23874567923"

},
{

"name": "Issue", // For the below one, tool tip is displayed
"value": "a very long text."

}
],
"headerContent": {

"maxHeaderTitle": "Popover maximised title",
"minHeaderTitle": "Popover minimized title"

}
};

The payload details are explained in the table below.

DescriptionTypeKey

The icon displayed in the popover.Objecticon

The type of icon in the popover. For more information, see Cisco
Common Desktop Stock Icon Names with Image, on page 487.

Enum-->type

The display name of the icon.String–>value

The list of six names or value pairs to be displayed in the popover.Arraycontent (optional)

The display name of an individual name or value pair to be
displayed on the popover.

String-->name

The corresponding value of the name for the individual name or
value pair to be displayed on the popover.

String-->value

The title of the popover when it is maximized or minimized.ObjectheaderContent

The title of the popover when it is maximized.String-->maxHeaderTitle

The title of the popover when it is minimized.String-->minHeaderTitle

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
472

Cisco Finesse JavaScript APIs
Popover Service

The following method can be used to get the schema for the bannerData object.
finesse.containerservices.PopoverSchema.getBannerDataSchema()

timerData

The timerData object helps configure the timer that displayed on the popover, which indicates the time left
for the popover to be dismissed.
finesse.containerservices.PopoverSchema.getTimerDataSchema()

Sample timerData Object

timerData = {
"displayTimeoutInSecs": 60,
"display": true, // false means no displayable UI for timer
"counterType": 'COUNT_UP'

}

The payload details are explained in the table below.

DescriptionTypeKey

The popover timeout in seconds. The minimum is 3 seconds and the
maximum is 3600 seconds. –1 refers to no upper limit.

IntegerdisplayTimeoutInSecs
(mandatory)

Determines whether the timer must be displayed on the popover.

• True—Shows the time left for the popover to be dismissed.

• False—Shows the popover without the time left for dismissal.

Booleandisplay

Determines the direction in which time in the popover should be
updated.

• COUNT_UP—Shows the time elapsed for taking action on the
popover, and the timer begins counting up.

• COUNT_DOWN— Shows the time left for taking action on the
popover, and the timer begins counting down.

EnumcounterType

The following method can be used to get the schema for the timerData object.
finesse.containerservices.PopoverSchema.getTimerDataSchema()

Methods

dismissPopover(popoverId)

Dismisses the popover with the given popover Id.

Parameters

RequiredDescriptionTypeName

YesUnique identifier of the popover to be dismissed. This Id is returned
from the showPopover call.

StringpopoverId

Throws

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
473

Cisco Finesse JavaScript APIs
Popover Service

{Error} If the service is not initialized.

generatePayload(isExistingPopover, popoverId, bannerData, timerData, actionData)

Generates a single payload for use by the popover service.

Parameters

RequiredDescriptionTypeName

YesDetermines whether the popover is shown in the Finesse desktop.

• True—Shows the popover in the Finesse desktop.

• False—Does not show the popover in the Finesse desktop.

BooleanisExistingPopover

YesUnique identifier of the popover to be generated. This Id is
returned from the showPopover call.

StringpopoverId

YesThe data displayed on the popover. For example, Customer
Information such as name and phone number.

For more information on the payload and description, see
bannerData, on page 472.

ObjectbannerData

YesThe time left for the popover to be dismissed. The duration is
displayed in seconds. For example, 00:38.

For more information on the payload and description, see
timerData, on page 473.

ObjecttimerData

YesDescribes the set of actions to be taken on the displayed popover.
For example, Answer and Decline.

For more information on the payload and description, see
actionData, on page 470.

ObjectactionData

Throws

{Error} If the popoverData is not as per defined format.

init(ContainerService)

Initiates the PopoverService which is used by gadgets.

Parameters

RequiredDescriptionTypeName

YesProvides container level services for gadget developers.
Gadgets can utilize the container dialogs and event
handling to add or remove a service.

FunctionContainerService

Returns

{finesse.containerservices.PopoverService} The initiated finesse.containerServices.PopoverService
reference.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
474

Cisco Finesse JavaScript APIs
Popover Service

showPopover(bannerData, timerData, actionData, actionHandler)

Shows a popover with the specified data. The user interaction or timeout of the popover is notified to the
gadget through the registered actionHandler.

When there is a new popover, the older popover is minimized except the popover related to voice calls.Note

Parameters

RequiredDescriptionTypeName

YesThe data displayed on the popover. For example, Customer
Information such as name and phone number.

For more information on the payload and description, see
bannerData, on page 472.

ObjectbannerData

YesThe time left for the popover to be dismissed. The duration
is displayed in seconds. For example, 00:38.

For more information on the payload and description, see
timerData, on page 473.

ObjecttimerData

YesDescribes the set of actions to be taken on the displayed
popover. For example, Answer and Decline.

For more information on the payload and description, see
actionData, on page 470.

ObjectactionData

YesHandler function that gets invoked for the events that are
associated with the user interactions.

FunctionactionHandler

YesUnique identifier of the popover to be generated. This Id is
returned from the showPopover call.

String-->popoverId

YesUnique identifier of the source which generates the event.
For example, 'btn_[id]_click', 'dismissed', or 'timeout'.

String-->source

Throws

{Error} If the popoverData is not as per defined format.

Returns

{String} The popover Id and can be used for subsequent interaction with the service.

updatePopover(popoverId, bannerData, timerData, actionData, actionHandler)

Updates an active popover's displayed content.

Parameters

RequiredDescriptionTypeName

YesUnique identifier of the popover to be generated. This Id is returned
from the showPopover call.

StringpopoverId

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
475

Cisco Finesse JavaScript APIs
Popover Service

RequiredDescriptionTypeName

YesThe data displayed on the popover. For example, Customer
Information such as name and phone number.

For more information on the payload and description, see bannerData,
on page 472.

ObjectbannerData

YesThe time left for the popover to be dismissed. The duration is
displayed in seconds. For example, 00:38.

For more information on the payload and description, see timerData,
on page 473.

ObjecttimerData

YesDescribes the set of actions to be taken on the displayed popover. For
example, Answer and Decline.

For more information on the payload and description, see actionData,
on page 470.

ObjectactionData

YesHandler function that gets invoked for the events that are associated
with the user interactions.

FunctionactionHandler

Throws

{Error} If the popoverData is not as per defined format.

Events

Gadget View Changed Event
Class finesse.containerservices.GadgetViewChangedEvent

Contains information about the changed events of the gadget view. There are two types of views supported
for a gadget, that is default and canvas. The default view is the default size of the gadget. Canvas view is a
maximized view of the gadget.

You can set a button to toggle between default view and canvas view. Add <Content type="html"

view="default,canvas"> in the gadget XML. This adds the toggle button in the top right corner of the gadget.
For more information, see Gadget Height Management, on page 445.

The method to subscribe to the changed gadget event is
finesse.containerservices.ContainerServices.containerServices.addHandler() with a topic of
finesse.containerservices.ContainerServices.Topics.GADGET_VIEW_CHANGED_EVENT.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
finesse.containerservices.ContainerServices.addHandler(finesse.containerservices.
ContainerServices.Topics.GADGET_VIEW_CHANGED_EVENT, function(gadgetViewChangedEvent) {

var gadgetId = finesse.containerservices.ContainerServices.getMyGadgetId(),
tabId = finesse.containerservices.ContainerServices.getMyTabId();

if (gadgetViewChangedEvent.getGadgetId() === gadgetId &&
gadgetViewChangedEvent.getTabId() === tabId) {

if (gadgetViewChangedEvent.getView() === 'default') {
gadgets.window.adjustHeight(defaultHeight);
$('#content').html('DEFAULT VIEW');
view = 'default';

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
476

Cisco Finesse JavaScript APIs
Events

} else if (gadgetViewChangedEvent.getView() === 'canvas') {

gadgets.window.adjustHeight(gadgetViewChangedEvent.getMaxAvailableHeight());
$('#content').html('CANVAS VIEW');
view = 'canvas';

}
}

Methods

getGadgetId()

Retrieves the gadget Id.

Returns

{String} Unique Identifier for the gadget changing view.

getMaxAvailableHeight()

Retrieves the maximum available height of the gadget.

Returns

{String} The maximum available height for the gadget's view.

getTabId()

Retrieves the tab Id.

Returns

{String} Unique Identifier for the tab where the gadget changing view resides.

getView()

Retrieves the gadget view.

Returns

{String} The view type of the gadget.

Timer Tick Event
Class finesse.containerservices.TimerTickEvent

Contains information about the events of the timer-tick. The method to subscribe to the changed gadget event
is finesse.containerservices.ContainerServices.addHandler() with a topic of
finesse.containerservices.ContainerServices.Topics.TIMER_TICK_EVENT().

When the gadget is attaching a handler for the time ticker topic, it is called periodically with tick frequency
mentioned. By default, the value is one second. For more information, see Finesse Container Timer, on page
442.

Example

finesse.containerservices.ContainerServices.addHandler(finesse.containerservices.
ContainerServices.Topics.TIMER_TICK_EVENT,updateTimer);

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
477

Cisco Finesse JavaScript APIs
Timer Tick Event

Method

getDateQueued()

Retrieves the TimerTickEvent dateQueued field.

Returns

{Date} The date object when the TimerTickEvent is queued.

Workflow Action Event
Class finesse.containerservices.WorkflowActionEvent

Contains information about the events of the workflow action. Gadgets subscribe to the
finesse.containerservices.workflowActionEvent to receive workflow action events to run as a result of workflow
evaluations. For more information, see Workflow Action Event, on page 441.

The method to subscribe to the workflow event is
finesse.containerservices.ContainerServices.containerServices.addHandler() with a topic of
finesse.containerservices.ContainerServices.Topics.WORKFLOW_ACTION_EVENT. Gadgets must listen
to events with the handleBy value of “OTHER”, which is configured through cfadmin. Selecting “OTHER”
in cfadmin that implies the action is run by other third-party gadgets and not Finesse desktop. The handleBy
value is fetched by using the function getHandledBy().

For more information, see the Manage Workflows chapter in Cisco Finesse Administration Guide at
https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
containerServices.addHandler("finesse.containerservices.workflowActionEvent",
function(workflowActionEvent) {

var type, handledby
params = workflowActionEvent.getParams();
actionVariabless = workflowActionEvent.getActionVariables();
handledby = workflowActionEvent.getHandledBy();
type = workflowActionEvent.getType();
//
if (handledby === "OTHER" && type === "BROWSER_POP") {

// Have the logic
}

});

Methods

getActionVariables()

Retrieves the WorkflowActionEvent action variables map.

Returns

{Object} The object for the action variables map, where key is the action variable name, and value is the
Object such as name, type, node, testValue, and actualValue.

getHandledBy()

Retrieves the WorkflowActionEvent handledBy value. Gadgets search for events with a handleBy value of
OTHER.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
478

Cisco Finesse JavaScript APIs
Workflow Action Event

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html

Returns

{String} The handledBy value of the WorkflowAction which is
finesse.containerservices.WorkflowActionEvent.HandledBy.

getName()

Retrieves the WorkflowActionEvent name.

Returns

{String} The name of the WorkflowAction.

getParams()

Retrieves the WorkflowActionEvent parameters map.

Returns

{Object} The object for the parameters map, where key is the param name, and value is the Object such as
name, value, and expandedValue ().

The type of the WorkflowAction are BROWSER_POP and HTTP_REQUEST.

BROWSER_POP

• windowName—Name of the window as seen on the browser tab header.

• path—URL to open.

HTTP_REQUEST

• method—PUT or POST.

• location—FINESSE or OTHER.

• contentType—If applicable, then MIME type of request body. For example, text or plain.

• path—Request URL.

• body—Request content for POST requests.

getType()

Retrieves the WorkflowActionEvent type.

Returns

{String} The type of the WorkflowAction (BROWSER_POP or HTTP_REQUEST).

Workflow Action Event.HandledBy

Class finesse.containerservices.WorkflowActionEvent.HandledBy

Contains information about the set of possible HandledBy values used for WorkflowActionEvent from
ContainerServices. This is provided from the finesse.containerservices.WorkflowActionEvent.getHandledBy
method.

Field Details

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
479

Cisco Finesse JavaScript APIs
Workflow Action Event.HandledBy

DescriptionName

The Cisco Finesse handles theWorkflowActionEvent. The third-party does the additional
processing with the action. Cisco Finesse handles this WorkflowAction.

FINESSE

The third-party handles the WorkflowActionEvent. Cisco Finesse's Workflow Engine
program ignores the action and expects the Gadget Developers to take action.

OTHER

Task Activity Notification

Cisco Finesse TaskActivity API enables gadgets on the Finesse desktop to listen to and provide information
about the user's multi-channel task-related activity in Unified CCE. Task activity status corresponding to
multiple media that agents are signed in to can be published or subscribed by using this API.

Unlike traditional desktop APIs, the information provided by this API is only produced and consumed by
gadgets on the Finesse desktop. Therefore using this API requires supporting gadgets that can consume or
produce this information to be deployed.

Note

Class finesse.containerservices.TaskActivityNotification

Provides a framework to notify and receive updates about the digital task activity status. The notifications
inform the desktop and other subscribers about which non-voice media dialog is currently active or inactive.

This is supported from Cisco Finesse, Release 12.5(1) ES3 onwards.Note

Example

var taskActivityNotification =
finesse.containerservices.TaskActivityNotification.init(containerServices);

Methods

init()

Initializes the TaskActivityNotification object.

Example

var taskActivityNotification =
finesse.containerservices.TaskActivityNotification.init(containerServices);

Returns

{finesse.containerservices.TaskActivityNotification} The initialized
finesse.containerservices.TaskActivityNotification reference.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
480

Cisco Finesse JavaScript APIs
Task Activity Notification

notifyTaskSelection(from, message)

Notifies the subscribing gadgets about a task becoming active or inactive through the OpenAjax hub. The
from parameter uniquely identifies the publishing gadget, and the message parameter contains the payload
that is being published, with the details of the task.

Example

var taskActivityNotification =
finesse.containerservices.TaskActivityNotification.init(containerServices);

var from = "Gadget_id";

var message = {
'timestamp': 1589780515222, // optional
'taskId': 'task_id'
'active': true,
'mediaType': 'Chat',
'contextInfo': {

// optional
}

}

taskActivityNotification.notifyTaskSelection(from, message);

Parameters

RequiredDescriptionTypeName

YesAn identifier for the gadget that publishes notifications.Stringfrom

YesThe task activity selection message to be published to
the OpenAjax hub.

Stringmessage

OptionalThe Unix Epoch timestamp at which the message was
generated. If the value is not present, Finesse
automatically populates it with the time at which the
API request was made.

Number-->timestamp

YesUnique identifier for the task.

The taskID used must correspond to the
ID of an existing Finesse MediaDialog.
This requirement exists since gadgets on
the Finesse desktop does not know about
tasks outside of those provided by the
digital channel APIs.

Note

String-->taskId

YesDetermines the task activity status.

• True—If the task is active.

• False—If the task is inactive.

Boolean-->active

YesThe type of media under which the dialog is classified.
For example, Chat and Email.

String-->mediaType

OptionalAny additional information in JSON format.Object-->contextInfo

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
481

Cisco Finesse JavaScript APIs
Task Activity Notification

registerForTaskNotifications(callback)

Registers the gadget for receiving task activity notifications issued by other gadgets, through the callback
provided as a parameter to the registration.

Example

var taskActivityNotification =
finesse.containerservices.TaskActivityNotification.init(containerServices);

// register to receive task notifications
taskActivityNotification.registerForTaskNotifications(_processTaskNotifications);

Parameters

RequiredDescriptionTypeName

YesCallback function that is invoked when a task activity
notification message is received.

Functioncallback

requestCurrentTasks()

Request to receive the last published task activity notifications from all gadgets that are actively publishing
task notifications. This API is intended to be used when gadgets interested in task notifications initializes
itself. Therefore, the current task activity status, whichmight have beenmissed while the gadget was initializing
or loading, can be received. This API must be invoked only after registering for notifications.

Example

var taskActivityNotification =
finesse.containerservices.TaskActivityNotification.init(containerServices);

// register to receive task notifications
taskActivityNotification.registerForTaskNotifications(_processTaskNotifications);

// request for a task notification
taskActivityNotification.requestCurrentTasks();

Throws

{Error} If the callback function is not registered using
TaskActivityNotification.registerForTaskNotifications.

ClientLogger
Class finesse.cslogger.ClientLogger

Allows gadgets to send the client log messages over the hub by calling the log method of the clientLogger.
This enables the container to collect the logs of the third-party gadget and make it available on the server.

Methods

init(hub, gadgetId, config)

Initiates the client logger object for the client logging messages.

Example

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
482

Cisco Finesse JavaScript APIs
ClientLogger

var _clientLogger = finesse.cslogger.ClientLogger;
_clientLogger.init(gadgets.Hub, "MyGadgetId", config);

Parameters

RequiredDescriptionTypeName

YesThe Shindig hub topic that the gadgets wants to listen to.Objecthub

YesUnique identifier of the gadget.StringgadgetId

YesThe configuration data which is used to get the hostname
for the third-party gadget.

Objectconfig

log(message, error)

Publishes a log message over the hub.

Example

_clientLogger.log("This is a important message for MyGadget");

Parameters

RequiredDescriptionTypeName

YesThe log message displayed in the hub.Stringmessage

OptionalThe message that is associated with the error.Objecterror

Digital Channel
Digital channels are distinct and separate from the voice state control of Cisco Finesse. For example, Email
and Chat. Digital channels are intended for gadgets to represent their custom channels and can be
programmatically used to control the digital channel state.

The Finesse Digital Channel State Control (FNC), a programmable desktop component, is available from
Cisco Finesse Release 12.0(1) onwards. This API provides the schema that is used in
finesse.digital.ChannelService for various digital channel operations.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
483

Cisco Finesse JavaScript APIs
Digital Channel

Figure 17: Component Interaction

Figure 18: Digital Channel Options

Object Definitions

The finesse.digital.ChannelService class uses specific data objects as inputs. The properties and their values
of the object are JSON Schema compliant. The format is defined below.

channelConfig

The channelConfig object helps to configure the digital channel details.

finesse.containerservices.ChannelSchema.getChannelConfigSchema()

Sample channelConfig Object

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
484

Cisco Finesse JavaScript APIs
Digital Channel

{
"actionTimeoutInSec": 5,
"icons": [{

"type": "collab-icon",
"value": "Chat"

},
{

"type": "url",
"value": "../../thirdparty/gadget3/channel-icon.png"

}
]

}

The payload details are explained in the table below.

DescriptionTypeKey

The duration for which the FNC waits after sending the menu selection
request to the gadget. The duration is mentioned in seconds, and the
upper limit is 30 seconds. During this period, no other operation can be
performed on the FNC.

IntegeractionTimeoutInSec

The icons displayed in the header to represent a digital channel.Arrayicons

The type of the icon in the header. For more information, see Cisco
Common Desktop Stock Icon Names with Image, on page 487.

Enum-->type

The display name of the icon.String-->value

The following method can be used to get the schema for the channelConfig object.

finesse.containerservices.ChannelSchema.getChannelConfigSchema()

channelState

The channelState object defines the state of the digital channel.

finesse.containerservices.ChannelSchema.getChannelStateSchema()

Sample channelState Object

{
"label": "Chat & Email",
"currentState": "ready",
"iconColor": "available",
"enable": true,
"logoutDisabled": true,
"logoutDisabledText": "Please go unavailable on chat before logout",
"iconBadge": "none"
"hoverText": "Tooltip text"

}

DescriptionTypeKey

The label of the digital channel.Stringlabel

The text that describes the current state of the digital channel.StringcurrentState

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
485

Cisco Finesse JavaScript APIs
Digital Channel

DescriptionTypeKey

The color of the icon based on the current state of the digital channel.

• Green color refers to available.

• Red color refers to unavailable.

• Orange color refers to busy.

EnumiconColor

Determines whether the digital channel is shown in the Finesse desktop.

• True—Shows the digital channel menu in the Finesse desktop.

• False—Does not show the digital channel menu in the Finesse
desktop.

Booleanenable

Determines whether the logout menu is shown in the user identity
component.

• True—Disables the logout menu in the user identity component.

• False—Enables the logout menu in the user identity component.

For example, during Agent Ready or Busy state, disable the logout
menu and enable it again when the state changes to Not Ready.

BooleanlogoutDisabled

The text to the user if the logout menu is disabled.StringlogoutDisabledText

The type of badge based in the digital channel.

• info refers to the information badge.

• error refers to an error badge.

• warning refers to the warning badge.

• none refers to no badge.

StringiconBadge

The tooltip when you hover the mouse pointer.StringhoverText

The following method can be used to get the schema for the channelState object.

finesse.containerservices.ChannelSchema.getChannelStateSchema()

menuConfig

The menuConfig object helps to configure the menu details.

finesse.containerservices.ChannelSchema.getMenuConfigSchema()

Sample menuConfig Object

{
"label": "Chat",
"menuItems": [{

"id": "ready-menu-item",
"label": "Ready",
"iconColor": "available"

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
486

Cisco Finesse JavaScript APIs
Digital Channel

},
{

"id": "not-ready-menu-item",
"label": "Not Ready",
"iconColor": "unavailable"

}
]

}

DescriptionTypeKey

The label of the digital channel.Stringlabel

The list of the menu items for the digital channel.ArraymenuItems

Unique identifier of the digital channel menu. When there is a user action
on the digital channel menu, this Id is returned through the parameter
finesse.digital.ChannelService.selectedMenuItemId.

String-->id

The text of the menu item.String-->label

The color of the icon based on the current state of the digital channel.

• Green color refers to available.

• Red color refers to unavailable.

• Orange color refers to busy.

Enum-->iconColor

The following method can be used to get the schema for the menuConfig object.

finesse.containerservices.ChannelSchema.getMenuConfigSchema()

Cisco Common Desktop Stock Icon Names with Image
The digital channel configuration schema considers the Cisco Common Desktop icon (CD-icon) name as its
value. The icons are composed of different elements. Sign in to Cisco Finesse and paste the following JavaScript
code in the editor of your browser developer console to see the list of CD-UI icon names and their visual
design. This script cleans the Cisco Finesse web page, displays the icon name, and renders it in an HTML
table. Refresh the browser to reflect the changes.

You can also define this value in a gadget.Note

Example

var showIcons = function() {
$('body').html('');

$('body').append("<table border='1' background-color:#a0c0a0;'>" +
"<thead style='display: none;'><th>Icon Name</th>" +
"<th>Icon</th></thead><tbody " +
"style='display: block; overflow-y: auto; height: 600px'>" +
"</tbody></table>");

var icons = window.top.cd.core.cdIcon;

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
487

Cisco Finesse JavaScript APIs
Cisco Common Desktop Stock Icon Names with Image

var addIcon = function(name, iconJson) {

var width = (iconJson.width) ? iconJson.width : 1000;
var height = (iconJson.height) ? iconJson.height : 1000;

var iconBuilt = "<tr><td>" + name +
"</td><td><svg width='" + width +
"' height='" + height +
"' style='height: 30px; width: 30px;' viewBox='" +
iconJson.viewBox + "'>" +
iconJson.value + "</svg></td></tr>";

try {
$('tbody').append(iconBuilt);

} catch (e) {
console.error("Error when adding " + name, e);

}
}

for (var icon in icons) {
if (icons[icon].viewBox) addIcon(icon, icons[icon])

}
}

showIcons()

Channel Service
Class finesse.digital.ChannelService

Provides methods that are leveraged by the gadgets serving digital channels to register, update, or modify
digital channel-specific display information and corresponding menu action behavior in Agent State Control
Menu (referred to as the FNC Menu component).

These APIs are available to the gadget through the finesse.min.js import. For more information on how to
write a sample gadget, see https://github.com/CiscoDevNet/finesse-sample-code/tree/master/
LearningSampleGadget.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
channelService = finesse.digital.ChannelService.init(containerServices);
channelService.addChannel(channelId, channelData, onMenuClick, onSuccess, onError);

Field Details

DescriptionName

The type of badge in the digital channel.ICON_BADGE_TYPE

The type of icon in the digital channel. For more information, see Cisco
Common Desktop Stock Icon Names with Image, on page 487.

ICON_TYPE

The color of the icon based on the current state of the digital channel.STATE_STATUS

The operation status of the digital channel.STATUS

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
488

Cisco Finesse JavaScript APIs
Channel Service

https://github.com/CiscoDevNet/finesse-sample-code/tree/master/LearningSampleGadget
https://github.com/CiscoDevNet/finesse-sample-code/tree/master/LearningSampleGadget

Methods

addChannel(channelId, channelData, onMenuClick, onSuccess, onError)

Add a digital channel to the FNC menu component. The API requires the complete digital channel state in
the form of a JSON payload. Developers must pre-validate the JSON against its corresponding schema by
testing it through finesse.utilities.JsonValidator.validateJson. The result of the add operation is returned through
the given success or error callback.

Example

finesse.digital.ChannelService.addChannel(channelId, channelData, onMenuClick, onSuccess,
onError);

Parameters

RequiredDescriptionTypeName

YesUnique identifier to register the digital channel with FNC. Used
in the callback for FNC.

StringchannelId

YesThe data of the key-value pair added to the digital channel as
JSON payload. The following are the channelData keys:

• menuconfig

• channelConfig

• channelState

For more information on the channelData keys, see Digital
Channel, on page 483.

ObjectchannelData

YesCallback function that is invoked when the menu button of the
digital channel is clicked.

FunctiononMenuClick

YesCallback function that is invoked upon a successful add
operation.

FunctiononSuccess

YesCallback function that is invoked upon an unsuccessful add
operation.

FunctiononError

Success payload has the following format:
{

"channelId": "[ID of the Digital channel]",
"status": "success"

}

Error payload has the following format:
{

"channelId": "[ID of the Digital channel]",
"status": "failure",
"error": {

"errorCode": "[Channel supplied error code that will be logged in Finesse client
logs]",

"errorDesc": "An error occurred while processing request"
}

}

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
489

Cisco Finesse JavaScript APIs
Channel Service

Throws

{Error} If the digital channelData passed on is not as per the schema.

init(ContainerServices)

Initiates the ChannelService module.

Example

finesse.digital.ChannelService.init(finesse.containerservices.ContainerServices);

Parameters

RequiredDescriptionTypeName

YesProvides container level services for gadget developers. Gadgets
can utilize the container dialogs and event handling to add or
remove a service.

FunctionContainerServices

Returns

{finesse.digital.ChannelService} The initiated finesse.digital.ChannelService reference.

removeChannel(channelId, onSuccess, onError)

Removes the previously added digital channel representation from the FNC menu component.

Example

finesse.digital.ChannelService.removeChannel(channelId, onSuccess, onError);

Parameters

RequiredDescriptionTypeName

YesUnique identifier of the digital channel to be removed. This Id
is returned from the FNC.

StringchannelId

YesCallback function that is invoked upon a successful remove
operation.

FunctiononSuccess

YesCallback function that is invoked upon an unsuccessful remove
operation.

FunctiononError

updateChannel(channelId, channelData, onSuccess, onError)

Updates the digital channel in the FNC menu component. None of the data that is passed within the data
payload channelData is mandatory. This API provides an easy way to update the complete channel configuration
in one go or partially if necessary. The result of the update operation is intimated through the given success
and error callbacks.

Example

finesse.digital.ChannelService.updateChannel(channelId, channelData, onSuccess, onError);

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
490

Cisco Finesse JavaScript APIs
Channel Service

RequiredDescriptionTypeName

YesUnique identifier of the digital channel to be removed. This Id is returned
from the FNC.

StringchannelId

YesThe data of the key-value pair updated to the digital channel as JSON
payload. For more information on the object description, see
addChannel(channelId, channelData, onMenuClick, onSuccess, onError),
on page 489

ObjectchannelData

YesCallback function that is invoked upon a successful update operation.FunctiononSuccess

YesCallback function that is invoked upon an unsuccessful update operation.FunctiononError

updateChannelMenu(channelId, menuItems, onSuccess, onError)

Updates the menu displayed for the digital channel.

Example

finesse.digital.ChannelService.updateChannelMenu(channelId, menuItems, onSuccess, onError);

Parameters

RequiredDescriptionTypeName

YesUnique identifier of the digital channel to be removed. This Id is
returned from the FNC.

StringchannelId

YesThe list of menu items for the digital channel. For more
information, see menuConfig, on page 486.

ArraymenuItems

YesCallback function that is invoked upon a successful update
operation.

FunctiononSuccess

YesCallback function that is invoked upon an unsuccessful update
operation.

FunctiononError

updateChannelState(channelId, channelState, onSuccess, onError)

Updates the digital channel's current state.

Example

finesse.digital.ChannelService.updateChannelMenu(channelId, channelState, onSuccess, onError);

Parameters

RequiredDescriptionTypeName

YesUnique identifier of the digital channel to be updated. This Id is
returned from the FNC.

StringchannelId

YesThe current state of the digital channel. For more information, see
channelState, on page 485.

ObjectchannelState

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
491

Cisco Finesse JavaScript APIs
Channel Service

RequiredDescriptionTypeName

YesCallback function that is invoked upon a successful update
operation.

FunctiononSuccess

YesCallback function that is invoked upon an unsuccessful update
operation.

FunctiononError

Gadget Configuration
Class finesse.gadget.Config

Provides configuration data from the container page for the gadgets Config object in the Finesse desktop.
When Finesse desktop load successfully, the container loads configuration details from the server. While
creating gadgets, these configurations are passed to the gadgets as finesse.gadget.Config object. For more
information on gadgets.

Field Details

DescriptionField

The Base64 encoded "id:password" that can be used for non-SSO authentication
by the gadget to make Finesse REST API requests.

authorization

The token used for authentication in SSO deployments.authToken

The time difference between the client and the server in milliseconds.clientDriftInMillis

The configuration of the client compatibility mode. This field is used to display
a message to the user or handle compatibility mode use cases in the gadget.

The compatibility mode in Internet Explorer is a feature that helps you to view
webpages that were designed for the previous versions of the browser. Enabling
this feature affects the newer sites that were designed for modern browsers.

compatibilityMode

The country code of the client derived from the locale.country

The extension with which the user signs in.extension

The Finesse server IP address or host.host

The connections and listening port of the Finesse server host.hostPort

The unique identifier of the signed-in agent, which is used to uniquely identify
an agent using the Cisco Finesse RESTAPI URI and in the desktop notifications.

id

The language code of the client derived from the locale.language

The locale of the client.locale

The fully qualified domain name of the local host.localhostFQDN

The connections and listening port of the local host.localhostPort

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
492

Cisco Finesse JavaScript APIs
Gadget Configuration

DescriptionField

The phone number that the system calls to connect with the mobile agent.mobileAgentDialNumber

The work mode of the mobile agent that is found in
finesse.restservices.User.WorkMode.

mobileAgentMode

Unique identifier of the CTI server peripheral that Finesse is connected to.peripheralId

The pub sub domain of the XMPP service where the pub subservice is running.pubsubDomain

The IP address or host of the Finesse API.restHost

The type of HTTP protocol (http or https).scheme

Unique identifier for the skill target assigned to the user in the Unified CCE
Database. It is supported from Cisco Finesse, Release 12.5(1) ES2 onwards.

This is only supported for Unified CCE deployments.Note

skillTargetId

The system authorization mode of the Finesse deployment.systemAuthMode

Unique identifier of the team that the user belongs to.teamId

The name of the team that the user belongs to.teamName

The duration in seconds, the Cisco Finesse toaster notification remains opened.toasterNotificationTimeout

The domain of the XMPP service.xmppDomain

Interfaces

Request Handlers
Class finesse.interfaces.RequestHandlers(handlers)

Defines the REST object callback handlers that are passed as arguments while creating the REST object.
Retrieves the methods when the object is created.

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked
when the callback scenario is triggered.

The following are the request handlers (see below for details):

• success(rsp)

• error(rsp)

Objecthandlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
493

Cisco Finesse JavaScript APIs
Interfaces

RequiredDescriptionTypeName

OptionalCallback function that is invoked upon a successful request.
The initialized object is then passed to the callback function as
a parameter.

Functionsuccess(rsp)

OptionalCallback function that is invoked upon an unsuccessful request.
The initialized object is then passed to the callback function as
a parameter.

Functionerror(rsp)

status Number The HTTP status code of the succeeded request. Optional content String The raw string response
of the succeeded request. Optional object Object The parsed object response of the succeeded request. Optional
error Object The error details from the failed request. Optional errorType String The type of error. Optional
errorMessage String The message that is associated with the error. Optional

REST Services

JavaScript Representation of Finesse REST API
Finesse JavaScript library uses JavaScript objects that represent the underlying REST API objects1 such as a
User, Dialog, Phonebook and so on. When a Finesse JavaScript class is initialized, a corresponding REST
API call is made, and the response is populated into a JavaScript object. In addition to having JavaScript
object representations of Finesse RESTAPI objects, the Finesse JavaScript library also supports the subscription
to the Finesse Notification Service. When a Finesse notification is sent for a particular JavaScript object, the
corresponding handler of the object is triggered with the updated JavaScript object as the parameter.
1
JavaScript objects that represent the underlying REST API objects are referred to as JavaScript REST objects further on in this document.

This section establishes the principle behind the Finesse JavaScript objects. For example, consider the Finesse
REST API called User. A User is an agent who can log in to the Finesse Desktop with valid credentials. A
User object can be a composition of various fields such as State, Dialogs, Phonebooks, and so on.

REST Collection Objects
Finesse JavaScript library provides REST collection objects, which is a collection of Finesse REST API
objects. For instance, a User is a Finesse JavaScript REST object, and Users is a Finesse JavaScript REST
collection object, which can hold multiple User objects.

Table 11: JavaScript REST Object with its Corresponding REST Collection Object

JavaScript REST Collection ObjectJavaScript REST Object

DialogsDialog

MediaListMedia

PhoneBooksPhoneBook

QueuesQueue

TeamsTeam

UsersUser

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
494

Cisco Finesse JavaScript APIs
REST Services

Significance of REST Collection Object

To understand the significance of a REST collection object, consider the example of all the Dialogs associated
with a User in a grid.

A Dialog is a JavaScript representation of a call. It can be a regular phone call, a conference, or a silent monitor
session. A User object can be composed of many other objects, one of which is the Dialogs object. Note that
it is Dialogs and not Dialog. This is because a user can be involved in multiple calls.

Example—Get Dialogs for a User

var _user = new finesse.restservices.User({
id: '1001001', // user id
onLoad: function(user) {

// User has successfully loaded, now get User Dialogs
user.getDialogs({

onLoad: function(dialogs) {
// successfully loaded the dialogs collection object, now format and display

in the grid var dialogCollection = dialogs.getCollection();
for (dialogId in dialogCollection) {

if (dialogCollection[dialogId] instanceOf finesse.restservices.Dialog)
{

// each item in the Dialogs Collection will be an instance of Dialog
object.

// can format and display each record here.
}

}
}
// for the sake of simplicity of this example, not adding other handlers.

});
}

});

In the above example, after the User has successfully loaded, you call the getDialogs() API of the User
object to get the Dialogs collection object and perform certain operations on it before you display it in a grid.
Note that we did not explicitly initialize the Dialogs collection object. The getDialogs() API of the User
object did it for us internally.

You do not have to explicitly create the collection objects. All the JavaScript REST objects which are composed
of such collection object provides certain APIs which are internally taken care of initializing the objects. You
must provide the handlers to control once the collection is loaded, modified, or deleted. The following are
some examples of APIs which internally initialize and return respective REST collection objects.

Example—Collection Objects

_team.getUsers // Team REST API Object is composed of a Users Collection Object.(Users who
are the part of that team)
_user.getMediaList // User REST API Object is composed of MediaList Collection Object.
_user.getQueues // User REST API Object is composed of Queues Collection Object.
_team.getTeamMessages // Team REST API Object is composed of a TeamMessages Collection
Object.

Consider the Dialogs in a grid example to include a feature where the grid updates in real-time if any new
dialog shows up or any existing dialog gets removed. REST collection objects also provide multiple handlers.
The following example shows two new handlers provided by the collection object onCollectionAdd and
onCollectionDelete that are triggered when an item is added or removed respectively.

Example—Multiple Handlers

user.getDialogs({
onLoad: function(dialogs) {},
onCollectionAdd: function(dialog) {

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
495

Cisco Finesse JavaScript APIs
REST Collection Objects

// called when a new Dialog is added to the collection
// add this new dialog to the Grid

},
onCollectionDelete: function(dialog) {

// called when a new Dialog is removed from the collection
// remove this dialog from the Grid

}
});

Commonly used REST collection object handlers are:

• onLoad—Triggers when the collection object is successfully loaded.

• onCollectionAdd—Triggers when a new item is added to the collection.

• onCollectionDelete—Triggers when a item is deleted from the collection.

• onError—Triggers when some error occurs during any of the above operations.

RestBase and RestCollectionBase Common Parameters
Finesse JavaScript library makes use of the principles of inheritance and composition extensively. To make
the code more readable and maintainable, all the common functionality and properties are defined in Base
classes. These Base classes are then extended by the child classes inheriting all their functionalities, overriding
existing functionalities or adding new if needed.

All the JavaScript object classes such as User, Dialog, Media, Team, and Queue extend the RestBase class.
All the REST collection object classes such as Users, Dialogs, MediaList, Teams, and Queues extend the
RestCollectionBase class.

RestBase Common Parameters

All the JavaScript objects extend from the RestBase class. There is some common configuration that can be
passed into each of these objects during initialization.

Example—Common Configurations

var _user = new finesse.restservices.User(options);
or
var _team = new finesse.restservices.Team(options);
or
var _media = new finesse.restservices.Media(options);

Example—Options

var options = {
id: 'someUniqueId',
onLoad: function(restObj){},
onChange: function(restObj){},
onAdd: function(restObj){},
onDelete: function(restObj){},
onError: function(response){},

}

ExampleDescriptionParameter

For a User API, this is the id or username which uniquely identifies that User. Every REST API object has a unique identifier. You cannot generate this on the client-side.

Each JavaScript object is a representation of an already existing REST API object on the system. A user with that id is already present in the upstream system, and you are instantiating a JavaScript version
of it on the client-side.

An ID that uniquely identifies the JavaScript object.id

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
496

Cisco Finesse JavaScript APIs
RestBase and RestCollectionBase Common Parameters

ExampleDescriptionParameter

An example of a User JavaScript object loading:
var _user = new finesse.restservices.User({

id: '1001001',
onLoad: function(user){

// Do something on the successful fetch of User data.
// For example get the full name of the agent by calling user.getFullName() and display it
// or check if this user is a supervisor by calling user.hasSupervisorRole().
// Check the JS Library for more of these useful APIs to play around with.

}
});

A callback that is invoked one time in the life of the object, which is when the initialization
is successful and the data is loaded into the JavaScript object successfully. This JavaScript
object is then passed to the handler as a parameter.

This is equivalent to the success handler of a GET REST API request.

onLoad

An example where the User's state changes and shows an alert to the user:
var _user = new finesse.restservices.User({

id: '1001001',
onLoad: function(user){},
onChange: function(user){

// onChange will be triggered every time the User object updates.
// check if the agent state is, say, 'NOT_READY'.
if(user.getState() === 'NOT_READY')

}
});

In the above example, the Agent is alerted when the state changes to NOT_READY.

A callback that is invoked upon the successful update of the object. The updated object
is then passed to the handler as a parameter.

This is equivalent to the success handler of a PUT REST API request.

onChange

Currently, there are no such instances where you are using the JavaScript object to create an object that is not present in the upstream system.A callback that is invoked when an object is created in the upstream system by doing a
POST request from the client. The client receives a success response for the creation. The
newly created object is passed to the handler as a parameter.

This is unlike the other scenarios where the JavaScript object is pre-existing in the system
and you are creating a JavaScript version that creates a new object in the system.

onAdd

Currently, there are no such instances where you are using the JavaScript object to delete an object that is there already in the upstream system.A callback that is invoked when an object is deleted in the upstream system by doing a
DELETE request from the client. The client receives a success response for the deletion.

onDelete

An example when the operations fail:
var _user = new finesse.restservices.User({

id: '1001001',
onLoad: function(user){},
onError: function(rsp){

// log the error message to clientLogs with rsp.error.errorMessage
// render a meaningful error message into the UI

}
});

A callback that is invoked with the response object as the parameter when any of the
operations such as, GET, PUT, POST and DELETE fails.

The following are the parameters:

• status—{Number} Returns the HTTP status code.

• content—{String} The raw string response.

• object—{Object} The parsed object response.

• error—The type of API error returned from the RESTAPI request. It can be accessed
using
rsp.object.ApiErrors.
ApiError.ErrorType

• errorType—{String} The type of error.

• errorMessage—{String} The message that is associated with the error.

onError

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
497

Cisco Finesse JavaScript APIs
RestBase Common Parameters

RestCollectionBase Common Parameters

The RestCollectionBase objects are automatically created by the Finesse JavaScript Library when applicable
APIs are used. Thus, the RestCollectionBase objects do not have to be initialized manually. The
RestCollectionBase class extends the RestBase and supports all the handlers of RestBase.

The RestCollectionBase extends RestBase class. Hence, all the common parameters of the RestBase applies
to RestCollectionBase.

Fields borrowed from class finesse.restservices.RestBase: ajaxRequestTimeout, restResponseStatus.

Methods borrowed from class finesse.restservices.RestCollectionBase: getCollection, refresh.

Methods borrowed from class finesse.restservices.RestBase: addHandler, getData, getId, getProperty,
hasProperty, isLoaded, removeHandler.

Example of Common Configurations

_user.getDialogs(options) // User REST API Object is composed of Dialogs Collection Object.
_team.getUsers(options) // Team REST API Object is composed of a Users Collection
Object.(Users who are the part of that team)
_user.getMediaList(options) // User REST API Object is composed of MediaList Collection
Object.
_user.getQueues(options) // User REST API Object is composed of Queues Collection Object.
_team.getTeamMessages(options) // Team REST API Object is composed of a TeamMessages
Collection Object.

ExampleDescriptionParameter

An example, on User load which lists all the associated Dialogs in a grid:
user.getDialogs({

onLoad: function(dialogs){
// successfully loaded the dialogs collection object, now format and display in the grid
var dialogCollection = dialogs.getCollection();
for(dialogId in dialogCollection){

if(dialogCollection[dialogId] instanceOf finesse.restservices.Dialog){
// each item in the Dialogs Collection will be an instance of Dialog object.
// can format and display each record here.

}
}

}
});

A callback that is invoked one time in the life of the object, which is when the initialization is
successful and the data is loaded into the JavaScript object successfully. This JavaScript object is
then passed to the handler as a parameter.

This is equivalent to the success handler of a GET REST API request.

onLoad

An example, on User load which lists all the associated Dialogs in a grid, and updates them as and when a new Dialog is added:
user.getDialogs({

onLoad: function(dialogs){},
onCollectionAdd: function(dialog){

// called when a new Dialog is added to the collection
// add this new dialog to the Grid

}
});

A callback that is invoked when a new object is added to the collection. The newly added object is
then passed to the handler as a parameter.

onCollectionAdd

An example, on User load which lists all the associated Dialogs in a grid, and updates them as and when a new Dialog is removed:
user.getDialogs({

onLoad: function(dialogs){},
onCollectionDelete: function(dialog){

// called when a new Dialog is removed from the collection
// remove this dialog from the Grid

}
});

A callback that is invoked when an object is removed from the collection. The removed object is
then passed to the handler as a parameter.

onCollectionDelete

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
498

Cisco Finesse JavaScript APIs
RestCollectionBase Common Parameters

ExampleDescriptionParameter

An example when the operations fail:
user.getDialogs({

onLoad: function(user){},
onError: function(rsp){

// log the error message to clientLogs with rsp.error.errorMessage
// render a meaningful error message into the UI

}
});

A callback that is invoked with the response object as the parameter when any of the operations
such as, GET, PUT, POST and DELETE fails.

For more information on parameters, see RestBase Common Parameters, on page 496.

onError

JavaScript Library

Without Finesse JavaScript library

In the absence of the Finesse JavaScript library, the following code would be needed to pull the User details
after the login process is completed.

• Make a GET call to the server to get the details of this agent.

Example—GET

$.ajax({
url: 'finesse/api/User/1001001' // where 1001001 is the username or id of the logged

in agent.
type: 'GET',
success: function(response){

// here response is an xml containing all the relevant information regarding
the User 1001001 which can be used

// for example response can be
<User><id>1001001</id><state>NOT_READY</state></User>

// Need to parse the response and make it usable
},
error: function(err){

// Something went wrong while fetching user data, show an error dialog to the
user may be.

},
});

• Make a PUT call to the server to change the state of this agent.

Example—PUT

$.ajax({
url: 'finesse/api/User/1001001' // where 1001001 is the username/id through which

the agent logged in.
type: 'PUT',
data: '<User><state>READY</state></User>'
success: function(response){

// Do something once the user state has been changed successfully.
},
error: function(err){

// Something went wrong while fetching user data, show an error dialog to the
user may be.

},
});

REST operations such as POST and DELETE can also be performed on the User API to get the desired
result.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
499

Cisco Finesse JavaScript APIs
JavaScript Library

With Finesse JavaScript library

In the presence of the Finesse JavaScript library, the following code would be needed to pull the User details,
where the User object is under the namespace finesse.restservices.User.

• Make a GET all on the User API. The GET call in the above example is made using the jQuery OpenAjax
API, where the onLoad is equivalent to the success option of the jQuery OpenAjax call.

Example—onLoad, onChange, and on Error

var _user = new finesse.restservices.User({
id: '1001001',
onLoad: function(user){

// Do something on the successful fetch(GET) of user object
},
onChange: function(user){

// Do something on the successful update(PUT) of object
// can do user.getState() or user.getTeamName()

}
onError: function(err){

// Something went wrong while fetching user data, show an error dialog to the
user may be.

}
});

The onChange is equivalent to the success option in PUT jQuery OpenAjax call made to modify the
state of the User in the second example. Similarly, there are other handlers such as onAdd used for POST
request and onDelete used for DELETE requests which are supported by User object as well as other
Finesse JavaScript objects.

• Update the state of the User using the setState() provided by finesse.restservices.User.

Example—Update State of a User

_user.setState('READY');

The above example triggers a state change for the User, which is equivalent to make a PUT request,
which in turn triggers the onChange handler attached to the User object.

All the handlers (GET, PUT, POST, DELETE, ERROR) can be attached to the object during initialization.
Initialization of a JavaScript object triggers a GET request, the response of which is used to populate the
JavaScript object. There are APIs available within the JavaScript object to create, update, and delete
certain compositions (in the JavaScript object itself) that internally trigger PUT, POST, and DELETE
REST API request respectively.

To put this into perspective, the Finesse JavaScript REST API objects try to encapsulate the low-level
request or response handling at the client-side and provide with APIs which are easy to use, maintain
and improve the readability of the code.

Subscription Support
Finesse JavaScript objects support subscription to the XMPP events. These events are the notifications
generated by the Openfire server and pushed to the desktop as XMPP events. Any JavaScript object that
supports subscription is automatically hooked up for listening to XMPP events when it is initialized.

This subscription is not a Notification subscription but a desktop level subscription to receive the events
generated by the OpenAjax hub.

Note

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
500

Cisco Finesse JavaScript APIs
Subscription Support

For example, the User API supports the subscription model and the User functions as stated in the below
example.

Example for User Functions

var _user = new finesse.restservices.User({
id: '1001001',
onLoad: function(user){

// Do something on the successful fetch(GET) of user object
},
onChange: function(user){

// Do something on the successful update(PUT) of object
// can do user.getState() or user.getTeamName()

},
onAdd: function(user){},
onDelete: function(user){},
onError: function(err){

// Something went wrong while fetching user data, show an error dialog to the user
may be.

}
});

These handlers can handle the REST response and the XMPP events. For example, when the state change for
a signed-in User is triggered by another agent (that is, Supervisor), the client or desktop receives a User update
XMPP event on the node “/finesse/api/User/1001001”.

Payload with Updated User State Details

<Update>
<data>
<user>
<dialogs>/finesse/api/User/1001001/Dialogs</dialogs>
<extension>1001001</extension>
<firstName>AGENT</firstName>
<lastName>1001001</lastName>
<loginId>1001001</loginId>
<loginName>agent444agent444agent444agent444</loginName>
<mediaType>1</mediaType>
<pendingState></pendingState>
<roles>
<role>Agent</role>

</roles>
<settings>
<wrapUpOnIncoming>OPTIONAL</wrapUpOnIncoming>
<wrapUpOnOutgoing>NOT_ALLOWED</wrapUpOnOutgoing>

</settings>
<state>READY</state>
<stateChangeTime>2020-03-13T05:45:26.827Z</stateChangeTime>
<teamId>5000</teamId>
<teamName>FunctionalAgents</teamName>
<uri>/finesse/api/User/1001001</uri>
<wrapUpTimer>30</wrapUpTimer>

</user>
</data>
<event>PUT</event>
<requestId>2a7f6cd3-bd26-4e46-a8ea-429cba8d9ff7</requestId>
<source>/finesse/api/User/1001004</source>

</Update>

The XMPP events are handled, and the same onChange handler provided by you is invoked by the Finesse
JavaScript library.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
501

Cisco Finesse JavaScript APIs
Subscription Support

REST Base
Class finesse.restservices.RestBase

Represents the JavaScript REST object and it exposes methods to operate on the object against the server.
This object is extended to individual JavaScript REST objects (such as Dialog, User, and so on) and is not be
used directly.

Example

var NotReadyReasonCode = RestBase.extend(/** @lends
finesse.restservices.NotReadyReasonCode.prototype */ {

/**
* @class
* A ReasonCode object for NOT_READY state.
*
* @augments finesse.restservices.RestBase
* @see finesse.restservices.User.States#NOT_READY
* @constructs
*/
_fakeConstuctor: function() {

/* This is here to hide the real init constructor from the public docs */
},

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Field Details

DescriptionName

Duration in milliseconds that the OpenAjax request remains opened.ajaxRequestTimeout

Number of the REST response status that is returned.restResponseStatus

Methods

addHandler(notifierType, callback, scope)

Add a handler for the specific RestBase object. The callback function is invoked if the notifierType is triggered.

Example

// Handler for additions to the Dialogs collection object.
// When Dialog (a RestBase object) is created, add a change handler.
_handleDialogAdd = function(dialog) {

dialog.addHandler('change', _handleDialogChange);
}

Parameters

RequiredDescriptionTypeName

YesThe type of notifier to add to the load, change, add, delete,
and error.

StringnotifierType

YesAn asynchronous callback function that is invoked when the
type is notified.

Functioncallback

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
502

Cisco Finesse JavaScript APIs
REST Base

RequiredDescriptionTypeName

OptionalThe object on which the handler is invoked.Objectscope

getData()

Retrieves the data for an object.

Returns

{Object} The object with the retrieved data.

getId()

Retrieves the unique identifier of the RestBase.

Returns

{String} Unique identifier of the RestBase.

getProperty(obj, property)

Retrieves the property from the object.

Parameters

RequiredDescriptionTypeName

YesThe object to retrieve the property from.Objectobj

YesThe property is the key of the value that will be returned.Stringproperty

Returns

{Object} The value of the property that was requested.

hasProperty(obj, property)

Determines whether the object has a property.

Parameters

RequiredDescriptionTypeName

YesThe object to check if the property exists.Objectobj

YesThe property is the key of the value that will be returned.Stringproperty

Returns

{Boolean} True if the object contains the property, else false.

isLoaded()

Loads the utility method for operations that require complete instantiation.

Throws

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
503

Cisco Finesse JavaScript APIs
REST Base

{Error} If this object is not fully instantiated.

Returns

{finesse.restservices.RestBase} The RestBase object reference. Makes the isLoaded function available
to all the classes which are extending RestBase class. For example, in Dialogs, this.isloaded() can be called
Dialogs.js which is the child class of RestBase.

refresh(retries)

Updates the RestBase object with the latest data by performing an asynchronous GET. The updated object
will be returned through the onChange handler, so make sure it is registered.

Parameters

RequiredDescriptionTypeName

YesThe number of retry attempts to update the RestBase object.Integerretries

Returns

{Object} The end-call function that signifies the callback handler to not process the response of the
asynchronous request.

removeHandler(notifierType, callback)

Removes previously added handler for the specified notifierType.

Parameters

RequiredDescriptionTypeName

YesThe type of notifier to remove the load, change, add, delete,
and error.

StringnotifierType

YesThe callback to be removed.Functioncallback

REST Collection Base
Class finesse.restservices.RestCollectionBase

Extends finesse.restservices.RestBase Common Parameters

Represents the collection of finesse.restservices.RestBase objects. A collection is a group of similar
objects. For instance, Users is a collection that can hold multiple User objects.

This class is used by all other JavaScript objects. For more information, see RestCollectionBase Common
Parameters, on page 498.

Methods

getCollection()

Retrieves the RestBase collection.

Returns

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
504

Cisco Finesse JavaScript APIs
REST Collection Base

{Object} The collection as an object.

refresh()

Updates the RestBase object with the latest data by performing an asynchronous GET. The updated object
will be returned through the onChange handler, so make sure it is registered

Returns

{finesse.restservices.RestBaseCollection} The RestBaseCollection object reference.Makes the refresh
function available to all the classes which are extending RestCollectionBase class.

User
Class finesse.restservices.User

Extends finesse.restservices.RestBase Common Parameters

Represents an agent or supervisor and includes information about the user, such as roles, state, teams, dialogs,
and so on. The User object is the representation of the Finesse REST API User object.

When the User object is initialized (for example, var _user = new finesse.restservices.User()), a GET
REST API request is made to /finesse/api/User/<userid>, and its response is used to populate the User
object.

When a User change event is received, the User object's values are updated accordingly. For example, if the
agent state changes, the respective User object's getState()method reflects the change, and returns the latest
state of the agent when invoked.

Example

var _user = new finesse.restservices.User({
id: _id,
onLoad: _handleUserLoad,
onChange: _handleUserChange

});

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Methods

getActiveDeviceId()

Retrieves the current active device ID of the agent.

Example

var _user = new finesse.restservices.User({
id: _id,
onLoad: _handleUserLoad,
onChange: _handleUserChange

});
_user.getActiveDeviceId();

Returns

{String} The active device ID for that agent.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
505

Cisco Finesse JavaScript APIs
User

getDevices()

Retrieves the list of devices associated with a particular extension.

Example

var _user = new finesse.restservices.User({
id: _id,
onLoad: _handleUserLoad,
onChange: _handleUserChange

});
_user.getDevices();

Returns

{Object} The collection object of the devices that is associated with a particular extension. The contents of
a device include the following:

• deviceId—A unique ID of the device.

• deviceType—The device type as defined in the CiscoTerminal.getType() in JTAPI specifications.

• deviceTypeName—The display name of the device type as defined in the CiscoTerminal.getTypeName()
in JTAPI specifications.

For more information about JTAPI specifications, refer to Cisco Unified JTAPI Developers Guide.

getDialogs(handlers)

Retrieves the collection of voice dialogs associated with the current user. This includes the dialogs that the
user is currently active on, being alerted, along with the held dialogs. The terminated dialogs are not part of
the list.

The dialog list is retrieved by making a GET REST API request to the /finesse/api/User/<id>/Dialogs/
endpoint. The getDialogs are queried only once from the server that is, when the object is created.

Example

_dialogs = _user.getDialogs({
onCollectionAdd: handleNewDialog,
onCollectionDelete: handleEndDialog

});

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when
the callback scenario is triggered.

To find the list of callback scenarios, see RestCollectionBase
Common Parameters, on page 498.

Objecthandlers

Returns

{finesse.restservices.Dialogs} The Dialogs collection object.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
506

Cisco Finesse JavaScript APIs
User

https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-programming-reference-guides-list.html

getDialogsNoCache(handlers)

Retrieves the collection of dialogs (calls) associated with the current user. This includes the dialogs that the
user is currently active on, being alerted, along with the held dialogs. The terminated dialogs are not part of
the list. The difference between the getDialogsNoCache and getDialogsmethods is that the GET REST API
request is always made for this method.

Example

_user.getDialogsNoCache({
onLoad: handleDialogsLoadedCallDetails,
onCollectionAdd: handleDialogsAddedCallDetails,
onCollectionDelete: handleDialogsDeletedCallDetails,
onError: handleDialogsErrorCallDetails

});

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when the
callback scenario is triggered.

Objecthandlers

Returns

{finesse.restservices.Dialogs} The Dialogs collection object.

getExtension()

Retrieves the extension that is associated with the user.

Returns

{String} The extension of the user.

getFirstName()

Retrieves the first name of the user.

Returns

{String} The first name of the user.

getFullName()

Retrieves the full name of the user. The full name format is FirstName LastName (for example, John Doe).

Returns

{String} The full name of the user.

getLastName()

Retrieves the last name of the user.

Returns

{String} The last name of the user.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
507

Cisco Finesse JavaScript APIs
User

getMediaList(handlers)

Retrieves the media list that is associated with the user. It retrieves the media dialog collection object.

Example

var mediaList = _user.getMediaList({
onCollectionAdd: _handleMediaAdd,
onCollectionDelete: _handleMediaDelete,
onLoad: _handleMediaListLoaded

});

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when
the callback scenario is triggered.

To find the list of callback scenarios, see RestCollectionBase
Common Parameters, on page 498.

Objecthandlers

Returns

{finesse.restservices.MediaList} The MediaList collection object.

getMediaPropertiesLayout(handlers)

Retrieves the layout that is associated with the user. Teams are configured with custom layouts by the
administrator. Users are associated to custom call variable layouts (MediaPropertyLayout) due to their
association with a team.

Example

var _mediaPropertiesLayout = _user.getMediaPropertiesLayout({
onLoad: _handleMediaPropertiesLayoutLoaded,
onError: _handleMediaPropertiesLayoutError

});

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when
the callback scenario is triggered.

To find the list of callback scenarios, see RestBase Common
Parameters, on page 496.

Objecthandlers

Returns

{finesse.restservices.UserMediaPropertiesLayout} The UserMediaPropertiesLayout object.

getMediaPropertiesLayouts(handlers)

Retrieves the layouts that is associated with the user. Teams are configured with custom layouts by the
administrator. Users are associated to custom call variable layouts (MediaPropertyLayouts) due to their
association with a team.

Example

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
508

Cisco Finesse JavaScript APIs
User

var _mediaPropertiesLayouts = _user.getMediaPropertiesLayouts({
onLoad: _handleMediaPropertiesLayoutsLoaded,
onError: _handleMediaPropertiesLayoutsError

});

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when the
callback scenario is triggered.

To find the list of callback scenarios, see RestCollectionBase Common
Parameters, on page 498.

Objecthandlers

Returns

{finesse.restservices.UserMediaPropertiesLayout} The UserMediaPropertiesLayout object.

getMediaState()

Retrieves the media state of the user. This is applicable only in Unified CCX deployments.

Returns

{String} The current (or last fetched) media state of the user. When the agent is talking on a manual outbound
call, or when the agent in not signed-in, the getMediaState returns busy. In all other cases getMediaState
returns null.

getMobileAgentDialNumber()

Retrieves the mobile agent dial number.

Returns

{String} If available, returns the mobile agent dial number, otherwise null.

getMobileAgentMode()

Retrieves the mobile agent work mode. In Unified CCE, when an agent has logged in as a mobile agent (by
selecting Sign in as a Mobile Agent checkbox in the Cisco Finesse login page), then it returns mobile agent
mode. If an agent has not selected the checkbox, then it returns null.

Returns

{finesse.restservices.User.WorkMode} The WorkMode object. If available, then the mobile agent work
mode, otherwise null. For more information, see User.WorkMode, on page 521.

getNotReadyReasonCodeId()

Retrieves the user's Not Ready reasonCodeId.

Returns

{String} The reasonCodeId, or undefined if the ID is not set or indeterminate.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
509

Cisco Finesse JavaScript APIs
User

getNotReadyReasonCodes(handlers)

Retrieves all the customNot Ready reason codes configured globally and the team level reason codes applicable
to the user.

There is no return value. Use the success handler to process a valid return.Note

_user.getNotReadyReasonCodes({
success: handleNotReadyReasonCodesSuccess,
error: handleNotReadyReasonCodesError

});

Parameters

RequiredDescriptionTypeName

OptionalAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

getPendingStateReasonCode()

Retrieves the pending state reasonCode of the user.

Returns

{Object} The reasonCode for the pending state of the user. The contents include the following:

• uri—The URI for the reasonCode object.

• Id—The unique ID for the reasonCode.

• category—The category can either be NOT_READY or LOGOUT.

• code—The numeric reasonCode value.

• label—The label for the reasonCode.

• forAll—The boolean flag that denotes the global status for the reasonCode.

• systemCode—The boolean flagwhich denotes whether the reasonCode is system-generated or customized.

getPhoneBooks(handlers)

Retrieves the PhoneBooks collection object that is associated with the user.

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when
the callback scenario is triggered.

To find the list of callback scenarios, see RestCollectionBase
Common Parameters, on page 498.

Objecthandlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
510

Cisco Finesse JavaScript APIs
User

Returns

{finesse.restservices.PhoneBooks} The PhoneBooks collection object.

getQueues(handlers)

Retrieves the Queues collection object that is associated with the user.

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when the
callback scenario is triggered.

To find the list of callback scenarios, see RestCollectionBase Common
Parameters, on page 498.

Objecthandlers

Returns

{finesse.restservices.Queues} The Queues collection object.

getReasonCode()

Retrieves the reason code object corresponding to the user's current state.

Returns

{Object} The reasonCode for the pending state of the user. The contents include the following:

• uri—The URI for the reasonCode object.

• id—The unique ID for the reasonCode.

• category—The category and it can be either NOT_READY or LOGOUT.

• code—The numeric reasonCode value.

• label—The label for the reasonCode.

• forAll—Boolean flag that denotes the global status for the reasonCode.

• systemCode—Boolean flag which denotes whether the reasonCode is system-generated or customized.

getReasonCodeById(handlers, reasonCodeId)

Retrieves the reason code object that is associated with the reasonCodeId.

There is no return value. Use the success handler to process a valid return.Note

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
511

Cisco Finesse JavaScript APIs
User

RequiredDescriptionTypeName

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

YesUnique identifier for the reasonCode to lookup.StringreasonCodeId

getReasonCodeLabel()

Retrieves the user's reasonCode label for both Not Ready and Logout reasonCodes.

Returns

{String} The reasonCode label, or an empty string if none.

getServices()

Retrieves the list of services configured for the user.

The following service can be configured for the user.

Agent Answers:A real time presentation of suggestions for the agent to consider based on the live conversation
between the end customer and agent.

This is applicable only in Unified CCE deployments.

Example

var services = user.getServices();

Returns

{Object} The array list of services.

getSignoutReasonCodes(handlers)

Retrieves all the Signout reason codes that is associated with the user.

There is no return value. Use the success handler to process a valid return.Note

_user.getSignoutReasonCodes({
success: handleSignoutReasonCodesSuccess,
error: handleSignoutReasonCodesError

});

Parameters

RequiredDescriptionTypeName

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
512

Cisco Finesse JavaScript APIs
User

getSkillTargetId()

Retrieves the ID for the skill target assigned to the user in the Unified CCE database. It is supported from
Cisco Finesse, Release 12.5(1) ES2 onwards.

This is only supported for Unified CCE deployments.Note

Returns

{String} The ID for the skill target assigned to the user.

getState()

Retrieve the state of the user.

Returns

{String} The current (or last fetched) state of the user.

getStateChangeTime()

Retrieves the state change time (UTC) of the user.

Returns

{String} The state change time of the user in UTC.

getSupervisedTeams()

Retrieves the teams that are managed by the user (supervisor). Applicable for users that are supervisors.

Returns

{Array} The array of objects containing Id, name, and URI of the teams managed by the user (supervisor).

The object content includes the following:

• id—The unique ID for the team.

• name—The team name for the team.

• uri—The URI for the team.

getTeamId()

Retrieves the ID of the team that is associated with the user.

Returns

{String} The current (or last fetched) ID of the team that is associated with the user.

getTeamName()

Retrieves the name of the team that is associated with the user.

Returns

{String} The current (or last fetched) name of the team that is associated with the user.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
513

Cisco Finesse JavaScript APIs
User

getWrapUpOnIncoming()

Retrieves the wrap-up mode of the user. For more information, see User.WrapUpMode, on page 521.

Returns

{String} The wrap-up mode of the user.

getWrapUpOnOutgoing()

Retrieves the wrap-up mode of the user. For more information, see User.WrapUpMode, on page 521.

Returns

{String} The wrap-up mode of the user.

getWrapUpReasons(handlers)

Retrieves the WrapUpReasons collection object that is associated with the user.

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked when
the callback scenario is triggered.

To find the list of callback scenarios, see RestCollectionBase
Common Parameters, on page 498.

Objecthandlers

Returns

{finesse.restservices.WrapUpReasons} The WrapUpReasons collection object.

getWrapUpTimer()

Retrieves the maximum amount of time the user can be in Wrap Up state (in seconds).

Returns

{String} The WrapUp time configured for the user. For example, 3600 (1 hour).

hasAgentRole()

Checks whether the user is an agent.

Returns

{Boolean} True if the user has the role of an agent, else false.

hasSupervisorRole()

Checks whether the user is a supervisor.

Returns

{Boolean} True if the user has the role of the supervisor, else false.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
514

Cisco Finesse JavaScript APIs
User

isDeviceSelectionEnabled()

Retrieves whether the device selection is enabled for the user.

Example
/**
* Retrieves whether the device selection is enabled for the user.
* If device selection is enabled, the login request for the user should
* contain active device Id, if the extension chosen by the agent is
* shared between multiple devices.
* @see finesse.restservices.User.loginWithActiveDeviceId
* @returns {Boolean} True if the device selection is enabled and false
* if device selection is disabled.
*/
isDeviceSelectionEnabled: function() {

this.isLoaded();
if (this.getData().settings) {

return this.getData().settings.deviceSelection === 'enabled';
}
return false;

}

Returns {Boolean} True if the device selection is enabled and false if device selection is disabled.

isMobileAgent()

Checks whether the user is a mobile agent.

Returns

{Boolean} True if this agent is a mobile agent, else false.

isPendingStateChange()

Checks whether there is a pending state change. A pending state change is a request to change state that does
not result in an immediate state change. For example, if an agent in the TALKING state attempts to change
to the NOT_READY state, the state is not changed until the call ends. Pending state change occurs when the
agent is in the following states:

• TALKING

• HOLD

• RESERVED

• OUTBOUND

• PREVIEW

Returns

{Boolean} True if there is a pending state change.

isReasonCodeReserved()

Checks whether the reasonCode of the user is a system-generated reasonCode.

Returns

{Boolean} True if the reasonCode for the state of the user is a system-generated reasonCode.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
515

Cisco Finesse JavaScript APIs
User

isWrapUp()

Checks whether the user's current state is WORK or WORK_READY. This is used to ensure that a pending
state is not cleared when moving into wrap-up (work) mode. We do not add this as a pending state, as the
changes (while in wrap-up) occur immediately.

Returns

{Boolean} True if user is in wrap-up mode.

isWrapUpRequired()

Checks whether the user is required to go into wrap-up mode.

Returns

{Boolean} True if the user is required to go in to wrap-up mode.

login(extension, handlers)

Performs an agent login for the user and associates the agent with the specified extension.

Parameters

RequiredDescriptionTypeName

YesThe extension to associate with the user.Stringextension

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

Returns

{finesse.restservices.User} The User object.

loginMobileAgent(extension, mode, extension, handlers, reasonCode)

Performs an agent login for the user and associates the agent with the specified extension. This marks the
agent as a mobile agent and associates an external dial number.

Parameters

RequiredDescriptionTypeName

YesThe extension to associate with the user.Stringextension

YesThe mobile agent work mode as defined in
finesse.restservices.User.WorkMode.

For more information, see User.WorkMode, on page 521.

Stringmode

YesThe external dial number to be used by the mobile agent.Stringextension

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page 493.

Objecthandlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
516

Cisco Finesse JavaScript APIs
User

RequiredDescriptionTypeName

YesAn object containing the reasonCode for the login request.ObjectreasonCode

Returns

{finesse.restservices.User} The User object.

loginWithActiveDeviceId(extension, activeDeviceId, handlers)

Performs an agent login for a user and associates the agent with the specified extension and device.

Example

var _user = new finesse.restservices.User({
id: _id,
onLoad: _handleUserLoad,
onChange: _handleUserChange

});
_user.loginWithActiveDeviceId(extension, activeDeviceId, handlers);

var handlers = {
success: function() {

// handler for success response
},
error: function() {

//handler for error response
}

}

Parameters

RequiredDescriptionTypeName

YesThe extension to associate with the user.Stringextension

YesThe device ID to associate with the user.StringactiveDeviceId

YesAn object containing the handlers for the request. For more
information on handlers, see Request Handlers.

Objecthandlers

Returns

{finesse.restservices.User} The User object.

logout(reasonCode, handlers)

Performs an agent logout for the user.

Parameters

RequiredDescriptionTypeName

YesThe reason that the user is logging out.StringreasonCode

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
517

Cisco Finesse JavaScript APIs
User

https://developer.cisco.com/docs/finesse/#request-handlers/reference_E0287695CACA3AE147D5A1B9439C16B9

RequiredDescriptionTypeName

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

Returns

{finesse.restservices.User} The User object.

makeBargeCall(number, dialogUri, handlers)

Makes a silent monitor call to a particular agent's phone number. Barge in to call, which is silently monitored
by the supervisor.

Applicable for users that are supervisors. Barge in is performed on a call that is not being monitored by the
supervisor, and the error handler is invoked.

Note

Parameters

RequiredDescriptionTypeName

YesThe agent's extension of the call that is being barged into.Stringnumber

YesThe associated dialog URI of SUPERVISOR_MONITOR call.StringdialogUri

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page 493.

Objecthandlers

Returns

{finesse.restservices.User} The User object.

makeCall(number, handlers)

Makes a call to the specified phone number.

Parameters

RequiredDescriptionTypeName

YesThe phone number to call.Stringnumber

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page 493.

Objecthandlers

Returns

{finesse.restservices.User} The User object.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
518

Cisco Finesse JavaScript APIs
User

makeSMCall(number, handlers)

Makes a silent monitor call for the specified agent's extension.

Parameters

RequiredDescriptionTypeName

YesThe phone number to silent monitor.Stringnumber

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page 493.

Objecthandlers

Returns

{finesse.restservices.User} The User object.

setState(newState, reasonCode, handlers)

Sets the state of the user.

Parameters

RequiredDescriptionTypeName

YesThe state that you are setting for the user.StringnewState

YesThe reason that the user is logging out.ReasonCodereasonCode

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

Returns

{finesse.restservices.User} The User object.

updateToMobileAgent(mode, dialNumber, handlers)

Updates the user object with the agent's mobile login information.

Parameters

RequiredDescriptionTypeName

YesThe mobile agent work mode as defined in
finesse.restservices.User.WorkMode.

For more information, see User.WorkMode, on page 521.

Stringmode

YesThe phone number that is used by the mobile agent.StringdialNumber

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
519

Cisco Finesse JavaScript APIs
User

Returns

{finesse.restservices.User} The User object.

User.MediaStates
Class finesse.restservices.User.MediaStates

When the agent is talking on a manual outbound call, the media state returns BUSY. Otherwise, it returns
null.

Field Details

DescriptionName

The user is on a manual outbound call. This is applicable only for Unified CCX
deployments.

BUSY

User.States
Class finesse.restservices.User.States

Represents the possible user state values.

Field Details

DescriptionName

The user is on hold. In Unified CCX deployments, the user remains
in TALKING state while on hold.

HOLD

The user logs in.

This is an action, not a state since a logged-in user is
always in a specific state (READY, NOT_READY,
TALKING and so on).

Note

LOGIN

The user has logged out.LOGOUT

The user is not ready. In Unified CCX deployments, the user is in this
state while on a non-routed call.

NOT_READY

The user is ready for calls.READY

The user has a incoming call, but has not answered it.RESERVED

The user has an outbound call, but not connected to it.RESERVED_OUTBOUND

The user has an outbound call's preview information, but has not acted
on it.

RESERVED_OUTBOUND_PREVIEW

The user is on a call. In Unified CCX deployments, this is for routed
calls only.

TALKING

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
520

Cisco Finesse JavaScript APIs
User.MediaStates

DescriptionName

The user is in wrap-up or work mode. This mode is configured to time
out. After time out, the user's state changes to NOT_READY.

WORK

The user is in wrap-up or work mode. This mode is configured to time
out. After time out, the user's state changes to READY.

WORK_READY

User.WorkMode
Class finesse.restservices.User.WorkMode

WorkMode is only applicable for Unified CCE and mobile agents. When an agent has logged in as a mobile
agent (by selecting Sign in as a Mobile Agent checkbox in the Cisco Finesse login page), then the agent must
select the work mode from the drop-down list. The following are the work modes:

• Call by Call

• Nailed Collection

Field Details

DescriptionName

The mobile agent is connected (dialed) for each incoming call received, and
is disconnected when the call ends.

CALL_BY_CALL

The mobile agent is connected (dialed) at login and the call stays connected
through multiple customer calls.

NAILED_CONNECTION

User.WrapUpMode
Class finesse.restservices.User.WrapUpMode

Represents the possible wrap-up mode types in Unified CCE deployments.

Field Details

DescriptionName

The user is not allowed to go to wrap-up when call ends.NOT_ALLOWED

The user can choose to go to wrap-up on a call-by-call basis when
the call ends.

OPTIONAL

The user must go to wrap-up when call ends.REQUIRED

The user must go to wrap-up when call ends and must enter wrap-up
data.

REQUIRED_WITH_WRAP_UP_DATA

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
521

Cisco Finesse JavaScript APIs
User.WorkMode

UserMediaPropertiesLayout
Class finesse.restservices.UserMediaPropertiesLayout

Represents a media properties layout.

Example

_mediaPropertiesLayout = _user.getMediaPropertiesLayout({
onLoad: _handleMediaPropertiesLayoutLoaded,
onError: _handleMediaPropertiesLayoutError

});

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Method

getRestUrl()

Retrieves the URL for the UserMediaPropertiesLayout resource.

UserMediaPropertiesLayouts
Class finesse.restservices.UserMediaPropertiesLayouts

Represents a collection of media properties layouts.

Example

var _mediaPropertiesLayouts = _user.getMediaPropertiesLayouts({
onLoad: function(mediaPropertiesLayouts) {},
onError: function(error) {}

});

Parameters

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Users
Class finesse.restservices.Users

Extends finesse.restservices.RestCollectionBase

Represents a collection of User objects. When there is no method to retrieve all Users, then this collection is
used to return Users in a team.

Example

// Note: The following method gets an Array of Teams, not a Collection.
_teams = _user.getSupervisedTeams();
if (_teams.length > 0) {

_team0Users = _teams[0].getUsers();
}

Parameters

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
522

Cisco Finesse JavaScript APIs
UserMediaPropertiesLayout

Dialog
Class finesse.restservices.Dialog

Extends finesse.restservices.DialogBase

Represents a call such as a regular phone call, a conference, or a silent monitor session.

Example

var _dialogs = _user.getDialogs({
includeNonVoice: true

}
_dialogs.addHandler('load', function() {

dialog
}) dialogCollection = _dialogs.getCollection();
for (dialog in dialogCollection) {

if (dialogCollection.hasOwnProperty(dialog)) {
var _dialog = dialogCollection[dialog];
_dialog.addHandler(‘change’, function() {

// TODO: on change of dialog do some thing
}));

}
}

Methods

cancelCallback(mediaAddress, handlers)

Cancels a scheduled callback.

Parameters

RequiredDescriptionTypeName

YesThe media address of the user.StringmediaAddress

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

dropParticipant(targetMediaAddress, handlers)

Drops a participant from the call.

Parameters

RequiredDescriptionTypeName

YesThe media address of the participant to drop from the call.StringtargetMediaAddress

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers,
on page 493.

Objecthandlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
523

Cisco Finesse JavaScript APIs
Dialog

getCallbackInfo()

Retrieves information about the currently scheduled callback.

Returns

{Object} Undefined if no callback is set. If callback is set, then it returns a map with one or more entries
depending on the configured value. The callbackTime refers to the configured callback time and the
callbackNumber refers to the configured callback number.

getCallbackNumber()

Retrieves the callback number without the dialer prefix. This is required to schedule a callback if there is any
dialer prefix added for Direct Preview Outbound calls.

Returns

{String} The callback number without the dialer prefix.

getDroppableParticipants(filterExtension)

Retrieves the dropable participants, which are participants with an agent extension. A participant can represent
an internal user (such as, an agent) or an external user (such as, a customer). It is not a CTI Route Point, IVR
Port, or the caller.

Parameters

RequiredDescriptionTypeName

OptionalTo remove a single extension from the list.StringfilterExtension

Returns

{Array} The array of participants that can be dropped. Participant entity properties are as follows:

• state—The last participant state in a dialog.

• stateCause—The reason for the last participant state in a dialog. It is applicable to a FAILED participant
state. The possible values are BUSY, BAD_DESTINATION, and OTHER.

• mediaAddress—The media address of the participant.

• startTime—The start time of the participant.

• stateChangeTime—The time from when the participant state has changed.

• actions—The list of actions that a participant can perform.

getFromAddress()

Retrieves the from address, which is the calling line ID of the caller.

Returns

{String} The from address.

getParticipantTimerCounters(participantExt)

Retrieves the participant timer counters.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
524

Cisco Finesse JavaScript APIs
Dialog

Parameters

RequiredDescriptionTypeName

YesThe extension of the participant.StringparticipantExt

Returns

{Object} The array of participants which contains properties:

• state—The last participant state in a dialog.

• startTime—The start time of the participant.

• stateChangeTime—The time when the participant state has changed.

getSecondaryId()

Retrieves the secondaryId of a dialog. A consult call has two call legs (primary leg and a consult leg). When
the consult call is completed (either with a transfer or conference), the two call legs would merge. The dropped
call's Dialog Id can be found in the secondaryId field of the the surviving call's Dialog object. For Unified
CCE deployments, the secondaryId will be populated for direct transfers as well. This is supported from Cisco
Finesse, Release 11.6(1) ES1 onwards.

Returns

{String} The Id of the secondary dialog.

getServices()

Retrieves the list of services available for this dialog. Services are only available in Unified CCE deployments.

Example

var services = dialog.getServices();

Returns

{Object} The array list of services.

getToAddress()

Retrieves the to address, which is the destination for the call.

Returns

{String} The to address.

initiateDirectTransfer(mediaAddress, toAddress, handlers)

Initiates a single-step transfer request.

Parameters

RequiredDescriptionTypeName

YesThe extension of the user performing the single-step transfer.StringmediaAddress

YesThe destination address of the single-step transfer.StringtoAddress

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
525

Cisco Finesse JavaScript APIs
Dialog

RequiredDescriptionTypeName

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

isParticipantDroppable(participantExt)

Determines whether the supervisor can drop the provided extension from a call.

Parameter

RequiredDescriptionTypeName

YesThe extension of the participant.StringparticipantExt

Returns

{Boolean} True if the extension of the participant is droppable.

makeConsultCall(mediaAddress, toAddress, handlers)

Makes a consult call to a destination.

Parameters

RequiredDescriptionTypeName

YesThe extension of the user performing the consult call.StringmediaAddress

YesThe destination address of the consult call.StringtoAddress

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers,
on page 493.

Objecthandlers

reclassifyCall(mediaAddress, classification, handlers)

Reclassifies an Outbound Option Direct Preview call. A call can be reclassified as VOICE, FAX,
ANS_MACHINE, INVALID, DO_NOT_CALL, or BUSY. The call type is then sent back to Unified CCX
for processing.

Parameters

RequiredDescriptionTypeName

YesThe extension of the user performing the reclassification.StringmediaAddress

YesThe new classification to assign to the call. Valid values are
VOICE, FAX, ANS_MACHINE, INVALID, BUSY, and
DO_NOT_CALL.

Stringclassification

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
526

Cisco Finesse JavaScript APIs
Dialog

RequiredDescriptionTypeName

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

requestAction(mediaAddress, action, handlers)

Requests the provided action to be taken for the specified mediaAddress.

Example

dialog.requestAction(_user.getExtension(), 'CONSULT', {
error: onError,
success: onSuccess

});

Parameters

RequiredDescriptionTypeName

YesThe extension of the user which the action is performed on.StringmediaAddress

YesThe action that is invoked on the dialog. For more information,
see Dialog.Actions, on page 528.

Stringaction

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

sendDTMFRequest(mediaAddress, handlers, digit)

Sends the DTMF digit tones.

Parameters

RequiredDescriptionTypeName

YesThe extension of the user sending the DTMF digits.StringmediaAddress

YesThe DTMF digits to be sent.Stringdigit

YesAn object containing the handlers for the request.

For more information on handlers, see Request
Handlers, on page 493.

Objecthandlers

updateCallbackNumber(mediaAddress, callbackNumber, handlers)

Updates the number for a callback.

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
527

Cisco Finesse JavaScript APIs
Dialog

RequiredDescriptionTypeName

YesThe extension of the user updating the callback number.StringmediaAddress

YesThe new number for the callback.StringcallbackNumber

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers,
on page 493.

Objecthandlers

updateCallbackTime(mediaAddress, callbackTime, handlers)

Updates the time for a callback.

Parameters

RequiredDescriptionTypeName

YesThe extension of the user updating the callback time.StringmediaAddress

YesThe new time for the callback. Format:
YYYY-MM-DDTHH:MM

For example, 2013-12-24T23:59

StringcallbackTime

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

updateWrapUpReason(wrapUpReason, handlers)

Updates the wrap-up reason for the dialog.

Parameters

RequiredDescriptionTypeName

YesThe new wrap-up reason for the dialog.StringwrapUpReason

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

Dialog.Actions
Class finesse.restservices.Dialog.Actions

The list of actions that can be taken on a dialog.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
528

Cisco Finesse JavaScript APIs
Dialog.Actions

Field Details

DescriptionName

The user accepts a dialog that is being previewed.ACCEPT

The user answers a dialog.ANSWER

The user barges into a dialog.BARGE_CALL

The user cancels a scheduled callback.CANCEL_SCHEDULED_CALLBACK

The user closes a dialog.CLOSE

The user initiates a conference of a dialog.CONFERENCE

The user initiates a consult call.CONSULT_CALL

The user drops from the dialog.DROP

The user sends DTMF digits to a dialog.DTMF

The user puts the dialog on hold.HOLD

The user makes a new dialog.MAKE_CALL

The supervisor drops a participant from the dialog.PARTICIPANT_DROP

The user changes the classification for the dialog.RECLASSIFY

The user rejects a dialog.REJECT

The user retrieves a dialog that is on Hold.RETRIEVE

The user initiates a recording on a dialog.START_RECORDING

The user initiates a transfer of a dialog.TRANSFER

The user initiates a single-step transfer of a dialog.TRANSFER_SST

The user updates data on a dialog.UPDATE_CALL_DATA

The user updates the time or number for a scheduled callback.UPDATE_SCHEDULED_CALLBACK

Dialog.ParticipantStates
Class finesse.restservices.Dialog.ParticipantStates

The list of participant states for voice dialogs.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
529

Cisco Finesse JavaScript APIs
Dialog.ParticipantStates

Field Details

DescriptionName

The participant has accepted the dialog. This state is applicable to
OUTBOUND_PREVIEW dialogs.

ACCEPTED

The participant is active on the dialog.ACTIVE

An incoming dialog is ringing on the device.ALERTING

The participant has dropped from the dialog.DROPPED

The dialog failed (BUSY).FAILED

The participant has held the connection to the dialog.HELD

The phone is dialing at the device.INITIATED

An outgoing dialog, not yet active, exists on the device.INITIATING

The participant is not in an active state on the dialog. The participant has
dropped from the dialog and is wrapping up.

WRAP_UP

Dialog.ReasonStates
Class finesse.restservices.Dialog.ReasonStates

The list of reason codes for a FAILED dialog participant state. This code can be found in the stateCause field
when the participant's state is FAILED. In all other cases, the stateCause is empty.

Field Details

DescriptionName

The dialog reached a bad destination. For example, making a call
to a non-existence extension.

BAD_DESTINATION

The dialog is busy. The dialog failed due to a reason other than
the ones listed in this table.

BUSY

The device resource for the dialog was not available.DEVICE_RESOURCE_NOT_AVAILABLE

All the other reasons. The dialog failed due to a reason other than
the ones listed in this table.

OTHER

Dialog.States
Class finesse.restservices.Dialog.States

The list of states for a dialog.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
530

Cisco Finesse JavaScript APIs
Dialog.ReasonStates

Field Details

DescriptionName

The user has accepted an OUTBOUND_PREVIEW dialog.ACCEPTED

The dialog has at least one active participant.ACTIVE

The call is ringing at a device.ALERTING

The dialog has no active participants.DROPPED

The dialog has failed.FAILED

The phone is dialing at the device.INITIATED

The phone is off the hook at a device.INITIATING

DialogBase
Class finesse.restservices.DialogBase

Extends finesse.restservices.RestBase Common Parameters

DialogBase is extended into individual JavaScript objects (such as Dialog and MediaDialog) and cannot be
used directly. DialogBase defines common utilities that are used by both Dialog and MediaDialog objects.

A dialog is a connection between multiple participants. For example, a regular phone call, a chat, or an email.

Example

var _dialogs = _user.getDialogs({
includeNonVoice: true

}
_dialogs.addHandler('load', function() {

dialog
})._dialogs.getCollection();
for (dialog in dialogCollection) {

if (dialogCollection.hasOwnProperty(dialog)) {
var _dialog = dialogCollection[dialog];
_dialog.addHandler(‘change’, function() {

// TODO: on change of dialog do some thing
}));

}
}

Methods

getCallType()

Retrieves the call type.

This method is deprecated. Use getMediaProperties().callType.Note

Returns

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
531

Cisco Finesse JavaScript APIs
DialogBase

{String} The call type.

updateCallVariables(callvariablesList, options)

Updates the dialog's call variables. This function does not validate the call variables. The client must take
care of validating the call variables before using this function.

Parameters

RequiredDescriptionTypeName

YesThe call variables are from 1 to 10. For example, callVariable1:
value1, callVariable2: value2, and so on.

ObjectcallvariablesList

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objectoptions

Example

var callVariablePayload = {
"callVariable1": "value1",
"callVariable2": "value2"

};
dialog.updateCallVariables(callVariablePayLoad, {

error: function() {
console.log("Error on updating call variable");

}
});

var callVariablePayload = {
"callVariable1": "value1",
"callVariable2": "value2",
"user.eccVariable1": "value3"

};
dialog.updateCallVariables(callVariablePayLoad, {

error: function() {
console.log("Error on updating call variable");

}
});

getMediaProperties()

Retrieves a list of media properties from the dialog object.

Returns

{Object} The call variables and the names are mapped to values. Variables include the following:

• dialedNumber—The number dialed.

• callType—The type of call. Call types include:

• ACD_IN

• PREROUTE_ACD_IN

• PREROUTE_DIRECT_AGENT

• TRANSFER

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
532

Cisco Finesse JavaScript APIs
DialogBase

• OTHER_IN

• OUT

• AGENT_INSIDE

• CONSULT

• CONFERENCE

• SUPERVISOR_MONITOR

• OUTBOUND

• OUTBOUND_PREVIEW

• DNIS—The DNIS provided. For routed calls, this is the route point.

• wrapUpReason—Description of the call.

• queueNumber—The Id of the agent Skill Group queue.

• queueName—Name of the agent Skill Group the that the call is attributed to.

• callKeyCallId—Unique number of the call routed on a particular day.

• callKeyPrefix—The day when the call is routed.

• callKeySequenceNum—The sequence number of the call.

• Variables by name—The name indicates whether it is a call variable or an ECC variable. Call variable
names to start with callVariable#, where # refers to 1–10. ECC variable names (both scalar and array)
are prepended with the user. ECC variable arrays include an index that is enclosed within square brackets
that are located at the end of the ECC array name.

• The following call variables provide additional details about an Outbound Option call:

• BACampaign

• BAAccountNumber

• BAResponse

• BAStatus

• PREDICTIVE_OUTBOUND—A predictive outbound call.

• PROGRESSIVE_OUTBOUND—A progressive outbound call.

• PREVIEW_OUTBOUND_RESERVATION—The agent is reserved for a preview outbound
call.

• PREVIEW_OUTBOUND—The agent is on a preview outbound call.

• BADialedListID

• BATimeZone

• BABuddyName

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
533

Cisco Finesse JavaScript APIs
DialogBase

getMediaType()

Retrieves the media type.

Returns

{String} The media type.

getParticipants()

Retrieves a list of participants from the dialog object.

{Array} The array list of participants. The participant entity properties are as follows:

• state—The last participant state in a dialog.

• stateCause—The state cause of the participant.

• mediaAddress—The media address of the participant.

• startTime—The start time of the participant.

• stateChangeTime—The time when the participant state has changed.

• actions—These are the actions that a participant can perform.

getState()

Retrieves the dialog state.

Returns

{String} The dialog state.

For additional parameters and methods, see RestBase Common Parameters, on page 496.

DialogLogoutActions
Class finesse.restservices.DialogLogoutActions

Represents the logout actions for media tasks (non-voice dialogs). The actions are performed on the dialog
when the user logs out.

Field Details

DescriptionName

The user sets the action to close active dialogs when logged out.CLOSE

The user sets the action to transfer active dialogs when logged out.TRANSFER

Method

isValidAction(action)

Determines whether the logout action is valid.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
534

Cisco Finesse JavaScript APIs
DialogLogoutActions

Parameters

RequiredDescriptionTypeName

YesThe action to evaluate.Stringaction

Returns

{Boolean} True if the action is valid and false if it is not valid.

Dialogs
Class finesse.restservices.Dialogs

Extends finesse.restservices.RestCollectionBase

Represents a collection of dialog objects.

Example

_dialogs = _user.getDialogs({
onCollectionAdd: _handleDialogAdd,
onCollectionDelete: _handleDialogDelete,
onLoad: _handleDialogsLoaded

});

_dialogCollection = _dialogs.getCollection();
for (var dialogId in _dialogCollection) {

if (_dialogCollection.hasOwnProperty(dialogId)) {
_dialog = _dialogCollection[dialogId];
etc...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Field Details

DescriptionName

Unique identifier of the request reaper timeout.REQUESTID_REAPER_TIMEOUT

Method

getDialogCount(excludeSilentMonitor)

Retrieves the number of dialogs in the collection. The excludeSilentMonitor parameter is provided as an
option to exclude dialogs with the call type of SUPERVISOR_MONITOR from the count.

Parameters

RequiredDescriptionTypeName

YesDetermines whether the dialogs with the call type
of SUPERVISOR_MONITOR is to be excluded
from the count.

BooleanexcludeSilentMonitor

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
535

Cisco Finesse JavaScript APIs
Dialogs

Returns

{Number} The number of dialogs in the collection.

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Queue
Class finesse.restservices.Queue

Extends finesse.restservices.RestBase Common Parameters

Represents a queue (or skill group in Unified CCE) and contains the URI, name, and statistics for that queue.
Queue statistics include the number of calls in queue, the start time of the longest call in the queue, and the
number of agents in each state.

This class is only applicable to Unified CCE.Note

Methods

getId()

Retrieves the queue Id.

Returns

{String} The Id of the Queue.

getName()

Retrieves the queue name.

Returns

{String} The name of the queue.

getStatistics()

Retrieves the queue statistics. The following are the supported statistics:

• agentsBusyOther

• agentsLoggedOn

• agentsNotReady

• agentsReady

• agentsTalkingInbound

• agentsTalkingInternal

• agentsTalkingOutbound

• agentsWrapUpNotReady

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
536

Cisco Finesse JavaScript APIs
Queue

• agentsWrapUpReady

• callsInQueue

• startTimeOfLongestCallInQueue

Individual statistics can be accessed through dot notation. For example, getStatistics().callsInQueue.

Returns

{Object} The object with different statistics as properties.

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Queues
Class finesse.restservices.Queues

Extends finesse.restservices.RestCollectionBase

Represents a collection of Queue objects. For more information, see Queue, on page 153.

External subscriptions to the Queues for queue stats notifications will have a performance impact. This is not
qualified for third-party gadget subscriptions.

Note

Example

_queues = _user.getQueues({
onCollectionAdd: _handleQueueAdd,
onCollectionDelete: _handleQueueDelete,
onLoad: _handleQueuesLoaded

});

_queueCollection = _queues.getCollection();
for (var queueId in _queueCollection) {

if (_queueCollection.hasOwnProperty(queueId)) {
_queue = _queueCollection[queueId];
etc...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Team
Class finesse.restservices.Team

Extends finesse.restservices.RestBase Common Parameters

Represents a team and contains the URI, team name, and the users associated with the team. The Team object
does not contain a full user object for each of the team's users, but a summary object that contains the User
URI, loginId, firstName, lastName, ReasonCode, and extension parameters.

Example

var _team = new finesse.restservices.Team({
id: id,
onLoad: _onTeamLoad,

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
537

Cisco Finesse JavaScript APIs
Queues

onChange: _onTeamChange,
onError: _onTeamError

})

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Methods

getId()

Retrieves the team Id.

Returns

{String} The Id of the team.

getName()

Retrieves the team name.

Returns

{String} The name of the team.

getUsers(options)

Retrieves a collection of the users in the team.

Parameters

RequiredDescriptionTypeName

YesOptions for the Users collection object.

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Objectoptions

Returns

{Object} The collection of User object representing the users in the team.

For additional parameters and methods, see RestBase Common Parameters, on page 496.

TeamNotReadyReasonCode
Class finesse.restservices.TeamNotReadyReasonCode

Represents a Not Ready reason code that is configured for the team.

Example

new_team.getTeamNotReadyReasonCode({
id: id,
onLoad: _onTeamLoad,
onChange: _onTeamChange,
onError: _onTeamError

})

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
538

Cisco Finesse JavaScript APIs
TeamNotReadyReasonCode

Methods

getCategory()

Retrieves the category of the reason code.

Returns

{String} The category of the reason code.

getCode()

Retrieves the code associated with the reason code.

Returns

{String} The code for the reason code.

getForAll()

Retrieves the forAll property value.

Returns

{String} The forAll property value.

getLabel()

Retrieves the label associated with the reason code.

Returns

{String} The label associated with the reason code.

getSystemCode()

Retrieves the system code value. The system code is the reserved status of the reason code. This is supported
from Cisco Finesse, Release 11.6(1) ES1 onwards.

Returns

{String} The value for systemCode.

getUri()

Retrieves the URI value.

Returns

{String} The URI value.

TeamNotReadyReasonCodes
Class finesse.restservices.TeamNotReadyReasonCodes

Extends finesse.restservices.RestCollectionBase

Represents the list of Not Ready reason codes configured for the team as a collection of
TeamNotReadyReasonCode objects.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
539

Cisco Finesse JavaScript APIs
TeamNotReadyReasonCodes

Example

new_team.getTeamNotReadyReasonCodes({
id: id,
onLoad: _onTeamLoad,
onChange: _onTeamChange,
onError: _onTeamError

})

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

TeamSignOutReasonCodes
Class finesse.restservices.TeamSignOutReasonCodes

Represents a collection of TeamSignOutReasonCode objects and also exposes methods to operate on the
object against the server.

Example

new_team.getTeamSignOutReasonCodes({
id: id,
onLoad: _onTeamLoad,
onChange: _onTeamChange,
onError: _onTeamError
})

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Methods

get()

Retrieves the sign out reason codes.

Returns

{finesse.restservices.TeamSignOutReasonCodes} The TeamSignOutReasonCodes object.

getRestUrl()

Retrieves the URL for the SignOutReasonCodes resource.

update(newValues, handlers)

Updates the sign out reason codes with new values.

Parameters

RequiredDescriptionTypeName

YesThe new values to be set which is triggered after user signs
out such as, reasoncode name, label or code, global status.

ObjectnewValues

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers,
on page 493.

Objecthandlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
540

Cisco Finesse JavaScript APIs
TeamSignOutReasonCodes

Returns

{finesse.restservices.TeamSignOutReasonCodes} The TeamSignOutReasonCodes object.

Media
Class finesse.restservices.Media

Extends finesse.restservices.RestCollectionBase

Represents a non-voice media channel such as, chat or email. This object can be used to perform various
actions in the media channel such as, logging into, or logging out of the media channel, setting the state of
the user for the media channel (Ready, Not Ready), setting the maximum allowed number of dialogs for this
media, and so on.

Example

_mediaCollection = mediaList.getCollection();
if (_mediaCollection.hasOwnProperty(_emailMediaId)) {

media = _mediaCollection[_emailMediaId];
media.login({

maxDialogLimit: 5,
interruptAction: 'ACCEPT',
dialogLogoutAction: 'CLOSE',
handlers: _handlers

});
...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Methods

getDialogLogoutAction()

Retrieves the action that is taken when the agent logs out with dialogs that are associated with the media.

Returns

{String} The action taken when dialog logs out. The actions are:

• CLOSE—The dialog is closed.

• TRANSFER—The dialog is transferred to another agent.

getId()

Retrieves the Id.

Returns

{String} The Id.

getInterruptAction()

Retrieves the action that is taken when the media is interrupted.

Returns

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
541

Cisco Finesse JavaScript APIs
Media

{String} The action taken when media is interrupted. The actions are:

• ACCEPT—The interrupt is accepted and the agent is not allowed to work on tasks in the media.

• IGNORE—The interrupt is ignored and the agent is allowed to work on tasks in the media.

getInterruptible()

Retrieves whether the media is interruptible.

Returns

{Boolean} True if interruptible and false if it is not interruptible.

getMaxDialogLimit()

Retrieves the maximum number of dialogs that are allowed in the media.

Returns

{String} The maximum number of dialogs in the media.

getMediaDialogs(handlers)

Retrieves the MediaDialogs collection object that is associated with the user in the media.

Example

First call:
_mediaDialogs = _media.getMediaDialogs({

onLoad: _handleMediaDialogsLoad,
onChange: _handleTeamChange,
onAdd: _handleMediaDialogAdd,
onDelete: _handleMediaDialogDelete,
onError: _errorHandler

});
Subsequent calls on the same object, after the media dialogs are loaded:

...
_mediaDialogsNew = _media.getMediaDialogs();

_dialogsCollection = _mediaDialogsNew.getCollection();
...

Parameters

RequiredDescriptionTypeName

OptionalAn object containing callback functions which are invoked
when the callback scenario is triggered.

To find the list of callback scenarios, see RestCollectionBase
Common Parameters, on page 498.

Objecthandlers

Returns

{finesse.restservices.MediaDialogs} The MediaDialogs object.

getMediaId()

Retrieves the media Id

Returns

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
542

Cisco Finesse JavaScript APIs
Media

{String} The media Id.

getName()

Retrieves the media name.

Returns

{String} The media name.

getReasonCodeId()

Retrieves the reason code Id.

Returns

{String} The reason code Id.

getReasonCodeLabel()

Retrieves the reason code label.

Returns

{String} The reason code label.

getRoutable()

Retrieves whether the user is routable in the media.

Returns

{Boolean} True if routable, and false if the value is not routable.

getState()

Retrieves the state of the user in the media.

Returns

{String} The current (or last fetched) state of the user in the media.

isInterruptible()

Retrieves whether the user is interruptible in the media.

Returns

{Boolean} True if the user is interruptible, and false if the user is not interruptible.

isInWorkState()

Retrieves whether the user is in work state in the media.

Returns

{boolean} True if the media is in work state, and false if it is not in the work state.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
543

Cisco Finesse JavaScript APIs
Media

isLoggedIn()

Retrieves whether the user is in any state except LOGOUT in the media.

Returns

{boolean} True if the agent is in any state except LOGOUT in the media.

isRoutable()

Retrieves if the user is routable in the media.

Returns

{Boolean} True if the user is routable, and false if the user is not routable.

login(params)

Logs the agent into the media.

Parameters

RequiredDescriptionTypeName

YesAn media object with options.Objectparams

YesThe maximum number of dialogs that are allowed in
the media.

For more information, see getMaxDialogLimit(), on
page 542.

String-->maxDialogLimit

YesThe action that is taken when the media is interrupted.
The actions are:

• ACCEPT

• IGNORE

Formore information, see getInterruptAction(), on page
541.

String-->interruptAction

YesThe action taken with the dialogs that are associated
with the media when the agent logs out. The actions
are:

• CLOSE

• TRANSFER

For more information, see getDialogLogoutAction(),
on page 541.

String-->dialogLogoutAction

YesAn object containing the handlers for the request.

For more information on handlers, see Request
Handlers, on page 493.

Object-->handlers

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
544

Cisco Finesse JavaScript APIs
Media

If maxDialogLimit, interruptAction, and dialogLogoutAction are not present, then the loginOptions specified
in the call to finesse.restservices.MediaList.getMedia is used.

Note

Returns

{finesse.restservices.Media} The media object.

logout(reasonCode, params)

Logs out the agent from the media.

Parameters

RequiredDescriptionTypeName

YesThe reasonCode for the user to log out of the media. Pass
null as the first parameter if no reason code is associated
with the log out event.

StringreasonCode

YesAn media object.Objectparams

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers,
on page 493.

Object-->handlers

Returns

{finesse.restservices.Media} The media object.

refresh(retries)

Refreshes the media object and optionally refreshes the list of media dialogs that are associated with the object.

Parameters

RequiredDescriptionTypeName

YesThe number of attempts to retry synchronizing the media
object.

Integerretries

refreshMediaDialogs()

Refreshes the dialog collection that is associated with the media. The refresh happens only if the media dialogs
are initialized.

setMediaOptions(mediaOptions)

Sets the maxDialogLimit, interruptAction, and dialogLogoutAction settings that the application uses for the
media. During a failure, these options are set in the new Cisco Finesse server.

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
545

Cisco Finesse JavaScript APIs
Media

RequiredDescriptionTypeName

YesAn media object with options.ObjectmediaOptions

YesThe maximum number of dialogs that are allowed
in the media.

For more information, see #unique_430 unique_
430_Connect_42_d15e137.

String-->maxDialogLimit

YesThe action that is taken when the media is
interrupted. The actions are:

• ACCEPT

• IGNORE

For more information, see #unique_430 unique_
430_Connect_42_d15e89.

String-->interruptAction

YesThe action taken with the dialogs that are associated
with the media when the agent logs out. The actions
are:

• CLOSE

• TRANSFER

For more information, see #unique_430 unique_
430_Connect_42_d15e43.

String-->dialogLogoutAction

setRoutable(options)

Sets the routable status in the media.

Parameters

RequiredDescriptionTypeName

YesAn media object with options.Objectoptions

YesDetermines whether the agent is routable or not.String-->routable

YesAn object containing the handlers for the request.

For more information on handlers, see Request
Handlers, on page 493.

Object-->handlers

Returns

{finesse.restservices.Media} The media object.

setState(newState, reasonCode, params)

Sets the state of the user in the media.

Example

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
546

Cisco Finesse JavaScript APIs
Media

_media.setState(finesse.restservices.Media.States.NOT_READY, {
id: _reasonCodeId

}, {
handlers: {

success: _handleStateChangeSuccess,
error: _handleStateChangeError

}
});

Parameters

RequiredDescriptionTypeName

YesThe new state of the user in the media.StringnewState

YesThe reasonCode for the user to log out of the
media. Pass null as the first parameter if no reason
code is associated with the log out event.

StringreasonCode

YesAn media object with options.Objectparams

YesThemaximum number of dialogs that are allowed
in the media.

For more information, see #unique_430 unique_
430_Connect_42_d15e137.

String-->maxDialogLimit

YesThe action that is taken when the media is
interrupted. The actions are:

• ACCEPT

• IGNORE

For more information, see #unique_430 unique_
430_Connect_42_d15e89.

String-->interruptAction

YesThe action taken with the dialogs that are
associated with the media when the agent logs
out. The actions are:

• CLOSE

• TRANSFER

For more information, see #unique_430 unique_
430_Connect_42_d15e43.

String-->dialogLogoutAction

YesAn object containing the handlers for the request.

For more information on handlers, see Request
Handlers, on page 493.

Object-->handlers

Returns

{finesse.restservices.Media} The media object.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
547

Cisco Finesse JavaScript APIs
Media

Media.States
Class finesse.restservices.Media.States

Contains the various states that a non-voice media can be set to. This can be used for setting state in
finesse.restservices.Media.setState, or comparing the state which is got from finesse.restservices.Media.getState.

Field Details

DescriptionField

The dialog has been interrupted by a dialog from another Media Routing
Domain (MRD).

INTERRUPTED

The logged-in user on a non-voice media.

This is an action and not a state. A logged-in user is always in a
specific state (READY or NOT_READY).

Note

LOGIN

The user is logged out from the media.LOGOUT

The user is not ready in the media.NOT_READY

The user is ready for activity in the media.READY

The user has a dialog coming in, but has not accepted it.RESERVED

The user enters this state when failing over from one Cisco Finesse to the other
or when failing over from one PG side to the other.

WORK

MediaDialog
Class finesse.restservices.MediaDialog

Extends finesse.restservices.DialogBase

Represents a non-voice media dialog and also exposes the methods to perform actions on the media dialog.
For example, accepting, starting, pausing, resuming, transferring, closing, and so on.

Example

_MediaDialogs = _media.getMediaDialogs({
onCollectionAdd: _handleDialogAdd,
onCollectionDelete: _handleDialogDelete,
onLoad: _handleMediaDialogsLoaded

});
_dialogCollection = _MediaDialogs.getCollection();
for (var mediadialogId in _dialogCollection) {

if (_dialogCollection.hasOwnProperty(dialogId)) {
_mediadialog = _dialogCollection[mediadialogId];
etc...

}
}

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
548

Cisco Finesse JavaScript APIs
Media.States

Methods

setTaskState(action, handlers, target)

Sets the state on a media dialog based on the action given.

Example

_mediaDialog.setTaskState(finesse.restservices.MediaDialog.TaskActions.ACCEPT, {
success: _handleAcceptSuccess,
error: _handleAcceptError

},
null)

Parameters

RequiredDescriptionTypeName

YesThe action is invoked when the media dialog is set.Stringaction

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

YesThe script selector or dialed number to which the dialog is being
transferred. Pass the target as null if the task is not related to
transfer.

Stringtarget

transfer(target, handlers)

Transfers a media dialog to the specified target.

RequiredDescriptionTypeName

YesThe script selector or dialed number to which the dialog is being
transferred.

Stringtarget

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

MediaDialog.States
Class finesse.restservices.MediaDialog.States

Contains the various states in a non-voice media dialog. This can be used to compare the state of the non-voice
media dialog, got from the method finesse.restservices.MediaDialog.getState.

Field Details

DescriptionField

The user accepted the offered dialog.ACCEPTED

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
549

Cisco Finesse JavaScript APIs
MediaDialog.States

DescriptionField

The dialog has at least one active participant and the user has started working on
the accepted dialog.

ACTIVE

The dialog is ended.CLOSED

The dialog is interrupted by a dialog from another MRD.INTERRUPTED

The dialog is offered to a user.OFFERED

The user has paused an active dialog.PAUSED

The Cisco Finesse server or PG has recovered a dialog after a failure. It does not
have enough information to build a complete set of actions for the task; so it only
allows the user to end the task.

UNKNOWN

The user is wrapping up for a dialog.WRAPPING_UP

MediaDialog.TaskActions
Class finesse.restservices.MediaDialog.TaskActions

Contains the various task actions that can be performed on a non-voice media dialog. This is used for setting
task state in finesse.restservices.MediaDialog.setTaskState.

Field Details

DescriptionField

The user accepts an incoming task.ACCEPT

The user ends a task.CLOSE

The user pauses work on an active task.PAUSE

The user resumes work on a paused task.RESUME

The user starts work on an accepted task.START

The user transfers an accepted, active, or paused task to another script selector
or dialed number (target).

TRANSFER

The user wraps up work for a task.WRAP_UP

MediaDialogs
Class finesse.restservices.MediaDialogs

Extends finesse.restservices.Dialogs

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
550

Cisco Finesse JavaScript APIs
MediaDialog.TaskActions

Represents the list of non-voice media dialogs in a media channel. Fetches the list from the corresponding
media, finesse.restservices.Media.getMediaDialogs. Extracts the Individual media dialogs from the media list
using their Id.

Example

_MediaDialogs = _media.getMediaDialogs({
onCollectionAdd: _handleDialogAdd,
onCollectionDelete: _handleDialogDelete,
onLoad: _handleMediaDialogsLoaded

});

_dialogCollection = _MediaDialogs.getCollection();
for (var dialogId in _dialogCollection) {

if (_dialogCollection.hasOwnProperty(dialogId)) {
_dialog = _dialogCollection[dialogId];
etc...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Method

getMedia()

Retrieves the associated media object.

Returns

{finesse.restservices.Media} The Media object.

MediaList
Class finesse.restservices.MediaList

Extends finesse.restservices.RestCollectionBase

Represents the list of non-voice media such as chat and email for an agent. The media list available for an
agent can be procured from the finesse.restservices.User object, which corresponds to the agent. Individual
media channels can be extracted from the media list using their Id.

Example

mediaList = _user.getMediaList({
onCollectionAdd: _handleMediaAdd,
onCollectionDelete: _handleMediaDelete,
onLoad: _handleMediaListLoaded

});

_mediaCollection = mediaList.getCollection();
for (var mediaId in _mediaCollection) {

if (_mediaCollection.hasOwnProperty(mediaId)) {
media = _mediaCollection[mediaId];
etc...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
551

Cisco Finesse JavaScript APIs
MediaList

Method

getMedia(options)

Retrieves a specific media with the Id passed from the MediaList collection.

Example

var media = mediaList.getMedia({
id: mediaId,
onLoad: _onloadCallback,
onChange: _onChangeCallback,
onAdd: _onAddCallback,
onDelete: _onDeleteCallback,
onError: _onErrorCallback,
mediaOptions: {

maxDialogLimit: _dialogLimit,
}

});

Parameters

RequiredDescriptionTypeName

YesOptions for the media object.

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Objectoptions

Returns

{finesse.restservices.Media} The Media object.

MediaOptionsHelper
Class finesse.restservices.MediaOptionsHelper

Synchronizes media login options after recovering from a connection or system failure. This class ensures
that when the Cisco Finesse server application fails over, it has the same maxDialogLimit, interruptAction,
and dialogLogoutAction as the previous Cisco Finesse server.

Example

_optionsHelper = new MediaOptionsHelper(_media, _mediaOptions);

Method

init(media, mediaOptions)

Initializes a helper class that is used to recover media objects following a connectivity failure or component
failure. These failures may be related to either Cisco Finesse or Cisco Unified CCE services or both. Initializes
the failover helper to manage the recovery of the given media object.

Parameters

RequiredDescriptionTypeName

YesThe media object to recover.Objectmedia

YesThe options for the media object.ObjectmediaOptions

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
552

Cisco Finesse JavaScript APIs
MediaOptionsHelper

RequiredDescriptionTypeName

YesThe maximum number of dialogs that are
allowed in the media.

Formore information, see #unique_437 unique_
437_Connect_42_d15e137.

String-->maxDialogLimit

YesThe action that is taken when the media is
interrupted. The actions are:

• ACCEPT

• IGNORE

Formore information, see #unique_437 unique_
437_Connect_42_d15e89.

String-->interruptAction

YesThe action taken with the dialogs that are
associated with the media when the agent logs
out. The actions are:

• CLOSE

• TRANSFER

Formore information, see #unique_437 unique_
437_Connect_42_d15e43.

String-->dialogLogoutAction

MediaOptionsHelper.States
Class finesse.restservices.MediaOptionsHelper.States

Contains the various MediaOptionsHelper state values.

Field Details

DescriptionName

The media is synchronized with the Cisco Finesse server and the
options are monitored for changes.

MONITORING_OPTIONS

The media login request is sent to Cisco Finesse to set the correct
media options.

SETTING_OPTIONS

MediaPropertiesLayout
Class finesse.restservices.MediaPropertiesLayout

Extends finesse.restservices.RestBase Common Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
553

Cisco Finesse JavaScript APIs
MediaOptionsHelper.States

Represents the appearance of media properties in the call control gadget on the agent or supervisor desktop.
Media properties are carried in Dialog objects. Administrators can create and customize multiple layouts for
media properties.

Example

_mediaPropLayout = new finesse.restservices.MediaPropertiesLayouts({
"onLoad": _onLoadHandler,
"onError": _onErrorHandler,
"onChange": _onChangeHandler
});

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Methods

get()

Retrieves the media properties layout. This call re-queries the server and refreshes the layout object.

Returns

{finesse.restservices.MediaPropertiesLayout} The MediaPropertiesLayout object.

getData()

Retrieves the data for the object. Performs safe conversion from raw API data to ensure the returned layout.
The object has a header with correct entry fields and exactly two columns with lists of entries.

Returns

{finesse.restservices.MediaPropertiesLayout.Object} The data in columns (unless only one defined).

getDescription()

Retrieves the description.

Returns

{String} The description.

getName()

Retrieves the name.

Returns

{String} The name.

getType()

Retrieves the layout type DEFAULT or CUSTOM.

Returns

{String} The layout type DEFAULT or CUSTOM.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
554

Cisco Finesse JavaScript APIs
MediaPropertiesLayout

Script Selectors

Class finesse.restservices.ScriptSelector

Class finesse.restservices.RestBase. For more information, see REST Base, on page 502.

Represents a script selector for a specificMRD type. TheMRD type can be either voice or digitalChannels.

Methods

getMRDID()

Returns a unique media routing domain (MRD) ID.

getName()

Returns the name of the media channel configured in Unified CCE.

getDialedNumber()

Returns the dialed number also called as script selector, that is submitted with Task Routing task request
through Customer Collaboration Platform.

getDescription()

Returns the additional information about the dialed number.

Class finesse.restservices.ScriptSelectors

Extends finesse.restservices.RestCollectionBase. For more information, see RestCollectionBase Common
Parameters, on page 498.

Represents the collection of script selectors for a specific MRD type or all the MRD types. The MRD types
can be voice, digitalChannels, and all. When no parameter is specified, all option is considered.

Example:

var _scriptSelectorsVoice = new finesse.restservices.ScriptSelectors({ 'mrdType' :
'voice'}).getScriptSelectors();
var _scriptSelectorsDigitalChannels = new finesse.restservices.ScriptSelectors({ 'mrdType'
: 'digitalchannels'}).getScriptSelectors();
var _scriptSelectorsAll = new finesse.restservices.ScriptSelectors().getScriptSelectors();
var _scriptSelectorsAll2 = new finesse.restservices.ScriptSelectors({ 'mrdType' :
'all'}).getScriptSelectors();

for(var i = 0; i < _scriptSelectorsVoice.length; ++i) {
var _mrdID = _scriptSelectorsVoice[i].getMRDID();
var _name = _scriptSelectorsVoice[i].getName();
var _dialedNumber = _scriptSelectorsVoice[i].getDialedNumber();
var _description = _scriptSelectorsVoice[i].getDescription();
...

}

For additional parameters and methods, see RestBase Common Parameters, on page 496.

ChatConfig
Class finesse.restservices.ChatConfig

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
555

Cisco Finesse JavaScript APIs
Script Selectors

Represents the ChatConfig object and exposes methods to operate on the object against the server. The
ChatConfig object is a container element that holds the Cisco Finesse chat configuration and URLs of the
primary and secondary chat servers.

Example

_chatcfg = new finesse.restservices.ChatConfig({
"onLoad": _onLoadHandler,
"onError": _onErrorHandler,
"onChange": _onChangeHandler
});

Field Details

DescriptionName

Determines whether the object supports subscriptions. For more
information, see Subscription Support, on page 500.

supportsSubscriptions

Methods

get()

Retrieves the ChatConfig settings.

Returns

{finesse.restservices.ChatConfig} The ChatConfig object.

getPrimaryNode()

Retrieves the primary node of the chat server.

Returns

{String} The primary node of the chat server.

getRestClass()

Retrieves the REST class for the ChatConfig object.

getRestType()

Retrieves the REST type for the ChatConfig object.

getRestUrl()

Retrieves the URL for the ChatConfig resource.

Returns

{String} The URL for the ChatConfig resource.

getSecondaryNode()

Retrieves the secondary node (if any) of the chat server.

Returns

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
556

Cisco Finesse JavaScript APIs
ChatConfig

{String} The secondary node of the chat server.

update(chatSettings, handlers)

Updates the chat configuration settings.

Parameters

RequiredDescriptionTypeName

YesThe chat server settings which you want to configure.ObjectchatSettings

OptionalAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on
page 493.

Objecthandlers

Returns

{finesse.restservices.ChatConfig} The ChatConfig object.

ECCVariableConfig
Class finesse.restservices.ECCVariableConfig

Represents the ECCVariableConfig object and also exposes methods to operate on the object against the
server.

Example

_eccvariableconfig = new finesse.restservices.ECCVariableConfig({
onLoad: _onLoadECCVariableConfig
})

Field Details

DescriptionName

Determines whether the object supports subscriptions. For more
information, see Subscription Support, on page 500.

supportsSubscriptions

Methods

get()

Retrieves the ECCVariableConfig settings.

Returns

{finesse.restservices.ECCVariableConfig} The ECCVariableConfig object.

getRestClass()

Retrieves the REST class for the current object and this is the ECCVariableConfig object.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
557

Cisco Finesse JavaScript APIs
ECCVariableConfig

getRestType()

Retrieves the REST type for the current object and this is ECCVariableConfig.

getRestUrl()

Retrieves the URL for the ECCVariableConfig resource.

Returns

{String} The URL for the ECCVariableConfig resource.

Contact
Class finesse.restservices.Contact

Extends finesse.restservices.RestBase Common Parameters

Represents the collection of Contact objects. A Contact is a single entry in a phone book, consisting of a first
name, last name, phone number, and description.

Example

_contacts = _phonebook.getContacts({
onCollectionAdd: _handleContactAdd,
onCollectionDelete: _handleContactDelete,
onLoad: _handleContactsLoaded

});
_contactCollection = _contacts.getCollection();
for (var contactId in _contactCollection) {

if (_contactCollection.hasOwnProperty(contactId)) {
_contact = _contactCollection[contactId];
etc...

}
}

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Methods

getDescription()

Retrieves the description for a contact.

Returns

{String} The description for a contact.

getFirstName()

Retrieves the first name of a contact.

Returns

{String} The first name of a contact.

getLastName()

Retrieves the last name of a contact.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
558

Cisco Finesse JavaScript APIs
Contact

Returns

{String} The last name of a contact.

getPhoneNumber()

Retrieves the phone number.

Returns

{String} The phone number.

Contacts
Class finesse.restservices.Contacts

Extends finesse.restservices.RestCollectionBase

Represents the Contacts collection object and also exposes methods to operate on the object against the server.

Example

_contacts = _phonebook.getContacts({
onCollectionAdd: _handleContactAdd,
onCollectionDelete: _handleContactDelete,
onLoad: _handleContactsLoaded

});

_contactCollection = _contacts.getCollection();
for (var contactId in _contactCollection) {

if (_contactCollection.hasOwnProperty(contactId)) {
_contact = _contactCollection[contactId];
etc...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

InterruptActions
Class finesse.restservices.InterruptActions

InterruptActions are used during non-voice media login. These consist of the actions to be taken when the
dialog has been interrupted by a dialog from anotherMedia Routing Domain (MRD). Dialogs can be interrupted
if they are in the ACTIVE, PAUSED, or WRAPPING UP states. While a dialog is interrupted, all actions for
that dialog are disabled. The following are the action values.

• ACCEPT

• IGNORE

Field Details

DescriptionField

The interrupt is accepted and the agent is not allowed to work on dialogs.ACCEPT

The interrupt is ignored and the agent is allowed to work on dialogs.IGNORE

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
559

Cisco Finesse JavaScript APIs
Contacts

Method

isValidAction(action)

Determines whether the action is valid dialog logout.

Parameters

RequiredDescriptionTypeName

YesAction to evaluate the dialog.Stringaction

Returns

{Boolean} True if the action is valid; otherwise it returns false.

PhoneBook
Class finesse.restservices.PhoneBook

Extends finesse.restservices.RestBase Common Parameters

PhoneBook is a list of contacts available to a user for a quick dial. PhoneBooks are assigned globally (to all
agents) or to specific teams.

Example

_phoneBooks = _user.getPhoneBooks({
onCollectionAdd: _handlePhoneBookAdd,
onCollectionDelete: _handlePhoneBookDelete,
onLoad: _handlePhoneBooksLoaded
});
_phoneBookCollection = _phoneBooks.getCollection();
for (var phoneBookId in _phoneBookCollection) {
if (_phoneBookCollection.hasOwnProperty(phoneBookId)) {
_phoneBook = _phoneBookCollection[phoneBookId];
etc...
}
}

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Methods

getContacts(handlers)

Retrieves the collection of contact objects that is part of the PhoneBook.

Parameters

RequiredDescriptionTypeName

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers,
on page 493.

Objecthandlers

Returns

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
560

Cisco Finesse JavaScript APIs
PhoneBook

{finesse.restservices.Contacts} The Contacts object.

getEmbeddedContacts()

Retrieves either a URI or collection of contacts.

Returns

{String} The URI or finesse.restservices.Contacts object.

getName()

Retrieves the name of the PhoneBook.

Returns

{String} The name of the PhoneBook.

getType()

Retrieves the PhoneBook type. The following are the two types of PhoneBooks.

• GLOBAL—By default, available to all agents. Cisco Finesse supports a maximum of 10 global
PhoneBooks.

• TEAM—The administrator assigns the PhoneBooks to a specific team. Cisco Finesse supports a maximum
of 300 team PhoneBooks.

Returns

{String} The PhoneBook type.

PhoneBooks
Class finesse.restservices.PhoneBooks

Extends finesse.restservices.RestCollectionBase

Represents the phone book collection object.

Example

_phoneBooks = _user.getPhoneBooks({
onCollectionAdd: _handlePhoneBookAdd,
onCollectionDelete: _handlePhoneBookDelete,
onLoad: _handlePhoneBooksLoaded

});

_phoneBookCollection = _phoneBooks.getCollection();
for (var phoneBookId in _phoneBookCollection) {

if (_phoneBookCollection.hasOwnProperty(phoneBookId)) {
_phoneBook = _phoneBookCollection[phoneBookId];
etc...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
561

Cisco Finesse JavaScript APIs
PhoneBooks

ReasonCodeLookup
Class finesse.restservices.ReasonCodeLookup

Extends finesse.restservices.RestBase Common Parameters

Retrieves the ReasonCode using the reason code value and category provided by the user.

Method

lookupReasonCode(handlers, reasonCodeValue, reasonCodeCategory)

Performs a GET operation against the Cisco Finesse server, for looking up the reason code with its reason
code value, and category.

Example

new finesse.restservices.ReasonCodeLookup().lookupReasonCode({
success: _handleReasonCodeGet,
error: _handleReasonCodeGetError

}, '32762', 'NOT_READY');
_handleReasonCodeGet(_reasonCode) {

var id = _reasonCode.id;
var uri = _reasonCode.uri;
var label = _reasonCode.label;
...

}

Parameters

RequiredDescriptionTypeName

YesAn object containing the handlers for the request.

For more information on handlers, see Request Handlers, on page
493.

Objecthandlers

YesThe lookup code for the reasonCode value.StringreasonCodeValue

YesThe lookup category for the reasonCode. The possible values
are NOT_READY and LOGOUT.

StringreasonCodeCategory

ReasonCodes
Class finesse.restservices.ReasonCodes

Represents an array of reasonCode objects. An object of this class is passed as a parameter for a success
callback after fetching the reasonCodes available for the user using
finesse.restservices.User.getNotReadyReasonCodes or finesse.restservices.User.getSignOutReasonCodes.

Example

_user.getNotReadyReasonCodes({
success: handleNotReadyReasonCodesSuccess,
error: handleNotReadyReasonCodesError

});

handleNotReadyReasonCodesSuccess = function(reasonCodes) {
for (var i = 0; i < reasonCodes.length; i++) {

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
562

Cisco Finesse JavaScript APIs
ReasonCodeLookup

var reasonCode = reasonCodes[i];
var reasonCodeId = reasonCode.id;
var reasonCodeLabel = reasonCode.label;

}
}
}

For more information on handlers, see Request Handlers, on page 493.

SystemInfo
Class finesse.restservices.SystemInfo

Extends finesse.restservices.RestBase Common Parameters

Represents the SystemInfo object. For more information, see SystemInfo, on page 563.

Example

var systeminfo = new finesse.restservices.SystemInfo('',{

onLoad: handleSystemInfoOnLoad,
onChange: handleSystemInfoOnChange

});

systeminfo.getCtiMMode();

Methods

getAlternateHost()

Retrieves the FQDN of the alternate Finesse host and this is used for failover purposes.

Returns

{String} The FQDN (if properly configured) of the alternate node, defaults to primary if no match is found,
and undefined for the single-node deployments. For example, if the desktop is connected to the primary Finesse
node, this method will return FQDN of the secondary Finesse node, and vice-versa.

getCtiMMode()

Retrieves the status of the CTI server in maintenance mode.

This is only supported for Unified CCE deployments with CTI protocol version 24 and above.Note

Example

systeminfo.getCtiMMode();

Returns

{Boolean} True if the CTI server is in maintenance mode, else false.

getCtiTimeInMMode()

Retrieves the total time (in seconds) that the CTI server has been in maintenance mode.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
563

Cisco Finesse JavaScript APIs
SystemInfo

The time will be negative if the CTI server to which Finesse is connected is not in maintenance mode.

This is only supported for Unified CCE deployments with CTI protocol version 24 and above.Note

Example

systeminfo.getCtiTimeInMMode();

Returns

{Number} The total time (in seconds) that the CTI server is in maintenance mode.

getCtiServers()

Retrieves the list of CTI servers that Cisco Finesse is connected to.

Example

systeminfo.getCtiServers();

Returns

{Obejct} The list of CTI servers that Cisco Finesse is connected to with the following details:

• hostname—The hostname of the CTI server.

• connectedDuration—The total time (in seconds) that the Cisco Finesse is connected to this particular
CTI server.

• active—True if the Cisco Finesse is connected to the active CTI server, else false.

• Indicates whether the Cisco Finesse is connected to the active or stand-by
CTI server, for Unified CCE deployments with CTI protocol version 24 and
above.

• Indicates the CTI server on which the Cisco Finesse is connected, for Unified
CCX and Unified CCE deployments with CTI protocol version prior to 24.

Note

getCtiVersion()

Retrieves the CTI version for the current deployment.

Example

systeminfo.getCtiVersion();

Returns

{String} The CTI version used in the Cisco Finesse to connect the CTI server.

getCurrentTimestamp()

Retrieves the current timestamp from the SystemInfo object. This is used to calculate the time drift between
the server and the client.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
564

Cisco Finesse JavaScript APIs
SystemInfo

Example

systeminfo.getCurrentTimestamp();

Returns

{String} The time (GMT) in the format: yyyy-MM-dd'T'HH:mm:ss'Z'

getDeploymentType()

Retrieves the deployment type Unified CCE or Unified CCX.

Example

systeminfo.getDeploymentType();

Returns

{String} The deployment type, which is either Unified CCE or Unified CCX.

getFinesseMMode()

Retrieves the status of the maintenance mode for the particular Cisco Finesse server.

Example

systeminfo.getFinesseMMode();

Returns

{Boolean} True if the Cisco Finesse server is in maintenance mode, else false.

getFinesseTimeInMMode()

Retrieves the total time (in seconds) that the Cisco Finesse server is in maintenance mode.

The time will be negative if the Cisco Finesse server is not in Finesse maintenance mode.

Example

systeminfo.getFinesseTimeInMMode();

Returns

{Number} The total time (in seconds) that the Cisco Finesse server is in maintenance mode.

getHeartbeatInterval()

Retrieves the ctiHeartbeatInterval for the current deployment. This represents the interval of heartbeats between
the Cisco Finesse server and CTI server (in seconds) that helps in failover time calculation.

Returns

{String} The ctiHeartbeatInterval between the Cisco Finesse server and the CTI server.

getLastCTIHeartbeatStatus()

Retrieves the lastCTIHeartbeatStatus. The lastCTIHeartbeatStatus provides the success or failure of the last
heartbeat sent to the CTI server. This can be used to determine whether the Cisco Finesse side is healthy or
not. If three consecutive heartbeats fail, the CTI server gets disconnected.

• success—The last CTI heartbeat was successful.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
565

Cisco Finesse JavaScript APIs
SystemInfo

• failure—The last CTI heartbeat was unsuccessful.

Returns

{finesse.restservices.SystemInfo.lastCTIHeartbeatStatus} The last Heartbeat status (success or
failure) to CTI.

getlicense()

Retrieves the license and is applicable only to Unified CCX deployment.

Returns

{String} The Unified CCX deployment license details. Otherwise, an empty string.

getPeripheralId()

Retrieves the peripheral Id that Cisco Finesse is connected to. The peripheral Id refers to the Id of the PG
Routing Client (PIM).

Returns

{String} The Id of the Unified CCE peripheral to which Cisco Finesse is connected. For Unified CCX, it
returns an empty string.

getStatus()

Retrieves the status of the Cisco Finesse server. The possible values are:

• IN_SERVICE

• OUT_OF_SERVICE

Returns

{finesse.restservices.SystemInfo.Statuses} The system status.

getStatusReason()

Retrieves the reason for Cisco Finesse being OUT_OF_SERVICE.

Returns

{String} Returns the status reason if the Cisco Finesse is OUT_OF_SERVICE. Otherwise, an empty string
when Cisco Finesse status is IN_SERVICE.

getSystemAuthMode()

Retrieves the system authenticationmode for the current deployment. The possible values are SSO or non-SSO.

Returns

{String} The system authentication mode for the current deployment.

getXmppDomain()

Retrieves the XMPP domain of the system. The XMPP servers such as Openfire require to identify the domain
that they serve. Hence, configure the XMPP domain which is the JID value.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
566

Cisco Finesse JavaScript APIs
SystemInfo

Returns

{String} The XMPP domain.

getXmppPubSubDomain()

Retrieves the XMPP PubSub domain of the system. For third-party applications to identify the domain of the
server PubSubDomain is required.

Returns

{String} The XMPP PubSub domain.

isSingleNode()

Confirms whether the deployment is a single-node deployment by checking for the existence of the secondary
node in the SystemInfo.

Returns

{Boolean} True for single-node deployments, else false.

SystemInfo.Statuses
Class finesse.restservices.SystemInfo.Statuses

Represents the system information status values. The possible values are IN_SERVICE and
OUT_OF_SERVICE.

Field Details

DescriptionField

The system is in service and usual operations are accepted.IN_SERVICE

The system is out of service, and usual operations result in a 503
Service Unavailable response.

OUT_OF_SERVICE

WrapUpReason
Class finesse.restservices.WrapUpReason

Extends finesse.restservices.RestBase Common Parameters

Represents the reasons that agents can apply to calls. The administrator configures the WrapUp reasons to be
available globally to all agents or only to specific teams. Finesse supports WrapUp functionality for incoming
calls, outgoing calls, and outbound option dialer calls (Finesse does not support outbound option direct preview
mode).

WrapUp reasons are set on a per-call basis. If you apply a WrapUp reason for a call, the same is reflected on
the desktops of all other participants (agents) of the call. Finesse desktop users can enter a WrapUp reason
during a call or while you are inWrapUp state after the call ends (this includes usual call termination, transfer,
and conference drop scenarios).

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
567

Cisco Finesse JavaScript APIs
SystemInfo.Statuses

TheWrapUp reason is a code and the description identifies a particular reason that a user is inWORK (WrapUp)
mode.

Example

_wrapUpReasons = _user.getWrapUpReasons({
onCollectionAdd: _handleWrapUpReasonAdd,
onCollectionDelete: _handleWrapUpReasonDelete,
onLoad: _handleWrapUpReasonsLoaded

});
_wrapUpReasonCollection = _wrapUpReasons.getCollection();
for (var wrapUpReasonId in _wrapUpReasonCollection) {

if (_wrapUpReasonCollection.hasOwnProperty(wrapUpReasonId)) {
_wrapUpReason = _wrapUpReasonCollection[wrapUpReasonId];
etc...

}
}

For additional parameters and methods, see RestBase Common Parameters, on page 496.

Method

getLabel()

Retrieves the WrapUp reason label.

Returns

{String} The WrapUp reason label.

WrapUpReasons
Class finesse.restservices.WrapUpReasons

Extends finesse.restservices.RestCollectionBase

Represents the collection of WrapUpReasons objects.

Example

_wrapUpReasons = _user.getWrapUpReasons({
onCollectionAdd: _handleWrapUpReasonAdd,
onCollectionDelete: _handleWrapUpReasonDelete,
onLoad: _handleWrapUpReasonsLoaded

});

_wrapUpReasonCollection = _wrapUpReasons.getCollection();
for (var wrapUpReasonId in _wrapUpReasonCollection) {

if (_wrapUpReasonCollection.hasOwnProperty(wrapUpReasonId)) {
_wrapUpReason = _wrapUpReasonCollection[wrapUpReasonId];
etc...

}
}

For additional parameters and methods, see RestCollectionBase Common Parameters, on page 498.

ShortcutKey Service
Allows gadgets or components to create shortcut keys for any component or gadget-related actions.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
568

Cisco Finesse JavaScript APIs
WrapUpReasons

Example

finesse.shortcutkey.ShortcutKeyService.registerShortcutKey(arr);

Methods

getShorcutKeys()

Retrieves all the registered shortcut keys.

Example

finesse.shortcutkey.ShortcutKeyService.getShortcutKeys();

Returns

{Array} The array of objects. The objects content includes the following:

• {String} accessKey—The key combination for the shortcut.

• {String} actionName—The name of the action or operation performed by the assigned shortcut keys.

• {String} componentName—The name of the functionality, component, or the gadget.

• {Boolean} conflict—Determines whether the shortcut key is conflicting with another shortcut key.

• {Enum} executionScope—Determines the execution scope.

• {Function} handler—The function that is invoked when the shortcut keys are pressed.

• {String} id—Unique identifier of the gadget.

• {Boolean} isPageLevel—Determines whether the shortcut key is at the page level.

• {String} key—The main key to be combined with modifier keys.

• {String}modifierKeys—Themodifier key is used commonly in keyboard shortcuts on the host platform.

• {String} type—Determines whether the shortcut key runs on component or gadget.

init()

Initiates the ShortcutKeyService for the Container or the gadgets.

Example

finesse.shortcutkey.ShortcutKeyService.init();

registerShortcutKey(keys)

Registers the shortcut keys for the components or the gadgets. A key combination consists of a main key and
a set of modifier keys. The main key is specified by its key character - key. A modifier key is Shift, Ctrl,
Alt, or the combination.

Parameters

RequiredDescriptionTypeName

YesThe array of key objects.Arraykeys

Example

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
569

Cisco Finesse JavaScript APIs
ShortcutKey Service

finesse.shortcutkey.ShortcutKeyService.init();
finesse.shortcutkey.ShortcutKeyService.registerShortcutKey(

[{
"id": "cisco_sample_gadget",
"componentName": "Sample gadget",
"actionName": "Sample gadget action name",

"modifierKeys": finesse.shortcutkey.ShortcutKeyService.CONSTANTS.MODIFIER_KEYS_CTRL,

"key": "e",
"executionScope": "activeTab",
"handler": function() {}

}]);

The following table lists the shortcut key registration payload details.

RequiredDescriptionTypeName

OptionalUnique identifier of the gadget.

Format: companyName_gadgetId_functionId

Stringid

YesThe name of the functionality, component, or the gadget.StringcomponentName

YesThe name of the action or operation performed by the assigned
shortcut keys.

StringactionName

OptionalThe modifier key is used commonly in keyboard shortcuts on
the host platform. The keyboard modifier key combinations
are:

• Ctrl + Shift (default)

• Alt + Shift

• Ctrl + Alt

• Ctrl

• Shift

• Alt

These are predefined in ShortcutKeyService.CONSTANTS.
For more information on predefined modifier keys, see
ShortcutKeyService.CONSTANTS, on page 571.

StringmodifierKeys

YesThe main key to be combined with modifier keys.

For example, Ctrl + Shift + e where Ctrl and Shift are the
modifiers keys, and e is the main key.

Stringkey

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
570

Cisco Finesse JavaScript APIs
ShortcutKey Service

RequiredDescriptionTypeName

YesDetermines the execution scope.

• activeTab: If the gadget is in currently active tab, only
then the shortcut keys of that gadget are run.

• activeFrame: If the gadget is in focus, only then the
shortcut keys of that gadget are run.

For more information on CONSTANTS, see
ShortcutKeyService.CONSTANTS, on page 571.

EnumexecutionScope

YesThe function that is invokedwhen the shortcut keys are pressed.Functionhandler

ShortcutKeyService.CONSTANTS

The following table lists the predefined modifier keys.

Modifier KeyShortcut Key

finesse.shortcutkey.ShortcutKeyService.CONSTANTS.MODIFIER_KEYS.CTRL_SHIFTCtrl + Shift

finesse.shortcutkey.ShortcutKeyService.CONSTANTS.MODIFIER_KEYS.ALT_SHIFTAlt + Shift

finesse.shortcutkey.ShortcutKeyService.CONSTANTS.MODIFIER_KEYS.CTRL_ALTCtrl + Alt

finesse.shortcutkey.ShortcutKeyService.CONSTANTS.MODIFIER_KEYS.CTRLCtrl

finesse.shortcutkey.ShortcutKeyService.CONSTANTS.MODIFIER_KEYS.SHIFTShift

finesse.shortcutkey.ShortcutKeyService.CONSTANTS.MODIFIER_KEYS.ALTAlt

• When shortcut keys are used, the callback that is registered by the gadget is run. The gadgets or
components perform a specific action on callback.

• Components or gadgets register the shortcut keys on a successful sign in to Finesse desktop.

• After deploying the third-party gadgets, sign in as an agent and as a supervisor to check if there are any
shortcut key conflicts. Resolve them if any.

Note

sendKeyupEvent(keyEvent)

Sends the Keyup event object to the Finesse container. If there is any custom iFrame created by the gadget
that is not controlled by Finesse, then the Finesse shortcut key framework cannot capture the KeyupEvent
from that custom iFrame to run the shortcut keys.

The Keyup event occurs when a keyboard key is released. The Keyup event object is captured inside the child
iFrame and propagated to its immediate parent. The parent again has to propagate the event until the event
reaches the Finesse container. When the immediate parent is the Finesse container, then use sendKeyupEvent
to propagate the event to Finesse container. Param object has to be serializable and cannot contain any functions.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
571

Cisco Finesse JavaScript APIs
ShortcutKey Service

Example

var keyEvent = {
ctrlKey: event.ctrlKey,
altKey: event.altKey,
shiftKey: event.shiftKey,
keyCode: event.keyCode,
key: event.key

};

sendKeyupEvent(keyEvent);

Parameters

RequiredDescriptionTypeName

YesThe key event sent to the Finesse container.ObjectkeyEvent

Shortcut Keys List

The following table lists out-of-the-box agent-specific shortcut keys which should not be used by third-party
applications. If the same shortcut keys are used it results in conflict.

Table 12: Agent Shortcut Keys List (Windows)

Shortcut KeyActionGroup

Ctrl + Alt + RReady for CallAgent State

Ctrl + Alt + NNot Ready for Call

Ctrl + Shift + LOpen Digital Channel State Control

Ctrl + Shift + VReady for All Digital Channels

Ctrl + Shift + ZNot Ready for All Digital Channels

Ctrl + Alt + PSwitch between PopoverApplication

Ctrl + Shift + 0Maximize/Restore view

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
572

Cisco Finesse JavaScript APIs
ShortcutKey Service

Shortcut KeyActionGroup

Ctrl + Alt + OMake New CallCall Handling

Ctrl + Alt + QDirect Transfer Call

Ctrl + Alt + KOpen Keypad (DTMF)

Ctrl + Alt + COpen Consult

Ctrl + Alt + WWrap-Up Call

Ctrl + Alt + YReclassify Call

Ctrl + Alt + SSchedule Callback

Ctrl + Alt + AAnswer/Accept Call

Ctrl + Alt + JClose - RemoveRecord fromCampaign

Ctrl + Alt + UReject - Return Record to
Campaign/Close this Callback

Ctrl + Alt + EEnd Call

Ctrl + Alt + VHold Call

Ctrl + Alt + GRetrieve Call

Ctrl + Alt + XTransfer Call

Ctrl + Alt + HConference Call

Ctrl + Shift + 1Toggle, Minimize and Maximize Chat
Window

Desktop Chat

Ctrl + Shift + 3Open Desktop Chat

Ctrl + Alt + MSave Edited Call Variable ValuesEdit Call Variable

Ctrl + Alt + ZRevert Edited Call Variable Values

Ctrl + Alt + FKeyboard Shortcuts ListKeyboard Shortcuts

Ctrl + Alt + 1HomeNavigation

Ctrl + Alt + 2My History

Ctrl + Alt + 3My Statistics

Ctrl + Alt + 4Manage Customer

Ctrl + Shift + 2Send Error ReportSend Error Report

Ctrl + Alt + LSign OutSign Out

Ctrl + Shift + 4Ready for EmailAgent State (for Unified
CCE) Ctrl + Shift + 5Ready for Chat

Ctrl + Shift + 6Not Ready for Email

Ctrl + Shift + 7Not Ready for Chat

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
573

Cisco Finesse JavaScript APIs
ShortcutKey Service

Table 13: Supervisor Shortcut Keys List (Windows)

Shortcut KeyActionGroup

Ctrl + Alt + BBarge in CallCall Handling

Ctrl + Alt + DDrop Participant

Ctrl + Shift + YOpen Team Message WindowTeam Message

Ctrl + Shift + FSelect TeamTeam Performance

Utilities
Class finesse.utilities.Utilities

Collection of utility methods to deal with various text-related activities.

Methods

b64Decode(input)

Decodes a Base64 encoded string.

The output is assumed to be UTF-8, and only the first 8 bits of each output element is significant.Note

Example

finesse.utilities.Utilities.b64Decode(_base64String)

Parameters

RequiredDescriptionTypeName

YesThe string to decode to Base64.Stringinput

Returns

{String} The decoded string.

b64Encode(input)

Encodes a string to Base64.

The input is assumed to be UTF-8, and only the first 8 bits of each output element is significant.Note

Example

finesse.utilities.Utilities.b64Encode(a + ':' + b)

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
574

Cisco Finesse JavaScript APIs
Utilities

RequiredDescriptionTypeName

YesThe string to encode to Base64.Stringinput

Returns

{String} The encoded string.

buildTimeString(timeInMs)

Builds a string that specifies the time in minutes and seconds.

Example

finesse.utilities.Utilities.buildTimeString(70000)

Parameters

RequiredDescriptionTypeName

YesThe time in milliseconds.IntegertimeInMs

Returns

{String} The time in MINUTES:SECONDS. For example, 11:23.

buildTimeStringWithOptionalHours(timeInMs)

Builds a string that specifies the time in minutes, seconds, and optionally hours.

Example

finesse.utilities.Utilities.buildTimeStringWithOptionalHours(11170000)

Parameters

RequiredDescriptionTypeName

YesThe time in milliseconds.IntegertimeInMs

Returns

{String} The time in HOURS:MINUTES:SECONDS or MINUTES:SECONDS. For example, 01:11:23 or
11:23.

buildTotalTimeString(adjustedServerTimeInMs, callStartTimeInMs)

Builds a string that specifies the total call time in minutes and seconds.

Example

finesse.utilities.Utilities.buildTotalTimeString(3600000, 900000)

Parameters

RequiredDescriptionTypeName

YesThe expected server time in milliseconds accounting for
time difference between the client and server.

IntegeradjustedServerTimeInMs

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
575

Cisco Finesse JavaScript APIs
Utilities

RequiredDescriptionTypeName

YesThe time in milliseconds when the call starts.IntegercallStartTimeInMs

Returns

{String} The elapsed time in MINUTES:SECONDS.

convertDateToISODateString(aDate)

Converts the date object to an ISO date string.

Example

finesse.utilities.Utilities.convertDateToISODateString(new Date())

Parameters

RequiredDescriptionTypeName

YesThe date to be converted to an ISO date format.DateaDate

Returns

{String} The date in ISO format.

Certain browsers do not support the date constructor which considers ISO-8601 date format. For example,
Internet Explorer 8.

Note

convertNullToEmptyString(str)

Checks whether the string is null.

Example

finesse.utilities.Utilities.convertNullToEmptyString(null)

Parameters

RequiredDescriptionTypeName

YesThe string object to be checked.Stringstr

Returns

{String} The empty string if it is null or the string itself.

convertToServerTimeMillis(clientTime)

Converts the client time to the server time by adjusting time difference between server and client.

Example

convertToServerTimeMillis(new Date().getTime());

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
576

Cisco Finesse JavaScript APIs
Utilities

RequiredDescriptionTypeName

YesThe client time in milliseconds.IntegerclientTime

Returns

{Integer} The server time in milliseconds.

convertTsToDuration(timestamp, now)

Converts the timestamp string of the format YYYY-MM-DDTHH:MM:SSZ into a duration of HH:MM:SS
format.

Example

finesse.utilities.Utilities.convertTsToDuration(a)

Parameters

RequiredDescriptionTypeName

YesThe timestamp of the format
YYYY-MM-DDTHH:MM:SSZ.

Stringtimestamp

OptionalThe defined time fromwhich to calculate the duration instead
of using the current time.

Datenow

Returns

{String} The duration in the HH:MM:SS format.

convertTsToDurationWithFormat(timestamp, forFormat, now)

Converts the timestamp string of the format YYYY-MM-DDTHH:MM:SSZ into a duration of HH:MM:SS
format or -1 for null or negative durations, depending on the forFormat parameter.

Example

finesse.utilities.Utilities.convertTsToDurationWithFormat(a, true, new Date())

Parameters

RequiredDescriptionTypeName

YesThe timestamp of the formatYYYY-MM-DDTHH:MM:SSZ.Stringtimestamp

YesDetermines the timestamp format.

• True—If the duration is null or a negative value, -1 is
returned. Otherwise, the duration is in HH:MM:SS
format.

• False—The duration in HH:MM:SS format.

BooleanforFormat

OptionalThe defined time fromwhich to calculate the duration instead
of using the current time.

Datenow

Returns

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
577

Cisco Finesse JavaScript APIs
Utilities

{String} The duration in the HH:MM:SS format or -1 for null or negative values.

currentServerTimeMillis()

Retrieves the current time, which is adjusted by the calculated time difference to the approximate server time.
This is used when calculating durations based on a server timestamp, which can produce unexpected results
if the clock on the client and server are off.

Example

finesse.utilities.Utilities.currentServerTimeMillis()

Returns

{String} The current server time in milliseconds.

encodeNodeName(node)

Encodes the node name.

Example

finesse.utilities.Utilities.encodeNodeName('User1@h')

Parameters

RequiredDescriptionTypeName

YesThe name of the node. If the string has special characters (?,
@, &, ') then, the string is encoded in UTF-8.

Stringnode

Returns

{String} The encoded name of the node.

escapeSpaces(text)

Escapes the spaces as encoded " " characters so they can be safely rendered by jQuery.text(string) in all
browsers. Although Internet Explorer behaves as expected, Firefox collapses spaces if this function is not
used.

Example

finesse.utilities.Utilities.escapeSpaces('User John')

Parameters

RequiredDescriptionTypeName

YesThe string whose spaces must be escaped.Stringtext

Returns

{String} The string with spaces escaped.

extractHostname(url)

Extracts the hostname from a given URL string.

Example

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
578

Cisco Finesse JavaScript APIs
Utilities

finesse.utilities.Utilities.extractHostname(a)

Parameters

RequiredDescriptionTypeName

YesThe URL from which the hostname of the server is extracted.Stringurl

Returns

{String} The hostname of the server. For example, if the given URL is
https://finesse25.autobot.cvp:8445/desktop/container/?locale=en_US, then the
returned hostname will be “finesse25.autobot.cvp”.

extractTime(timeStr)

Extracts the time in milliseconds from the ISO date string.

Example

finesse.utilities.Utilities.extractTime('2020-05-25T13:49:42.80Z')

Parameters

RequiredDescriptionTypeName

YesThe time in ISO-8601 format
(YYYY-MM-DDTHH:mm:ss.sssZ) or empty.

StringtimeStr

Returns

{Long} The number of milliseconds since 1 January 1970 (Unix Epoch). If the timeStr is empty, then the time
returned is 0.

generateUUID()

Generates an RFC1422v4-compliant UUID using pseudorandom numbers.

Example

finesse.utilities.Utilities.generateUUID()

Returns

{String} An RFC1422v4-compliant UUID using pseudorandom numbers. For example,
456efbab-d794-4c7a-a731-762e476eb4d3.

getAuthHeaderString(configObj)

Retrieves the authorization header that is based on SSO or non-SSO deployment. The headers are Bearer or
Basic.

Example

finesse.utilities.Utilities.getAuthHeaderString(finesse.container.Config)

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
579

Cisco Finesse JavaScript APIs
Utilities

RequiredDescriptionTypeName

YesThe configuration data which is either the
finesse.container.Config or finesse.gadget.Config.

For more information on gadget configuration, see Gadget
Configuration, on page 492.

ObjectconfigObj

Returns

{String} The authorization header based on SSO or non-SSO deployment. For example,

SSO: Bearer MTAwMTAwMjpjaXNjbw==

NON-SSO: Basic MTAwMTAwMjpjaXNjbw==

getAuthModes()

Retrieves the constant for authentication modes. The modes are SSO, NON_SSO, or HYBRID.

Example

finesse.utilities.Utilities.getAuthModes()

Returns

{String} The constant for authentication modes, that is SSO, NON_SSO, or HYBRID.

getAuthTokenObj()

Retrieves the user access token as JSON Object.

Example

finesse.utilities.Utilities.getAuthTokenObj()

Returns

{Object} A user access token as the JSON object in SSO mode and null in non-SSO mode.

getCurrentDrift()

Retrieves the current timestamp difference between the client and server.

Example

finesse.utilities.Utilities.getCurrentDrift()

Returns

{Integer} The timestamp difference between the client and server. If it cannot be calculated, then it returns
0.

getDisplayTime(time)

Retrieves the timestamp value from milliseconds to the HH:MM:SS format.

Example

finesse.utilities.Utilities.getDisplayTime(60000)

Parameters

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
580

Cisco Finesse JavaScript APIs
Utilities

RequiredDescriptionTypeName

YesThe timestamp in milliseconds.Numbertime

Returns

{String} The time string in the HH:MM:SS format.

getEquals(obj1, obj2)

Retrieves the value by comparing the value of each key in the first object with the value of the same key in
the second object.

Example

finesse.utilities.Utilities.getEquals(x,y)

Parameters

RequiredDescriptionTypeName

YesThe first object to compare from. For example, x={'a':
1, 'b': 2}.

Objectobj1

YesThe second object to compare against. For example,
y={'b': 2, 'a': 1}.

Objectobj2

Returns

{Boolean} True if the value of each key in the first object matches the value of the same key in the second
object. False, if the value of at least one key in the first object does not match the value of the same key in
the second object.

getParameterByName(str, name)

Accepts the value from the corresponding given string.

Example

finesse.utilities.Utilities.getParameterByName('http://www.company.com/?param1=value1¶m2=value2',
'param1')

Parameters

RequiredDescriptionTypeName

YesThe string to search from. The URL from which parameter
value is extracted based on the given parameter name.

Stringstr

YesThe name to search for. The name of the parameter whose
value must be extracted from the given URL string.

Stringname

Returns

{String} The value that corresponds to the given name.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
581

Cisco Finesse JavaScript APIs
Utilities

getQueryString(field, url)

Retrieves the value of the given field from the query string.

Example

finesse.utilities.Utilities.getQueryString('name', 'https://finesse/?name=user');

Parameters

RequiredDescriptionTypeName

YesThe name of the field in the query string to retrieve.Stringfield

OptionalThe URL value from the query string to retrieve.Stringurl

Returns

{String} The field value.

getToken()

Retrieves the user access token as a string.

Example

finesse.utilities.Utilities.getToken()

Returns

{String} The access token.

getUserAuthString()

Retrieves the Base64 encoded user authorization string.

Example

finesse.utilities.Utilities.getUserAuthString()

Returns

{String} The authorization string.

isArray(obj)

Determines whether an object is an array.

Example

finesse.utilities.Utilities.isArray(a)

Parameters

RequiredDescriptionTypeName

YesThe object to be tested.Objectobj

Returns

{Boolean} True if the object is an array, else false.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
582

Cisco Finesse JavaScript APIs
Utilities

parseDateStringISO8601(s)

Parses the string with ISO-8601 date format: YYYY-MM-DDTHH:mm:ss.sssZ.

Example

finesse.utilities.Utilities.parseDateStringISO8601(new Date().toISOString())

Parameters

RequiredDescriptionTypeName

YesISO-8601 date format:
YYYY-MM-DDTHH:mm:ss.sssZ.

Strings

Returns

{Date} The JavaScript date object.

Certain browsers do not support the date constructor which considers ISO-8601 date format. For example,
Internet Explorer 8.

Note

removeSpaces(string)

Removes all spaces from the given string.

Example

finesse.utilities.Utilities.removeSpaces('user is')

Parameters

RequiredDescriptionTypeName

YesThe string to remove spaces from.Stringstring

Returns

{String} The string with no leading and trailing whitespace.

trim(str)

Trims the leading and trailing whitespace from the given string.

Example

finesse.utilities.Utilities.trim('user ')

Parameters

RequiredDescriptionTypeName

YesThe string to trim.Stringstr

Returns

{String} The string with removed whitespace from both ends.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
583

Cisco Finesse JavaScript APIs
Utilities

validateHandler(handler)

Checks whether the given handler is a function.

Example

finesse.utilities.Utilities.validateHandler(a);

Parameters

RequiredDescriptionTypeName

YesAny valid JavaScript function.Functionhandler

Throws

{Error} If the handler provided is invalid, or generic JavaScript error stating handler must be a
function.

Returns

{Function} The provided handler if it is valid.

whenAllDone()

Uses jQuery implementation of Promises (Deferred) to run the code when multiple asynchronous processes
have completed.

Example

var asyncProcess1 = $.Deferred(),
asyncProcess2 = $.Deferred();

finesse.utilities.Utilities.whenAllDone(asyncProcess1, asyncProcess2) // WHEN both
asyncProcess1 and asyncProcess2 are resolved or rejected ...

.then(
// First function passed to then() is called when all async processes are complete,

regardless of errors
function() {

// Perform Logic("all processes completed");
},
// Second function passed to then() is called if any async processed threw an

exception
function(failures) { // Array of failure messages

// Perform Logic("Number of failed async processes: " + failures.length);
});

Returns

{Object} A jQuery deferred object. For more information, see https://api.jquery.com/jQuery.Deferred/.

Desktop Cache
Class finesse.utilities.DesktopCache

Allows gadgets to cache their data locally in the IndexedDB of the browser. When a third-party gadget makes
any REST API call to retrieve data from the server (which does not change frequently), it can be cached using
Desktop Cache. This helps to load the gadget faster after failover by avoiding a REST request to the server.
The cached data is a key-value pair where the key is a string, and value is an object.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
584

Cisco Finesse JavaScript APIs
Desktop Cache

https://api.jquery.com/jQuery.Deferred/

Methods

clearData(callback)

Clears all the records in the database.

Example

finesse.utilities.DesktopCache.clearData(function(err) {
if (!err) {

// Successfully cleared the records!
}

});

Parameters

RequiredDescriptionTypeName

NoAn asynchronous callback function that is invoked after all the
records in the IndexedDB is cleared

Functioncallback

deleteData(key, callback)

Deletes the record that corresponds to the key passed from the database.

Example

// inside the gadget somewhere
if (userClickedOk) {

finesse.utilities.DesktopCache.delete('someKey', function(err, data) {
if (!err) {

// Successfully deleted! Now do something else.
}

});
}

Parameters

RequiredDescriptionTypeName

YesThe unique identifier which is used to delete a record from
the IndexedDB.

Stringkey

NoAn asynchronous callback function that is invoked after the
attempt to delete the record (success or fail).

Functioncallback

NoThe JavaScript error message.Object-->err

fetchData(key, callback)

Retrieves the records corresponding to the key passed.

Example

// fetching all the records
finesse.utilities.DesktopCache.fetchData(null, function(err, data) {

if (!err)
console.log(data); // will print something like [{key: someKey, data: someData},

{key: otherKey, data: otherData}.......]
});

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
585

Cisco Finesse JavaScript APIs
Desktop Cache

Parameters

RequiredDescriptionTypeName

YesUnique identifier and it is the primary key to retrieve a single
record from the IndexedDB.

Stringkey

NoAn asynchronous callback function that is invoked after the
data retrieval is successful or failed.

Functioncallback

NoThe JavaScript error message.Object-->err

NoThe JavaScript array of objects.Object-->data

saveOrUpdateData(records, callback)

Creates or updates the records. The parameters passed are an array of key-value pairs.

Example

finesse.utilities.DesktopCache.saveOrUpdateData({
[

key: 'someKey'
data: 'someData'

]
}, function(err, data) {

if (!err) // do something
});

Parameters

RequiredDescriptionTypeName

YesThe data to be saved or updated as an array of key-value pairs.Arrayrecords

NoAn asynchronous callback function that is invoked after the save
or updating of the record is completed (success or fail).

Functioncallback

NoThe JavaScript error message.Object-->err

setGroup(groupName)

Reduces redundancy in the data that are stored when different gadgets from the same vendor (for example,
cuic) retain the same group name.

Having the same group name for the gadgets which share the same data reduces the server load and improves
the performance. This API must be called before any other desktop cache APIs.

Note

For example, consider vendor1 has two gadgets (gadget1 and gadget2), and both gadgets require the same
token to be accessed from the server. Then the group name for these two gadgets can be set as vendor1. The
gadget which loads first makes the server call, fetches the token, and then saves it in the desktop cache. The
second gadget fetches this token from the desktop cache without making the server call.

Example

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
586

Cisco Finesse JavaScript APIs
Desktop Cache

// Set this once and you don't need to send this group name with any other subsequent
requests from this gadget.
finesse.utilities.DesktopCache.setGroup('cuic');

Parameters

RequiredDescriptionTypeName

YesThe name of the group for the gadgets which share the same
data.

StringgroupName

JSONValidator
Class finesse.utilities.JsonValidator

Utility methods for the validation of JSON data against a user-provided schema.

Methods

validateJson(jsonData, schema)

Validates the JSON data by applying a specific schema.

Parameters

RequiredDescriptionTypeName

YesThe JSON data to be validated.jsonDatajsonData

YesThe JSON schema that validates the parameter
jsonData. Follow the JSON schema definition
standards.

For more information, see http://json-schema.org/.

schemaschema

Returns

{String} The JSON data in the following format:
{

"valid": [true / false],
"error": [tv4 error object

if schema is not valid
]

}

The error object is as follows:
{

"code": 0,
"message": "Invalid type: string",
"dataPath": "/intKey",
"schemaPath": "/properties/intKey/type"

}

WorkflowService
Class finesse.workflow.WorkflowService

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
587

Cisco Finesse JavaScript APIs
JSONValidator

http://json-schema.org/

Provides an API which consists of methods that allow a gadget to submit the workflow task.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
workflowService = finesse.workflow.WorkflowService.init(containerServices);
var payload = {

"dialogId": "email1",
"mediaType": "email",
"state": "EMAIL_READ",
"taskVariables": {

"from": "mme@cisco.com",
"cc": "yyy@cisco.com"

}
}
workflowService.submitTask(payload);

Methods

init(containerServices)

Initiates the WorkflowService and accepts finesse.containerservices.ContainerServices as a parameter.

Example

var containerServices = finesse.containerservices.ContainerServices.init();
workflowService = finesse.workflow.WorkflowService.init(containerServices);

Parameters

RequiredDescriptionTypeName

YesProvides container level services for gadget developers.
Gadgets can utilize the container dialogs and event
handling to add or remove a service.

FunctionContainerServices

submitTask(payload)

Allows to trigger workflow for digital channels.

Example

var payload = {
"dialogId": "email1",
"mediaType": "email",
"state": "EMAIL_READ",
"taskVariables": {

"from": "mme@cisco.com",
"cc": "yyy@cisco.com"

}
}
workflowService.submitTask(payload);

Parameters

RequiredDescriptionTypeName

YesThe action data of the JSON object as per the
specification.

Objectpayload

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
588

Cisco Finesse JavaScript APIs
WorkflowService

RequiredDescriptionTypeName

YesUnique identifier of the dialog that helps in debugging
an error. For example, dialogId, eventId, chatId and so
on.

String-->dialogId

YesThe type of media under which the dialog is classified.
For example, CHAT and EMAIL.

String-->mediaType

YesThe workflow statuses are based on the task that is run.

Values for Unified CCX are:

• CHAT

• CHAT_PRESENTED

• CHAT_ACCEPTED

• CHAT_HANDLED

• CHAT_DECLINED

• CHAT_LEAVE

• EMAIL

• EMAIL_PRESENTED

• EMAIL_READ

• EMAIL_DISCARDED

• EMAIL_REPLIED

• EMAIL_FORWARDED

• EMAIL_REQUEUED

Values for Unified CCE are:

• TASK_OFFERED

• TASK_ACCEPTED

• TASK_ACTIVE

• TASK_PAUSED

• TASK_INTERRUPTED

• TASK_CLOSED

Enum-->state

NoThe corresponding value of the workflow name for the
individual task. For example, the keys of the
callVariables are callVariable name and callVariable
value.

Array-->taskVariables

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
589

Cisco Finesse JavaScript APIs
WorkflowService

JSON Schema
JSON schema is a powerful tool for validating the structure of JSON data. The following are the advantages
of using JSON schema.

• Describes your existing data formats.

• Provides clear human-and machine-readable documentation.

• Validates data that is useful for:

• Automated testing.

• Ensuring quality of client-submitted data.

The most basic schema is a blank JSON object, which constrains nothing, allows anything, and describes
nothing.

Example

{ }

You can apply constraints on an instance by adding validation keywords to the schema. Consider the type
keyword which can be used to restrict an instance to an object, array, string, number, boolean, or null.

Example

{ "type": "string" }

Certain APIs in Finesse JavaScript library may require the user to input objects with complex structures.
Having a standard way of validating and providing the input is beneficial for both the consumer and the
provider.

There are classes such as the PopoverSchema and ChannelSchema in Finesse JavaScript library which
provide APIs such as the getActionDataSchema() and getChannelConfigSchema(). These APIs return a
human-readable schema for a valid input for the APIs such as the showPopover() and addChannel() in a
human-readable fashion.

Inspecting the JSON schemas helps to realize the combinations of valid inputs, which can be provided to
some of the Finesse JavaScript APIs. For more information on understanding the JSON schema, see
https://json-schema.org/understanding-json-schema/.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
590

Cisco Finesse JavaScript APIs
JSON Schema

https://json-schema.org/understanding-json-schema/

C H A P T E R 11
Log Collection

• Log Collection, on page 591

Log Collection
These commands prompt you to specify a secure FTP (SFTP) server location to which the files will be uploaded.

To obtain logs:

• Install log: file get install desktop-install.log

Use this command to see the installation log after the system is installed.

This log is written to the SFTP server and stored as a text file written to this path: <IP Address>\<date
time stamp>\install\desktop-install.log

• Desktop logs: file get activelog desktop recurs compress

Use this command to obtain logs for the Finesse web applications. This command uploads a zip file that
contains the following directories:

• webservices: Contains the logs for the Finesse backend that serves the Finesse REST APIs. The
maximum size of an uncompressed desktop log file is 100 MB. The maximum size of this directory
is approximately 4.5 GB. After a log file reaches 100 MB, that file is compressed and a new log
file is generated. Output to the last compressed desktop log file wraps to the log file created next.
The log file wrap-up duration can vary, based on the number of users on the system. Timestamps
are placed in the file name of each desktop log.

• desktop: Contains logs from the Finesse agent desktop gadget container that holds the Finesse
desktop gadgets. Any container-level errors with Finesse agent desktop will appear in these log
files.

• admin:Contains logs from the Finesse administration gadget container that holds the administration
gadgets. Any container-level errors with the Finesse administration console appear in these log files.

• audit-log: Audit logs contain all admin operations (including Finesse admin UI and REST
client operations) and supervisor operations for Team Message. The maximum size of an
uncompressed audit log file is 100 MB. The maximum size of total audit log files (including
compressed log files) is approximately 1 GB. After a log file reaches 100 MB, that file is
compressed and a new log file is generated. The log file wrap-up duration can vary, based on
the number of users on the system. The log contains the following parameters:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
591

• Timestamp

• User Id of the administrator

• Method of operation (PUT, POST, DELETE). GET operations will not be logged

• URL

• Payload

• clientlogs: Contains the client-side logs that are submitted from the Cisco Finesse agent desktop to
the Finesse server. Each log file is no larger than 1.5 MB and contains a timestamp and the agent
ID of the agent who submitted the file. A new log file is created each time that an agent submits
client-side logs (the data is not appended to an existing log file). The maximum size of this directory
is 100 MB. The directory holds a maximum number of 25000 clientlog files. When the directory
exceeds the size limit or the file count, the oldest files are deleted.

• openfireservice: Contains startup and shutdown-related information logs for the Cisco Finesse
Notification Service.

• openfire: Contains limited error and information logs for the Cisco Finesse Notification Service.

• finesse-dp:Contains startup, error, and information logs generated by the Finesse Diagnostic Portal
application.

• realm: Contains the logs for authentication requests from clients that are handled by the Finesse
backend.

• db: Contains the Finesse database logs.

• /finesse/logs: Contains the logs for the Cisco Finesse Tomcat service.

• fippa: Contains logs for the Finesse IP Phone Agent (IPPA) application.

• 3rdpartygadget: Contains information, error, startup, and shutdown-related logs for the Cisco
Finesse 3rdpartygadget server.

• jmx: Contains the JMX counters data that is generated by the JMX logger process. It contains
important jmx counters that are exposed by Finesse and openfire.

• finesse_maintenance_mode.log: Contains the logs of Cisco Finesse hook script implementation
of orchestration manager.

These logs are stored in the following path on the SFTP server: <IP address>\<date time
stamp>\active_nnn.tgz , where nnn is timestamp in long format.

• WebProxy Service logs: file get activelog webproxy recurs compress

Use this command to obtain logs for the WebProxy Service. The maximum size of an uncompressed
webproxy log file is 10 MB. The maximum size of this directory is approximately 500 MB. After a log
file reaches 10 MB, that file is compressed and wraps to the new log file which is generated. The log file
wrap-up duration can vary, based on the number of users on the system. Timestamps are placed in the
file name of each webproxy log.

These logs are stored in the following path on the SFTP server: <IP address>\<date time
stamp>\active_nnn.tgz , where nnn is timestamp in long format.

This command uploads a zip file that contains the following log files:

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
592

Log Collection
Log Collection

• access.log: Contains the webproxy access logs after you configure the access log-level using the
set webproxy access-log-levelCLI. For more information on CLI commands, seeWebProxy Service.

• error.log: Contains the webproxy error logs.

• webproxy_cli.log: Contains the webproxy CLI logs. For more information on CLI commands, see
WebProxy Service.

• webproxy_launcher.log: Contains the logs after the WebProxy Service is launched.

To access the individual log file, use the command file get activelog
webproxy/<log filename>.

For example, file get activelog webproxy/error.log

Note

• Servm log: file get activelog platform/log/servm*.* compress

Use this command to obtain logs that are generated by the platform service manager that manages the
starting and stopping of the Finesse services.

The desktop and servm logs are compressed to one set of files.

These logs are stored to the following path on the SFTP server: <IP address>\<date time
stamp>\active_nnn.tgz , where nnn is the timestamp in long format.

• Platform Tomcat logs: file get activelog tomcat/logs recurs compress

These logs are stored to the following path on the SFTP server: <IP address>\<date time
stamp>\active_nnn.tgz , where nnn is the timestamp in long format.

• Install log: file get install install.log

These logs are stored to the following path on the SFTP server: <IP address>\<date time
stamp>\active_nnn.tgz , where nnn is timestamp in long format.

Log collection may fail when you use the compress flag if there are a lot of log files. If collection fails, run
the command again without the compress flag.

Note

Call Variables Logging

From Cisco Finesse Release 12.5(1) onwards, the call variables logging in Cisco Finesse logs are disabled by
default. The callVariables contain sensitive user information and this property allows the administrator to
decide whether the information must be captured in the logs. You can enable the call variables logging by
using the CLI commands.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
593

Log Collection
Log Collection

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
594

Log Collection
Log Collection

C H A P T E R 12
Documents and Documentation Feedback

• Documents and Documentation Feedback, on page 595

Documents and Documentation Feedback
Documents

The Cisco Finesse Web Services Developer Guide is available from Cisco DevNet at the following link:

https://developer.cisco.com/site/finesse/

If you have development questions, you can post them to the Cisco Finesse forums on Cisco DevNet, located
at the following link: https://communities.cisco.com/community/developer/finesse.

The following documents are available from the Finesse page on Cisco.com
(http://www.cisco.com/en/US/products/ps11324/tsd_products_support_series_home.html):

• Cisco Finesse Installation and Upgrade Guide
• Cisco Finesse Administration Guide
• Release Notes for Cisco Finesse

JavaScript Library and Sample Gadgets

The Finesse JavaScript library and sample gadgets are available on Cisco DevNet at the following link:
https://developer.cisco.com/site/finesse/

Documentation Feedback

You can provide comments about this document by sending email to the following address:
contactcenterproducts_docfeedback@cisco.com

We appreciate your comments.

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
595

https://developer.cisco.com/site/finesse/
https://communities.cisco.com/community/developer/finesse
http://www.cisco.com/en/US/products/ps11324/tsd_products_support_series_home.html
https://developer.cisco.com/site/finesse/
mailto:contactcenterproducts_docfeedback@cisco.com

Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
596

Documents and Documentation Feedback
Documents and Documentation Feedback

	Cisco Finesse Web Services Developer and JavaScript Guide, Release 12.6(1)
	Contents
	Introduction
	What's New in Cisco Finesse 12.6(1)
	Deprecated Features
	Cisco Finesse REST APIs
	JavaScript Library and Sample Gadgets
	Communication with the Cisco Finesse Web Service
	Client Requests
	HTTPS Requests
	Real-Time Events

	API Parameter Types
	Cisco Finesse API Errors

	Lab Development Environment Validation with Cisco FinesseWeb Services APIs
	Environment and Tools
	Postman
	Pidgin for Windows
	Adium for Mac OS X

	Cisco Finesse APIs
	Sign In to Finesse
	Change Agent State

	Cisco Finesse Desktop APIs
	User
	User APIs
	User—Sign In to Finesse
	User—Sign In as a Mobile Agent
	User—Sign Out of Finesse Desktop
	User—Get User
	User—Get User Id from loginName
	User—Get List
	User—Get List of Dialogs (Voice Only by Default)
	User—Get List of Dialogs (Nonvoice Only)
	User—Get List of Reservation Dialogs
	User—Change Agent State
	User—Agent State Change With Reason Code
	User—Get Reason Code
	User—Get Reason Code List
	User—Get Wrap-Up Reason
	User—Get Wrap-Up Reason List
	User—Get Default Media Properties Layout
	User—Get Media Properties Layout List
	User—Get List of Phone Books
	User—Get List of Workflows

	User API Parameters
	User API Errors

	Devices
	Devices API
	Devices—Get List of Devices for Extension

	Devices API Parameters
	Devices API Errors

	Dialog
	Dialog APIs
	Dialog—Get Dialog
	Dialog—Create a New Dialog (Make a Call)
	Dialog—Take Action on Participant
	Dialog—Update Call Variable Data
	ECC and Call Variable Error Handling

	Dialog—Send DTMF String
	Dialog—Make a Consult Call Request
	Dialog—Initiate a Single Step Transfer
	Dialog—Make a Silent Monitor Call
	Dialog—End a Silent Monitor Call
	Dialog—Make a Barge Call
	Dialog—End a Barge Call
	Dialog—Drop Participant from Conference
	Dialog—Start Recording
	Dialog—Accept, Close, or Reject an Outbound Option Preview Reservation
	Dialog—Accept, Close, or Reject a Direct Preview Outbound Reservation
	Dialog—Reclassify a Direct Preview Call
	Dialog—Schedule or Cancel a Callback

	Dialog API Parameters
	State (Dialog) Parameter Values
	Actions Parameter Values
	State (Participant) Parameter Values
	CTI Event Mappings for Dialog and Participant States
	Outbound Call Types and BAStatus
	Disposition Code Parameter Values for Nonvoice Tasks

	Dialog API Errors

	Queue
	Queue APIs
	Queue—Get Queue
	Queue—Get List of Queues for User

	Queue API Parameters
	Queue API Errors

	Team
	Team APIs
	Team—Get Team
	Team—Get List of TeamMessages

	Team API Parameters
	Team API Errors

	TeamResource
	TeamResource APIs
	TeamResource—Get Reason Codes
	TeamResource—Get Wrap-Up Reasons
	TeamResource—Get Media Properties Layouts
	TeamResource—Get Phone Books
	TeamResource—Get Workflows
	TeamResource—Get Layout

	TeamResource API Parameters
	TeamResource API Errors

	Get Script Selectors
	ClientLog
	ClientLog APIs
	ClientLog—Post to Finesse
	CompressedClientLog—Post Compressed Log to Finesse

	ClientLog API Parameters
	ClientLog API Errors

	Task Routing APIs
	Media
	Media APIs
	Media—Sign In
	Media—Change State or Sign Out
	Media—Change Agent State with Reason Code
	Media—Change Agent to Routable/Not Routable
	Media—Change Agent from Work State to Active
	Media—Get Media
	Media—Get List

	MediaDomain—Get List
	Agent States for Nonvoice Media
	Media API Parameters
	Media API Errors

	Dialog APIs for Nonvoice Tasks
	User APIs for Nonvoice Tasks

	Single Sign-On
	Single Sign-On APIs
	Single Sign-On—Test API
	Single Sign-On—Fetch Access Token
	Single Sign-On—Refresh Existing Access Token
	Single Sign-On—Get User Authentication Mode

	Single Sign-On Parameters
	Single Sign-On API Errors
	Client Integration

	TeamMessage
	TeamMessage APIs
	TeamMessage—Get Team Message
	TeamMessage—Get List
	TeamMessage—Create a Team Message
	TeamMessage—Delete a Team Message

	TeamMessage API Parameters
	TeamMessage API Errors

	Cisco Finesse Configuration APIs
	SystemConfig
	SystemConfig APIs
	SystemConfig—Get
	SystemConfig—Set

	SystemConfig API Parameters
	SystemConfig API Errors

	ConfigInfo
	ConfigInfo APIs
	ConfigInfo—Get

	ConfigInfo API Parameters
	ConfigInfo API Errors

	ECCVariableConfig
	ECCVariableConfig APIs
	ECCVariableConfig—Get ECC Variable Configuration

	ECCVariableConfig API Parameters
	ECCVariableConfig API Errors

	ClusterConfig
	ClusterConfig APIs
	ClusterConfig—Get
	ClusterConfig—Set

	ClusterConfig API Parameters
	ClusterConfig API Errors

	EnterpriseDatabaseConfig
	EnterpriseDatabaseConfig APIs
	EnterpriseDatabaseConfig—Get
	EnterpriseDatabaseConfig—Set

	EnterpriseDatabaseConfig API Parameters
	EnterpriseDatabaseConfig API Errors

	LayoutConfig
	LayoutConfig APIs
	LayoutConfig—Get
	LayoutConfig—Set

	LayoutConfig API Parameters
	LayoutConfig API Errors

	ReasonCode
	ReasonCode APIs
	ReasonCode—Get
	ReasonCode—Get List
	ReasonCode—Create
	ReasonCode—Update
	ReasonCode—Delete

	ReasonCode API Parameters
	ReasonCode API Errors

	WrapUpReason
	WrapUpReason APIs
	WrapUpReason—Get
	WrapUpReason—Get List
	WrapUpReason—Create
	WrapUpReason—Update
	WrapUpReason—Delete

	WrapUpReason API Parameters
	WrapUpReason API Errors

	ChatConfig
	ChatConfig APIs
	ChatConfig—Get
	ChatConfig—Set

	ChatConfig API Parameters
	ChatConfig API Errors

	Cloud Connect
	Cloud Connect Configuration
	Cloud Connect Configuration APIs
	Cloud Connect Configuration—Get
	Cloud Connect Configuration—Set
	Cloud Connect Integration—Delete

	Cloud Connect Configuration Parameters
	Cloud Connect Configuration API Errors

	Cloud Connect Services
	Cloud Connect Services APIs
	Cloud Connect Services Token—Get
	Cloud Connect Services API Parameters
	Cloud Connect Management Service Config—Get

	Cloud Connect Services API Errors

	MediaPropertiesLayout
	MediaPropertiesLayout APIs
	MediaPropertiesLayout—Get
	MediaPropertiesLayout—Get Default Layout
	MediaPropertiesLayout—Get List
	MediaPropertiesLayout—Create
	MediaPropertiesLayout—Update
	MediaPropertiesLayout—Update Default Layout
	MediaPropertiesLayout—Delete

	MediaPropertiesLayout API Parameters
	MediaPropertiesLayout API Errors

	PhoneBook
	PhoneBook APIs
	PhoneBook—Get
	PhoneBook—Get List
	PhoneBook—Create
	PhoneBook—Update
	PhoneBook—Delete
	PhoneBook—Import Contact List (CSV)
	PhoneBook—Import Contact List (XML)
	PhoneBook—Export Contact List

	PhoneBook API Parameters
	PhoneBook API Errors

	Contact
	Contact APIs
	Contact—Get
	Contact—Get List
	Contact—Create
	Contact—Update
	Contact—Delete

	Contact API Parameters
	Contact API Errors

	Workflow
	Workflow APIs
	Workflow—Get
	Workflow—Get List
	Workflow—Create
	Workflow—Update
	Workflow—Delete

	Workflow API Parameters
	Workflow API Errors

	WorkflowAction
	WorkflowAction APIs
	WorkflowAction—Get
	WorkflowAction—Get List
	WorkflowAction—Create
	WorkflowAction—Update
	WorkflowAction—Delete

	WorkflowAction API Parameters
	WorkflowAction API Errors

	Team
	Team APIs
	Team—Get List
	Team—Get List of Reason Codes
	Team—Update List of Reason Codes
	Team—Get List of Wrap-Up Reasons
	Team—Update List of Wrap-Up Reasons
	Team—Get List of Phone Books
	Team—Update List of Phone Books
	Team—Get Layout Configuration
	Team—Update Layout Configuration
	Team—Get List of Workflows
	Team—Update List of Workflows

	Team API Parameters
	Team API Errors

	SystemVariable
	SystemVariable APIs
	SystemVariable—List

	SystemVariable API Parameters
	SystemVariable API Errors

	Cisco Finesse Serviceability APIs
	SystemInfo
	SystemInfo APIs
	SystemInfo—Get

	SystemInfo API Parameters
	SystemInfo API Errors

	Finesse MaintenanceMode
	Finesse MaintenanceMode APIs
	Finesse MaintenanceMode—Get
	Finesse MaintenanceMode—Update

	Finesse MaintenanceMode API Parameters
	Finesse MaintenanceMode API Errors

	ConnectedUsersInfo
	ConnectedUsersInfo APIs
	ConnectedUsersInfo—Summary
	ConnectedUsersInfo—Get Connected Users Information

	ConnectedUsersInfo API Parameters
	ConnectedUsersInfo API Errors

	Diagnostic Portal
	Diagnostic Portal APIs
	Diagnostic Portal—Get Performance Information
	Diagnostic Portal—Get Product Version

	Diagnostic Portal API Errors

	RuntimeConfigInfo
	RuntimeConfigInfo APIs
	RuntimeConfigInfo—Get

	RuntimeConfigInfo API Parameters
	RuntimeConfigInfo API Errors

	Locked Out Users

	Cisco Finesse Notifications
	About Cisco Finesse Notifications
	Notification Frequency
	Subscription Management
	Subscription Persistence

	Resources
	User Notification
	Dialog Notification
	Dialogs/Media Notification
	Dialog CTI Error Notification
	Team Notification
	Queue Notifications
	User/Queue Notification
	Media Notification
	Media and Dialogs/Media Asynchronous Error Notification
	Media and Dialogs/Media Error Code Descriptions
	Errors for Agent State and Mode Changes
	Errors for Dialogs

	Notification Parameters

	Managing Notifications in Third-Party Applications
	Connect to XMPP over HTTP (BOSH/WebSocket) using Finesse EventTunnel
	Connect to XMPP over TCP

	Finesse High Availability
	Failure Scenarios
	Desktop Presence and Forced Logout
	Failure Handling for Task Routing Clients

	Finesse Desktop Gadget Development
	Finesse Gadgets
	Gadget Description
	Simple Example Gadget
	Gadget Limitations
	Import Finesse JavaScript API
	alternateHosts Configuration
	Headless Gadget Configuration
	Multi-Tab Gadgets

	Best Practices for Gadget Development
	Supported OpenSocial Features
	Gadget Specification XML Features
	Required Module pref Feature

	Loading Indicator Feature
	APIs Available to Gadget JavaScript
	Gadget Preferences

	Caveats

	Gadget Caching
	Notifications on Finesse Desktop
	Finesse Notifications in Third-Party Containers
	Finesse Topics
	Connection Information
	Finesse Notifications
	Finesse Requests
	ConnectionInfoReq
	ConnectionReq
	SubscribeNodeReq
	UnsubscribeNodeReq

	Finesse Responses
	Workflow Action Event

	Finesse Container Timer
	Handling Special Characters in CSS
	Subscription Management on Finesse Desktop
	Gadget Height Management
	Setting Gadget Height—Desktop Layout XML
	Setting Gadget Height—Using Gadget API

	Third-Party Gadgets
	Enable or Reset 3rdpartygadget Account
	CSS Requirements
	Upload Third-Party Gadgets
	Permissions
	Replication
	Migration
	Backup and Restore
	Restrictions
	CORS Support for Finesse REST APIs
	Maintenance Mode

	Cisco Finesse JavaScript APIs
	Client Services
	Container Services
	Container Services Topics
	Finesse Toaster
	Popover Service
	Events
	Gadget View Changed Event
	Timer Tick Event
	Workflow Action Event
	Workflow Action Event.HandledBy

	Task Activity Notification
	ClientLogger
	Digital Channel
	Cisco Common Desktop Stock Icon Names with Image
	Channel Service

	Gadget Configuration
	Interfaces
	Request Handlers

	REST Services
	JavaScript Representation of Finesse REST API
	REST Collection Objects
	RestBase and RestCollectionBase Common Parameters
	RestBase Common Parameters
	RestCollectionBase Common Parameters

	JavaScript Library
	Subscription Support
	REST Base
	REST Collection Base
	User
	User.MediaStates
	User.States
	User.WorkMode
	User.WrapUpMode
	UserMediaPropertiesLayout
	UserMediaPropertiesLayouts
	Users
	Dialog
	Dialog.Actions
	Dialog.ParticipantStates
	Dialog.ReasonStates
	Dialog.States
	DialogBase
	DialogLogoutActions
	Dialogs
	Queue
	Queues
	Team
	TeamNotReadyReasonCode
	TeamNotReadyReasonCodes
	TeamSignOutReasonCodes
	Media
	Media.States
	MediaDialog
	MediaDialog.States
	MediaDialog.TaskActions
	MediaDialogs
	MediaList
	MediaOptionsHelper
	MediaOptionsHelper.States
	MediaPropertiesLayout
	Script Selectors
	ChatConfig
	ECCVariableConfig
	Contact
	Contacts
	InterruptActions
	PhoneBook
	PhoneBooks
	ReasonCodeLookup
	ReasonCodes
	SystemInfo
	SystemInfo.Statuses
	WrapUpReason
	WrapUpReasons

	ShortcutKey Service
	Utilities
	Desktop Cache
	JSONValidator
	WorkflowService

	JSON Schema

	Log Collection
	Log Collection

	Documents and Documentation Feedback
	Documents and Documentation Feedback

