
A primer for developers

Full-Stack
Observability

they networks, a virtual server, or a
Kubernetes cluster. FSO can surface
information about components and
their relationships to help developers
create, launch, and manage
applications more effectively.

That’s important since applications
now depend on so many services to
do their work. Research firm IDC found
that applications rely on anywhere
from 5 to 15 separate services,
resources, or APIs, on average, each
with its own operational risks.

Understanding these interdependencies
and risks across technology layers is key
for developers and operators as they fix
bugs, improve code, find infrastructure
efficiencies, secure the components
running applications, and improve
customer experience. When it comes to
working faster and smarter, developers
can lean on FSO outputs to achieve
their goals with less operational friction.
Questions like “how do I fix this?” or
“what affect will my new code have on
the application?” are easier to answer
with information and insight into system
functioning made possible by FSO.

What distinguishes the FSO approach
is its focus on correlation, insight,
and proactivity over silos, alerts, and

responses. FSO builds bridges by
nurturing a common understanding
of systems from data, promoting
shared responsibility and problem-
solving across ops and development
teams, grounded in deeper levels
of system knowledge. It also pulls
security into this sphere of oversight.

The face of business is now online.
Applications are today’s marketplace
ambassadors, positioning technology
front and center in the customer
conversation. Developers, with greater
responsibility for shaping a company’s
commercial identity, are working faster,
building smarter, and creating more value
in an effort to keep pace with shifting
competitive and operational demands.

Technology has evolved to meet these
imperatives and, in the process, grown
far more complex. New components,
new endpoints, new environments
– all interconnected in dynamic,
disparate on premises and cloud
ecosystems sometimes too tangled
for humans to understand, especially
those whose focus is on shipping
clean code, fixing problems in real
time, and contributing to the integrity,
security, and performance of the
systems running their applications.

Amid all this complexity, full-stack
observability (FSO) is a powerful
framework for delivering insights
and supporting developer agility and
decision-making. An evolution and
expansion of application performance
monitoring, FSO offers a way to see
inside systems and their components,
across the technology stack - be

Developers
and the
demands
of today’s
business

When aligned to business outcomes, as
FSO should be, it can help developers
answer questions about commercial
priorities and customer needs. It can
also deliver insights for optimizing
infrastructure costs and performance.
Observability data can help fine-tune
applications earlier in the development

cycle and for assist teams in locking in
on potential security vulnerabilities.

This e-book is an introduction to the
building blocks of FSO and the potential
benefits it can bring to developers’
everyday work. It describes the four key
data types used by FSO, and explains

why traces are critical for cross-domain
visibility. It covers instrumentation and the
important role OpenTelemetry can play in
building effective FSO solutions. Finally,
it explains key use cases for FSO in the
enterprise, and how developers can use
it to change business, organizational,
and operational outcomes.

observability by revealing the chain
of actions an application takes to
complete a task. Spans represent a
single operation within a trace Given
the complexity of today’s system
architecture, that could include calling
an API to execute functionality inside
a cloud-based container or pull
proprietary data data from an on-prem
server. Traces track the connections
between these actions and locations.
That benefits developers in a number

The foundations of full-stack
observability are built on data. The
four types of data used in observability
solutions are metrics, events, logs,
and traces (MELT). Each type of MELT
data contributes specific value to the
visibility and insight puzzle. Together,
they’re the raw materials for gaining a
deeper understanding of systems.

The power of the data is in their
correlation across domains, since
applications depend on constellations of
connected components to run. Creating
a single source of the truth with the
data can help tear down traditional
operations silos that can create
provincial, domain-specific thinking
rather than the holistic, cross-team
customer and business vision necessary
for optimal system engagement.

While all important to system
visibility, traces advance the cause of

Observability

Metrics
Numeric

measurements
grouped or

collected at regular
intervals or over a
given time span.

M E L T
Events

A discrete action
happening at a

moment in time.
Abstracted yet still

highly detailed, these
are critical for
observability.

Logs
Strings of text with

an associated
timestamp describing
a system action. The

original date type.

Traces
Chains of event

between different
components in an

application.

To understand how the elements of MELT can help, it’s useful to define each:

Data:
The
foundations
of FSO

of ways. First, in the development
lifecycle, understanding these
connections can help pinpoint
issues within the stack and target
the areas that need de-bugging and
improvement. With all the pressure
developers are under to release
more code more quickly, shipping
flawed code is unavoidable.
Finding problems earlier in the
development lifecycle can limit the
mistakes that go to production.

In remediation, meanwhile, traces
can speed up root cause analysis
and lead to faster issue resolutions.
When optimizing systems, they can
inform coding and infrastructure
decisions, provide evidence for shaping
customer experience, and help to
identify ways to trim operating costs.

Events, for their part, are the flags
indicating that specific changes have
occurred. These might be undesirable
actions that require attention,w positive
actions that confirm the system is
running optimally, or everyday actions
that reflect that the system is performing
the work that it was intended to do.

Metrics are aggregated raw data, can
be measured against KPIs, and trigger
events on system anomalies. Generally,
they’re less costly to store and
process since they’re data aggregates
rather than individual records.

Through logs you can identify root
causes and pinpoint failures around
an event, troubleshoot, and answer
questions about access activities.
Historically, developers have relied
on logs for clues to understanding
the behavior of components
and applications.

When artfully combined, these data
types establish a fundamental
understanding of the connections
throughout and the health and
performance of systems. For
developers, they help answer
pressing questions and facilitate
day-to-day work. That’s observability.

When it comes to working faster
and smarter, developers can lean on
FSO outputs to achieve their goals
with less operational friction.

Standardization is key. OpenTelemetry
(OTel) is emerging as the open-source
industry standard for instrumentation,
data collection, and delivery into many
common observability back-ends.
OTel collects, collates, and sends
telemetry data in a consistent and
flexible way, no matter where you’re
installing the instrumentation. It can
span components on-premises, in
the public cloud, and at the edge.

That’s important since true full-stack
observability is only possible with
comprehensive telemetry and data that
illuminate interdependencies and the
state of systems at any given time.

What makes OTel a solution fit
for FSO is the fact that it is:

Standardized: It offers a single, vendor-
agnostic instrumentation library, a
vendor-neutral collector, and SDKs in
multiple languages, removing the need
to manage multiple libraries or formats.

Controllable: It has the flexibility to
send to multiple back-end observability
platforms. It can receive data in one
format and deliver it in another. It can
also help manage data overload.

Portable: It separates data collection
and delivery from the tools that ingest
and analyze it. It eliminates the need
to install proprietary or manual data
collection libraries. The data pipe
can be unplugged from one back
end and plugged into another, which
frees solutions from vendor lock-in.

Supported: It’s open source and
widely adopted. Many developers,
including those at Cisco,
contribute to its development.

Seeing into
systems

To generate all this data, a system
needs instrumentation. In FSO,
that instrumentation ideally sits
on every system component so
every part of the IT environment is
observable. After all, you can’t fully
understand what you can’t see.

The boundaries of today’s IT, though, are
shifting, often on and off premises, and
are sometimes ephemeral. The public
cloud, virtualization, remote devices,
and containerization are just some of the
features of modern system architecture
that challenge visibility and broad system

oversight. Old monitoring techniques are
hard to implement when parts of your
infrastructure are owned by someone
else or move around asynchronously.

Instrumentation, or telemetry, has had
to evolve. That’s especially true since
an application might leave its footprint
on so many different components as
it performs the steps of a request/
response chain. Connecting and seeing
those steps is key to understanding
the stresses, choke points, and excess
cycles that prevent applications from
running optimally for the business and

FSO moves the developer narrative from the “what”
and “when” to the “why” of system understanding. It
is the necessary next step to navigating IT complexity
and controlling resources across domains. The
goal is to turn the visibility that data provides into
insight and then insight into action, focusing on
three high-level areas, which are interdependent
and underpinned by business context.

From
data to
insight
to
action

Optimization

The focus here is on cost and
efficiency. As systems get more
complex, they get harder to
visualize and understand, both
from a logical standpoint and in
terms of utilization. Everything
from setting up microservices
to provisioning infrastructure is
harder without insight into how
each component is working. It’s
not unusual for developers to
request redundant resources to
run applications or to overestimate
needed capacity when visibility
into system architecture is
challenging. Through full-stack
observability, developers can
get a better handle on resources
to optimize utilization, remove
redundancies, and better
manage infrastructure costs.

Performance

Performance touches developers
and customers alike. For
developers, an observable system
is an easier system to work with.
It reveals problem areas in code
so developers can isolate bugs
early in the development cycle
and fix them before release.
Developers spend a significant
amount of time resolving problems
caused by code changes, and
an observable system can cut
down on the time understanding
the impacts. Developers also fix
runtime issues, and an observable
system can shorten mean time to
resolution, again, by providing a
system roadmap to trouble spots.

Security

Observability and security
are beginning to converge
as organizations move from
a monitor-and-react model
of system management to a
paradigm of surveying, interpreting
and acting. With the pressure
on developers to continuously
release code into increasingly
complex IT environments,
maintaining software reliability
is more and more dependent on
teams’ ability to spot and close
vulnerabilities. Observability,
alongside automation, can play a
crucial role in risk management
within the mix of security
solutions companies employ.

Business Context

So much of today’s IT architecture is business architecture. So, aligning
SLAs through to the SLOs and SLIs of technology is really about ensuring
systems are delivering on business objectives and that teams share
a common business context, which was never really possible before.
That’s an important function of full-stack observability – to track and
measure system behavior to ensure that customers are getting what they
expect from an optimized, performant, and secure technology stack.

adding or deprecating application
features, how to scale applications,
and the impact of changing out
components. Cloud dependency creates
challenges in system transparency, and
observability tools can bring visibility
across environments to make it easier
to understand system functions when
introducing changes to source code.

This improves productivity and agility.
It also enables developers to be more
responsive to issues since they’ll
spend less time figuring out what
happened and more time answering
“why” so it won’t happen again.

FSO also makes tighter allies of ops and
dev teams as it unites them around a
common IT-to-client context. This aids
in issue identification and problem-
solving, as it gets everyone pulling
together toward a shared goal.

Developers are beginning to embrace
the possibilities of observability
for continuous feedback, learning
opportunities, and this operational insight.

There are, of course, benefits to
customers. Fewer bugs, more uptime,
faster response times to issues, tighter
security, and greater alignment to
business needs all support a better
application experience, which today
is pivotal to commercial success.

To summarize some key ways
FSO can support developers:

•	 Improve productivity and agility
•	 Better align dev teams with ops
•	 Deliver deeper business context

to aid decision-making
•	 Enhance responsiveness
•	 Provide broader visibility

into system DNA

DDevelopers are in high demand. There
are high expectations on them to
deliver. One way to manage heavy
workloads and prevent burnout is
to find ways to make the job easier.
Observability tools for developers
aren’t so much about understanding
the state of systems in real time; they’re
about supporting their day-to-day
workflows and removing barriers that
can slow delivery and innovation.

Observability tools can answer
questions developers face regularly,
like “how do I fix this?” But they
can also help with decisions about

Helping
developers
to develop

Owning the
environments

To respond, developers are connecting
more with systems throughout the
development life cycle and taking
more ownership of the environments
that run their applications, from pre-
production to production. They’re
partnering more closely with operations
teams to speed up problem solving
and optimize code and infrastructure.
The goal is to release cleaner, more
efficient code, to reduce issues and
vulnerabilities, and to deliver the best
online experience for customers.

FSO offers opportunities for developers
to deepen their engagement with and
understanding of systems and to apply
meaningful insights that help them
work smarter, faster, and toward a set
of business objectives shared by all.

AAs business continues to go digital,
organizations are asking for more
velocity, agility, and precision output
from developers. Customers, more and
more, expect their vendors to get the
online experience right the first time,
leaving less room for buggy code or
sub-optimal features in production
and a smaller margin of error for
unexpected application downtime.
In the midst of this, enterprises are
moving to or exploring more complex
multi-cloud deployments, and need the
ability to break up legacy applications
and become micro-services based.

Get started with OpenTelemetry

Visit the FSO Developer Hub

Discover MELT data

