Application Note
Cisco Public

How to Migrate from a CLI
NED to a NETCONF NED

Overview

This document describes how to migrate from a CLI NED to a NETCONF NED for an
existing Cisco Network Services Orchestrator (NSO) service application and is divided
into 4 sections: “Why should you use a NETCONF NED?”, “Steps for migrating from a CLI
NED to a NETCONF NED,” “Examples for demonstrating the CLI NED to NETCONF NED
migration procedure,” and “Troubleshooting.”

“Why should you use a NETCONF NED?” describes the benefits for interfacing to a
network element using NETCONF instead of CLI through NSO.

“Steps for migrating from a CLI NED to a NETCONF NED” describes the procedure on how
to migrate from a CLI NED to a NETCONF NED for an existing NSO service application.

“Examples for demonstrating the CLI NED to NETCONF NED migration procedure”
describes how to work with two service examples from the NSO distribution and migrate
one of the PE devices from CLI NED to NETCONF NED. The first example uses an official
NETCONF NED for IOS-XR released by Cisco. The second example shows you how to
build your own I0OS-XR NETCONF NED to be used for the NED migration.

“Troubleshooting” contains various tips and tricks on how to debug the service templates
and NETCONF NED building issues.

© 2020 Cisco and/or its affiliates. All rights reserved.

Application Note
Cisco Public

Contents

© 2020 Cisco and/or its affiliates. All rights reserved.

Application Note
Cisco Public

1 Why should you use a NETCONF NED?

NSO can speak southbound through the NED architecture to an arbitrary management interface supported
by the device. NSO knows how to automatically communicate southbound to NETCONF enabled devices.
By supplying NSO with the YANG data models of a NETCONF device, NSO knows the data models of the
device, and, through the NETCONF protocol, knows exactly how to manipulate the device configuration.

Unfortunately, the majority of devices supported by earlier versions of NSO didn’t speak NETCONF.

By far, the most common way to configure network devices has been through the CLI. For NSO to speak to
Cisco style CLI devices, the process is not entirely automatic like with NETCONF, and, depending on the type
of interface the device has for configuration, this may involve some programming. Devices with a Cisco style
CLI can be managed by writing YANG data models which describe the data in CLI and a relatively thin layer
of Java code to handle the communication to the devices. Other types of devices will likely require more
coding.

One of the benefits with NETCONF is that all device features can be supported on day 1 without any
development effort on the NETCONF NED. With CLI NEDs, only a subset of CLI commands that are needed
for the use case by the service application will be modeled and coded. This reduces the upfront work. When
additional CLI commands are needed, more development work is required.

The other benefit with NETCONF is the set of standards-based YANG data models that are being supported
by multiple device vendors. The service to device mapping template work only needs to be done once and
can be reused by all device vendors that support the same standards-based YANG data models.

From a runtime standpoint, NETCONF is optimized for machine-to-machine communication and has

much better performance as compared to a CLI which is optimized for human operators.From a testability
standpoint, NETCONF allows for systematic testing which can be easily automated. CLI NEDs are hard to test
and require re-testing for minor upgrades.

Another important benefit with NETCONF is that it comes with support for network-wide transactions which
significantly simplifies service deployment across multiple devices in the entire network and provides the
ability for the devices to automatically rollback their configuration if anything fails. As a result, the network is
never left in an inconsistent state. This is something that isn’t available through the CLI NED.

Application Note
Cisco Public

2 Steps for migrating from a CLI NED to a NETCONF NED

For an existing NSO service application that has devices in the network which are using a CLI NED, you can
select a CLI-based device that also supports NETCONF to be used for the migration. You can choose to work
with either pre-built NETCONF NEDs, if available, or build your own NETCONF NED for the selected device. You
can get pre-built NETCONF NEDs either from Cisco or the device vendor. Pre-built NETCONF NEDs come with
the benefit that they should have already been validated to work with NSO. If a NETCONF NED isn’t available for
your device, you can refer to the “NETCONF & YANG Automation Testing User Guide v3” available for download
at https://info.tail-f.com/netconf_vyang_automation_testing for information on how to build your own NETCONF
NED and validate it. An alternative is to request your device vendor to begin to provide a NETCONF NED.

It is always a good idea to update the CLI NED to make sure that it is compatible with the NETCONF NED.

Any configuration changes made through CLI should be properly reflected through NETCONF. In order for the
service application to be able to work with both CLI and NETCONF NEDs for the same device, the following are
the general steps to take:

1. Set up NSO to communicate with both the CLI and NETCONF interfaces of the device (only the CLI NED is
being used by the service application)
a. Upgrade the device to use the latest CLI NED (if necessary)
b. Update the service template as necessary due to structural changes of the CLI commands
c. Add a device to NSO using the NETCONF NED
i. Either a pre-built NETCONF NED supplied by Cisco or the device vendor
ii. Or build your own NETCONF NED
2. Generate the service template for the NETCONF NED
a. Create a service instance using the CLI NED
b. View the configuration changes in XML for the NETCONF NED using the
compare-config command in ncs_cli
c. Take this XML diffs from the pervious step as input to a new section in the service templates
d. Fill in variables in the NETCONF template as used by the CLI version of the template
3. Verify the service mapping after switching to the NETCONF NED
Switch to the NETCONF NED for the device
b. Re-deploy dry-run to see that nothing is forgotten
c. Un-deploy the service
d. Re-deploy the service
e. Compare the configuration

®

https://info.tail-f.com/netconf_yang_automation_testing

Application Note
Cisco Public

3 Examples for demonstrating the CLI NED to
NETCONF NED migration procedure

Two service application examples that come with the NSO distribution will be used as a basis to demonstrate
how to migrate from the CLI NED for a IOS-XR based PE device to a NETCONF NED. The two examples are
stored under SNCS_DIR/examples.ncs/service-provider. They are called simple-mpls-vpn and mpls-vpn. The
simple-mpls-vpn example only uses service templates for implementing the service to device configuration
mapping. The mpls-vpn example uses both Java code and configuration templates for implementing the
service application mapping. You will see that the migration process works similarly for both examples.

A pre-built IOS-XR NETCONF NED released by Cisco will be used for the simple-mpls-vpn example to
illustrate the NED migration procedure. A custom IOS-XR NETCONF NED will be built using the NETCONF
NED Builder for the mpls-vpn example to illustrate the NED migration procedure. You are free to go through
both examples or pick one that is more relevant to what you plan on doing.

3.1 The simple-mpls-vpn example
Let’s first make a fresh copy of simple-mpls-vpn from the NSO 5.3.1.1 distribution:

nso-dd$ cp -a $NCS DIR/examples.ncs/service-provider/simple-mpls-vpn .
nso-dd$ cd simple-mpls-vpn
simple-mpls-vpn$ make clean all

In order to allow copy and paste in ncs_cli, the following two XML fragments will need to be added to the cli
block inside of ncs.conf in the current directory:

<ignore-leading-whitespace>true</ignore-leading-whitespace>
<auto-wizard><enabled>false</enabled></auto-wizard>

After the above lines have been added to ncs.conf, we are ready to start the simple-mpls-vpn project:

simple-mpls-vpn$ make start

At this point, all netsim (simulated) devices for the project and NSO have been started.

Application Note
Cisco Public

3.1.1 Update the CLI NED and install a NETCONF NED
Download an updated CLI NED and the NETCONF NED for I0OS-XR from the NSO delivery server and copy
them to the packages directory.

simple-mpls-vpn$ cp -a ~/Downloads/cisco-iosxr-cli-7.25 packages
simple-mpls-vpn$ cp -a ~/Downloads/cisco-iosxr-nc-7.0 packages
simple-mpls-vpn$ ncs_cli -C -u admin

admin connected from 127.0.0.1 using console on WAITAI-M-72J2
admin@ncs# packages reload

>>> System upgrade is starting.
>>> Sessions in configure mode must exit to operational mode.
>>> No configuration changes can be performed until upgrade has completed.
>>> System upgrade has completed successfully.
reload-result {
package cisco-ios-cli-3.0
result true
}
reload-result {
package cisco-iosxr-cli-3.0
result true
}
reload-result {
package cisco-iosxr-cli-7.25
result true
}
reload-result {
package cisco-iosxr-nc-7.0
result true
}
reload-result {
package 13vpn
result true

Application Note
Cisco Public

3.1.2 Connect service to a real PE device

For the I0S-XR based PE devices used in the example, the “volvo” I3vpn service only touches “pe2”. For this
demo, a real IOS-XR device is connected as “pe2” and the latest CLI NED is used for it. In this case, a Cisco
IOS XRv 9000 virtual PE router is used. Here are the steps to upgrade the CLI NED and connect it to a real
IOS-XR device:

admin@ncs# config

Entering configuration mode terminal

admin@ncs (config) # devices device pe2

admin@ncs (config-device-pe2) # device-type cli ned-id cisco-iosxr-cli-7.25
admin@ncs (config-device-pe2)# address 10.147.46.208

admin@ncs (config-device-pe2) # port 33881

admin@ncs (config-device-pe2) # commit

Commit complete.

admin@ncs (config-device-pe2)# ssh fetch-host-keys

result updated
fingerprint {

algorithm ssh-rsa

value fb:44:4a:d7:e5:74:87:12:cc:72:7a:cb:ff:53:a0:0f
}
fingerprint {

algorithm ssh-dss

value 0c:3d:69:eb:e2:95:04:04:d2:89:6£:44:92:a3:9c:db
}

Because the configuration for “pe2” in NSO is empty at this point, | was able to modify its ned-id. Otherwise,
| would first need to perform a “no config” on “pe2” followed by a “commit” or “commit no-networking”
before | can perform the above changes to “pe2”.

Just to show you the version information of the IOS-XR router that | have connected to, the following is its
“show version” CLI output:

simple-mpls-vpn $ ssh admin@10.147.46.208 -p 33881
Password:

RP/0/RP0O/CPUO:xrv9000#show version

Sun Jun 07 22:20:42.379 UTC

Cisco IOS XR Software, Version 7.0.2
Copyright (c) 2013-2020 by Cisco Systems, Inc.

Build Information:

Built By : ahoang

Built On : Fri Mar 13 22:27:54 PDT 2020

Built Host : iox-ucs-029

Workspace : /auto/srcarchivel5/prod/7.0.2/xrv9k/ws
Version : 7.0.2

Location : /opt/cisco/XR/packages/

Label : 7.0.2

cisco IOS-XRv 9000 () processor

System uptime is 5 weeks 5 days 20 hours 22 minutes

RP/0/RP0O/CPUO:xrv9000#

Application Note
Cisco Public

3.1.3 Connect to the NETCONF interface of the real PE device

It will become handy later on to have a NETCONF session connected to the same pe device and allow the
result of the CLI configuration changes to be captured through NSO in the NETCONF format. Let’s set up
NSO to connect to the NETCONF interface of the real pe router using the previously loaded NETCONF NED
and call it “pe2-nc”:

admin@ncs (config) # devices device pe2-nc
admin@ncs (config-device-pe-nc) # address 10.147.46.208 port 33880
admin@ncs (config-device-pe-nc) # authgroup default
admin@ncs (config-device-pe-nc) # device-type netconf ned-id cisco-iosxr-nc-7.0
admin@ncs (config-device-pe-nc) # state admin-state unlocked
admin@ncs (config-device-pe-nc) # commit
Commit complete.
admin@ncs (config-device-pe-nc) # ssh fetch-host-keys
result updated
fingerprint
algorithm ssh-rsa
value fb:44:4a:d7:e5:74:87:12:cc:72:7a:cb:ff:53:a0:0f
}
fingerprint
algorithm ssh-dss
value 0c:3d:69:eb:e2:95:b4:b4:d2:89:6£:44:92:a23:9c:db

We then synchronize all the device configurations into NSO:

admin@ncs# devices sync-from
sync-result {
device ce0
result true
}
sync-result {
device cel
result true

3.1.4 Set up a I13vpn service with the CLI-based IOS-XR router
Let’s set up the I3vpn service named “volvo” as described in the README file:

admin@ncs (config) # vpn 13vpn volvo

admin@ncs (config-13vpn-volvo) # endpoint cl

admin@ncs (config-endpoint-cl) # as-number 65001

admin@ncs (config-endpoint-cl) # ce device ce0

admin@ncs (config-endpoint-cl) # ce local interface-name GigabitEthernet
admin@ncs (config-endpoint-cl) # ce local interface-number 0/9

admin@ncs (config-endpoint-cl)# ce local ip-address 192.168.0.1
admin@ncs (config-endpoint-cl)# ce link interface-name GigabitEthernet
admin@ncs (config-endpoint-cl) # ce link interface-number 0/2

admin@ncs (config-endpoint-cl)# ce link ip-address 10.1.1.1

Application Note
Cisco Public

admin@ncs (config-endpoint-cl
admin@ncs (config-endpoint-cl
admin@ncs (config-endpoint-cl
admin@ncs (config-endpoint-cl
admin@ncs (config-endpoint-cl
admin@ncs (config-endpoint-cl
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2

admin@ncs (config-endpoint-c2

admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2
admin@ncs (config-endpoint-c2

S o S S R SR SR SR SR R R SR R R R R R R 3R 4R o

()
()
()
()
()
()
(c)
()
()
()
admin@ncs (config-endpoint-c2)
()
()
()
()
()
()
()
()
()
()

admin@ncs (config-endpoint-c2
admin@ncs (config) #commit

Error:
05:25:51.557 UTC

o)

tion.
'l SEMANTIC ERRORS:

'l the system due to semantic errors.

pe
pe
pe

re
|

device pe?2

link interface-name GigabitEthernet
link interface-number 0/0/0/1

link ip-address 10.1.1.2

endpoint c2

as
ce
ce
ce
ce
ce
ce
ce
pe
pe
pe

re
|

top

External error in the NED implementation for device pe2:

-number 65001

device ce2

local interface-name GigabitEthernet
local interface-number 0/3

local ip-address 192.168.1.1

link interface-name GigabitEthernet
link interface-number 0/1

link ip-address 10.2.1.1

device pe?2

link interface-name GigabitEthernet
link interface-number 0/0/0/2

link ip-address 10.2.1.2

Wed May 27

% Failed to commit one or more configuration items during a pseudo-atomic opera-
All changes made have been reverted.
This configuration was rejected by

The individual

'l errors with each failed configuration command can be

'l found below.

router bgp 100

vrf volvo
address-family ipv4 unicast

1'% '"BGP' detected the

been initialized'
|

|
end
admin@ncs (config) #

'warning'

condition 'The parent address family has not

The above error indicates that the service template that was developed for the original example isn’t
compatible with the virtual XRv 9000 PE router that is being used here. If you search on the Internet for
reasons of this warning, you will discover that “address-family vpnv4 unicast” has to be configured on the
parent container named BGP before it can be used in a vrf. This requires modifying the service template
located at packages/I3vpn/templates/I3vpn.xml. The following block needs to be added to “PE template for
Cisco I0S-XR routers” under the path of “router/bgp/bgp-no-instance”:

Application Note
Cisco Public

<address-family>
<vpnv4>
<unicast>
</unicast>
</vpnv4>
</address-family>

In order to be able to work with both versions of the CLI NED, I'll add the following conditional constructs
based on ned-ids to the template:

<?if-ned-id cisco-iosxr-cli-3.0:cisco-iosxr-cli-3.07?>
<router xmlns="http://tail-f.com/ned/cisco-ios-xr" tags="merge">
<bgp>
<bgp-no-instance>
<id>100</id>
<vrf tags="merge">
<name>{string (/name) }</name>
<?set-context-node {..}?>
<rd>{as-number}:1</rd>
<address-family>
<ipvd>
<unicast>
</unicast>
</ipvid>
</address-family>

<?elif-ned-id cisco-iosxr-cli-7.25:cisco-iosxr-cli-7.25?>
<router xmlns="http://tail-f.com/ned/cisco-ios-xr" tags="merge">
<bgp>
<bgp-no-instance>

<id>100</id>
<address-family>
<vpnv4>
<unicast>
</unicast>
</vpnv4d>
</address-family>
<vrf tags="merge">
<name>{string (/name) }</name>
<?set-context-node {..}?>
<rd>{as-number}:1</rd>
<address-family>
<ipvd>
<unicast>
</unicast>
</ipvid>
</address-family>

<?end?>

Application Note
Cisco Public

After applying the above changes to I3vpn.xml, the packages need to be reloaded:

simple-mpls-vpn$ ncs_cli -C -u admin

admin connected from 127.0.0.1 using console on WAITAI-M-72J2
admin@ncs# packages reload
reload-result {
package cisco-ios-cli-3.0
result true
}
reload-result {
package cisco-iosxr-cli-3.0
result true
}
reload-result {
package cisco-iosxr-cli-7.25
result true
}
reload-result {
package cisco-iosxr-nc-7.0
result true
}
reload-result {
package 13vpn
result true
}

admin@ncs#

Let’s attempt to create the I3vpn service again:
admin@ncs# config
Entering configuration mode terminal
admin@ncs (config) # vpn 13vpn volvo
admin@ncs (config-13vpn-volvo) # endpoint cl

admin@ncs (config-—endpoint-c2) # !
dmin@ncs (config) # commit
Commit complete.

This time the commit operation has succeeded and the I13vpn service called “volvo” is now up and running
with mostly netsim (simulated) devices and one real I0S-XR CLI-based device named “pe2”

Application Note
Cisco Public

3.1.5 Generate a service template for the NETCONF device

Because the above service was only associated with the CLI interface of the XRv 9000 “pe2” device, the
“pe2-nc” device that was created for its NETCONF interface did not get its configuration datastore in NSO
synchronized when the above service configuration was committed. We’ll take advantage of this fact to
identify the configuration which needs to be applied through NETCONF when the equivalent CLI configuration
was applied to the device by the service.

We’ll use the compare-config command to generate the NETCONF payload in XML format:

admin@ncs (config) # devices device pe2-nc compare-config outformat xml

diff
<devices xmlns="http://tail-f.com/ns/ncs">
<device>
<name>pe2-nc</name>
<config>

<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-1ifmgr-cfg">
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<description>link to CE</description>
<vrf
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-rsi-cfg">
volvo
</vrf>
<ipv4-network
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-io-cfg">
<addresses>
<primary>
<address>10.1.1.2</address>
<netmask>255.255.255.252</netmask>
</primary>
</addresses>
</ipv4-network>
</interface-configuration>

The XML diffs generated by the compare-config operation is what the “volvo” service needs to push out to
the I0S-XR device over NETCONF. Since the original service was based on an XML template towards the CLI
NED, all we need to do is to add these XML diffs for NETCONF to the service template, and parameterize it
using the same variables used by the CLI template.

When you look through the service template at packages/I3vpn/templates/I3vpn.xml, you will see the
following high-level structure:

Application Note
Cisco Public

<config-template xmlns="http://tail-f.com/ns/config/1.0"
servicepoint="13vpn-template">
<devices xmlns="http://tail-f.com/ns/ncs">
<?foreach {endpoint/ce}?>
<device tags="nocreate">
<name>{device}</name>
<config tags="merge">
<!-- CE template for Cisco IOS routers -->

<!-- PE template for Cisco IOS-XR routers -->
</config>
</device>
<?end?>

</devices>
</config-template>

What we need to do is to add a 3rd block for a PE template for “Cisco IOS-XR routers over NETCONF” after
the “PE template for Cisco IOS-XR routers” block and simply paste the XML diff we generated earlier into
the template file before the </config> tags. We don’t want every line of the diff, only the part that’s inside
the diff’'s <config>...</config> tags. Also, remember to add tags="merge” on each top level node. Another
thing to note here is that the list instances are merged during the service to device configuration mapping
process. We only need a single instance from a list to be present in the template. There are two of these in
the XML diffs and they are the <interface-configuration></interface-configuration> and <vrf-neighbor></vrf-
neighbor> tags.

Parameterizing the template means looking for hard-coded values in the XML diffs and replacing them with
XPATH expressions in {..} format. Having a ready-made CLI template here makes the process rather trivial.

The first XML block of the final template should look something like the following:

<interface-configurations xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ifmgr-
cfg" tags="merge">
<interface-configuration tags="merge">
<active>act</active>
<interface-name>GigabitEthernet{link/interface-number}</interface-name>
<description>link to CE</description>
<vrf xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-rsi-cfg">
{string (/name) }
</vrf>
<ipvé4-network xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-io-cfg">
<addresses>
<primary>
<address>{ip-address}</address>
<netmask>255.255.255.252</netmask>
</primary>
</addresses>
</ipv4-network>
</interface-configuration>
</interface-configurations>

Application Note
Cisco Public

You want to make sure that the context node is at the right level after the XPATH expression has been
evaluated. You can’t always use the variables exactly the same way they are used in the CLI template as their
structures may be different. Sometimes, you have to add constructs such as “./” to the path of the variable in
order to get to the parent of the context node. Refer to the NSO Development Guide for full documentation
on how to write templates.

The complete NETCONF template for IOS-XR can be found in Appendix A.

3.1.6 Re-deploy service to use the NETCONF device

After adding the NETCONF template for the I0S-XR router, the “packages reload” command needs to be
executed for the new I3vpn.xml to take effect. Before we change the device configuration for “pe2” to point
to its NETCONF port, we’ll first un-deploy the service to unconfigure the device. This will make the service
re-deployment more interesting. Otherwise, no device configuration may be needed to be pushed out upon
a re-deploy. The other benefit of performing the un-deploy first is that the configuration of “pe2” is now
empty. | can now change its ned-id without first having to unconfigure it. The device configuration for “pe2”
is now changed to point to the NETCONF port and the use of netconf and the I0S-XR NETCONF NED as its
device-type and ned-id respectively. The commands are as follows:

admin@ncs# packages reload

reload-result {
package 13vpn
result true
}
admin@ncs# config
Entering configuration mode terminal
admin@ncs (config) # vpn 13vpn volvo un-deploy
admin@ncs (config) # devices device pe?2
admin@ncs (config-device-pe2) # port 33880
admin@ncs (config-device-pe2) # device-type netconf ned-id cisco-iosxr-nc-7.0
admin@ncs (config-device-pe2) # commit
Commit complete.
admin@ncs (config-device-pe2) # ssh fetch-host-keys
result unchanged
fingerprint {
algorithm ssh-rsa
value fb:44:4a:d7:e5:74:87:12:cc:72:7a:cb:ff:53:a0:0f
}
fingerprint {
algorithm ssh-dss
value 0c:3d:69:eb:e2:95:04:04:d2:89:6£:44:92:a23:9c:db
}
admin@ncs (config-device-pe2) # sync-from
result true
admin@ncs (config-device-pe2) # top

Application Note
Cisco Public

A service check-sync performed now will find the service to be out-of-sync as we have previously
un-deployed the service. We'll perform a “re-deploy dry-run” of the service to check out the configuration
that would be be pushed out to “pe2” in the NETCONF format:

admin@ncs (config) # vpn 13vpn volvo check-sync
in-sync false
admin@ncs (config) # vpn 13vpn volvo re-deploy dry-run
cli {
local-node {
data devices {
device ce0 {

device ce2 {

device pe2 {
config {
interface-configurations {
interface-configuration act GigabitEthernet0/0/0/1 {
+ description “link to CE”;
vrf volvo;
ipv4-network {
addresses {
primary {
address 10.1.1.2;
netmask 255.255.255.252;
}

+

+ + + +

}

When the dry-run output is as expected from comparing to the NETCONF template, we can perform the re-
deploy operation. We can then do an un-deploy to insure that the service can also be
un-deployed successfully.

admin@ncs (config) # vpn 13vpn volvo re-deploy

admin@ncs (config) #

System message at 2020-06-07 18:00:07...

Commit performed by admin via console using cli.

admin@ncs (config) # vpn 13vpn volvo un-deploy

admin@ncs (config) # exit

If you want to cross check that the NETCONF configuration being pushed out will cause the same
configuration through the CLI, you can add a device in NSO to point to the CLI port and use compare-
config after going from un-deploy to re-reploy of the service through NETCONF. We have now successfully
completed the CLI NED to NETCONF NED migration for this I3vpn service. It is rather simple!

Application Note
Cisco Public

3.2 The mpls-vpn example
First, make a fresh copy of the mpls-vpn example from the NSO 5.3.1 distribution:

nso-dd$ cp -a $NCS DIR/examples.ncs/service-provider/mpls-vpn

nso-dd$ cd mpls-vpn
Then, make a copy of the downloaded CLI NED for IOS-XR from the last example into the packages directory
of your NSO installation:

mpls-vpn$ cp -a ~/Downloads/cisco-iosxr-cli-7.25 SNCS DIR/packages
Then, we modify the example to use the downloaded CLI NED for I0OS-XR and build the project:

mpls-vpn$ sed -i '' 's/3.5/7.25/g' Makefile

mpls-vpn$ sed -i '' 's/3.5/7.25/g' initial data/template.xml

mpls-vpn$ make clean all
In order to allow copy and paste in ncs_cli, the following two XML fragments will need to be added to the cli block
inside of ncs.conf in the current directory:

<ignore-leading-whitespace>true</ignore-leading-whitespace>
<auto-wizard><enabled>false</enabled></auto-wizard>

After the above lines have been added to ncs.conf, we are ready to start the simple-mpls-vpn project:

mpls-vpn$ make start
At this point, all simulated devices for the project and NSO have been started. Let’s synchronize all devices’
configuration data into NSO:

mpls-vpn$ ncs cli -C -u admin
admin connected from 127.0.0.1 using console on WAITAI-M-72J2
admin@ncs# devices sync-from
sync-result {
device ce0
result true

sync-result {
device pe3
result true

3.2.1 Set up two I13vpn services
Now we set up the I13vpn services named “volvo” and “ford” as described in the README file by copying and
pasting it into ncs_cli:

admin@ncs (config) # vpn 13vpn volvo

admin@ncs (config-13vpn-volvo) # route-distinguisher 999

admin@ncs (config-13vpn-volvo) # endpoint main-office

admin@ncs (config-endpoint-main-office) # ce-device ceb

admin@ncs (config-endpoint-main-office) # ce-interface GigabitEthernet0/11
admin@ncs (config-endpoint-main-office) # ip-network 10.10.1.0/24
admin@ncs (config-endpoint-main-office) # as-number 65101

admin@ncs (config—-endpoint-main-office) # bandwidth 12000000

admin@ncs (config—-endpoint-main-office) # !

admin@ncs (config—endpoint-main-office) # endpoint branch-officel

Application Note
Cisco Public

ce-device cel

ce-interface GigabitEthernet0/11
ip-network 10.7.7.0/24
as-number 65102

bandwidth 6000000
!

admin@ncs (config-—endpoint-branch-officel) #
admin@ncs (config-—endpoint-branch-officel) #
admin@ncs (config-—endpoint-branch-officel) #
admin@ncs (config-—endpoint-branch-officel) #
admin@ncs (config-—endpoint-branch-officel) #
admin@ncs (config-—endpoint-branch-officel) #
admin@ncs (config-endpoint-branch-officel) # endpoint branch-office2
admin@ncs (config-—endpoint-branch-office2) # ce-device ce4
admin@ncs (config-endpoint-branch-office?2) # ce-interface GigabitEthernet0/18
admin@ncs (config-endpoint-branch-office2) # ip-network 10.8.8.0/24
admin@ncs (config-—endpoint-branch-office2) # as-number 65103
admin@ncs (config-endpoint-branch-office2) # bandwidth 300000
admin@ncs (config-endpoint-branch-office2) # !
admin@ncs (config-endpoint-branch-office2) # top
admin@ncs (config) # commit dry-run outformat native
native {
device {
name cel
data policy-map volvo

}
device {
name ce4
data policy-map volvo

}
device {
name ceob6
data policy-map volvo

}
device {
name pe0
data vrf volvo

}
device {
name peZ2
data <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message—-id="1">
<edit-config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

}
device {
name pe3
data configure
gos

}

}

admin@ncs (config) # commit

Commit complete.

admin@ncs (config) # vpn 13vpn ford

admin@ncs (config-13vpn-ford) # route-distinguisher 777

Application Note
Cisco Public

admin@ncs (config-13vpn-ford) # endpoint main-office

admin@ncs (config-endpoint-main-office) # ce-device ce2

admin@ncs (config-endpoint-main-office) # ce-interface GigabitEthernet0/5

admin@ncs (config-endpoint-main-office) # ip-network 192.168.1.0/24

admin@ncs (config-endpoint-main-office) # as-number 65201

admin@ncs (config-endpoint-main-office) # bandwidth 10000000

admin@ncs (config-—endpoint-main-office) # !

admin@ncs (config-endpoint-main-office) # endpoint branch-officel

admin@ncs (config-endpoint-branch-officel) # ce-device ce3

admin@ncs (config-endpoint-branch-officel) # ce-interface GigabitEthernet0/5

admin@ncs (config-endpoint-branch-officel ip-network 192.168.2.0/24

admin@ncs (config-endpoint-branch-officel as-number 65202

admin@ncs (config-endpoint-branch-officel bandwidth 5500000

admin@ncs (config-endpoint-branch-officel !

admin@ncs (config-endpoint-branch-officel
(
(
(
(
(
(
(
(c

)

)

)

)

)

) # endpoint branch-office2
admin@ncs (config-endpoint-branch-office2)

)

)

)

)

)

)

ce-device ceb
ce-interface GigabitEthernet0/5
ip-network 192.168.7.0/24

admin@ncs (config-endpoint-branch-office2
admin@ncs (config-endpoint-branch-office2

#
#
#
#
#
#
#
#
#
#
#
#

admin@ncs (config-endpoint-branch-office2 as-number 65203
admin@ncs (config-endpoint-branch-office2 bandwidth 1500000
admin@ncs (config-endpoint-branch-office2 !

admin@ncs (config-endpoint-branch-office2 top

admin@ncs (config) # commit dry-run

admin@ncs (config) # commit
Commit complete.
admin@ncs (config) # exit
admin@ncs# exit

It is good practice to inspect the output of a “commit dry-run” during development to insure that the
expected configuration changes are being sent to the proper devices. Most of the dry-run output has been
left out to conserve space in this document. Both I13vpn services are now up and running just like they were
in the original example.

Application Note
Cisco Public

3.2.2 Connect service to a real PE device

For the IOS-XR based PE devices in this example, both the “volvo” and “ford” I13vpn services will touch pe0’s
device configuration. A real IOS-XR device will be connected “pe0” The same Cisco I0S XRv 9000 virtual PE
router as used in the previous example will be used here. Here are the steps to connect to the real I0S-XR device:

admin@ncs# config
Entering configuration mode terminal
admin@ncs (config) # devices device peO0
admin@ncs (config-device-pe2)# address 10.147.46.208
admin@ncs (config-device-pe2) # port 33881
admin@ncs (config-device-pe2) # commit
Commit complete.
admin@ncs (config-device-pe2) # ssh fetch-host-keys
result updated
fingerprint {
algorithm ssh-rsa
value fb:44:4a:d7:e5:74:87:12:cc:72:7a:cb:ff:53:a0:0f
}
fingerprint {
algorithm ssh-dss
value 0c:3d:69:eb:e2:95:04:04:d2:89:6£:44:92:a3:9c:db
}
admin@ncs (config-device-pe0) # sync-from
result true
admin@ncs (config-device-pel) # top

Do a re-deploy to push out the proper configuration to the real IOS-XR device:

admin@ncs (config) # vpn 13vpn volvo check-sync
in-sync false

admin@ncs (config) # vpn 13vpn ford check-sync

in-sync false

admin@ncs (config) # vpn 13vpn volvo re-deploy dry-run

admin@ncs (config) # vpn 13vpn volvo re-deploy
Error: External error in the NED implementation for device peO: Mon Jun 1
16:44:16.615 UTC

% Failed to commit one or more configuration items during a pseudo-atomic opera-
tion. All changes made have been reverted.

'l SEMANTIC ERRORS: This configuration was rejected by

!'! the system due to semantic errors. The individual

'l errors with each failed configuration command can be

'l found below.

router bgp 100
vrf volvo
address—-family ipv4 unicast
1'% '"BGP' detected the 'warning' condition 'The parent address family has not
been initialized'
|
neighbor 192.168.1.5
address—-family ipv4 unicast

Application Note
Cisco Public

route-policy volvo in
1'1% "BGP' detected the 'warning' condition 'The address family has not been
initialized'

route-policy volvo out
1'1% "BGP' detected the 'warning' condition 'The address family has not been
initialized'

|

end
admin@ncs (config) # exit
admin@ncs# exit

The above error is the same as the one we ran into during the last example. In this example, the PE specific
service templates can be found in packages/I3vpn/templates/I3vpn-pe.xml. The following block needs to be
added to the “Cisco ios xr” section under the path of “router/bgp/bgp-no-instance”:

<address-family>
<vpnv4>
<unicast>
</unicast>
</vpnvid>
</address-family>

Perform the “packages reload” command followed by a re-deploy of the “vpn I13vpn volvo” service:

mpls-vpn$ ncs_cli -C -u admin

admin connected from 127.0.0.1 using console on WAITAI-M-72J2
admin@ncs# packages reload

dmin@ncs (config) # vpn 13vpn volvo re-deploy

Error: External error in the NED implementation for device peO: Tue Jun 2
23:21:35.992 UTC

% Failed to commit one or more configuration items during a pseudo-atomic opera-
tion. All changes made have been reverted.

'l SEMANTIC ERRORS: This configuration was rejected by

! the system due to semantic errors. The individual

!'! errors with each failed configuration command can be

! found below.

interface GigabitEthernet0/0/0/3.77
service-policy output volvo-cel
1'% 'gos-ea' detected the 'warning' condition 'shape average in child level is
not supported in this hardware version'
!
end
admin@ncs (config) #

Application Note
Cisco Public

Since the service-policy in our service template isn’t supported by our real IOS-XR device, we will simply
comment it out from the service template:

<!-- not supported in real IOS-XR device
<service-policy>
<output>
<name>{/name}-{SCE}</name>
</output>
</service-policy>
-—>

With the above changes, let’s repeat the process again:
mpls-vpn$ ncs_cli -C -u admin

admin connected from 127.0.0.1 using console on WAITAI-M-72J2
admin@ncs# packages reload

admin@ncs (config) # vpn 13vpn volvo re-deploy
admin@ncs (config) #

System message at 2020-06-02 16:34:58...

Commit performed by admin via console using cli.
admin@ncs (config) # vpn 13vpn ford re-deploy
admin@ncs (config) #

System message at 2020-06-02 16:35:47...

Commit performed by admin via console using cli.

Both services are now up and running on a real I0S-XR CLI-based PE device.

3.2.3 Build a NETCONF NED

Instead of installing a pre-built NETCONF NED for I0OS-XR as was done for the last example, let’s go ahead
and build one from scratch using the NETCONF Builder feature of NSO. I'll first add a device to NSO for the
NETCONF interface of “pe0” which will be called “pe0-nc”:

admin@ncs (config) # devices device peO-nc
admin@ncs (config-device-peO-nc) # authgroup default
admin@ncs (config-device-peO-nc) # address 10.147.46.208
admin@ncs (config-device-pe0O-nc) # port 33880
admin@ncs (config-device-peO-nc) state admin-state unlocked
admin@ncs (config-device-pe0O-nc) # device-type netconf ned-id netconf
admin@ncs (config-device-peO-nc)
Commit complete.
admin@ncs (config-device-peO-nc) # ssh fetch-host-keys
result updated
fingerprint {

algorithm ssh-rsa

value fb:44:4a:d7:e5:74:87:12:cc:72:7a:cb:ff:53:a0:0f

#
#
#
#

commit

}
fingerprint {

algorithm ssh-dss

value 0c:3d:69:eb:e2:95:04:04:d2:89:6£:44:92:a3:9c:db
}

admin@ncs (config-device-pe0O-nc) # top

Application Note
Cisco Public

The ned-id of netconf is being used temporarily to allow a NETCONF NED to be built. Without assigning a
ned-id of a real NETCONF NED, NSO won’t be able to do much else with the NETCONF device.

We'll now turn to the NETCONF NED Builder to build a mini version of the I0S-XR NETCONF NED with only a
subset of the YANG modules supported by the I0S-XR device. Since | know which YANG modules are being
used by the service template, | will only select those to be included in the NETCONF NED. By default, all
dependent YANG modules will also be automatically included in the NETCONF NED.

admin@ncs# devtools true
admin@ncs# config
dmin@ncs (config) # netconf-ned-builder project cisco-xr-mini 1.0 device peO-nc
local-user admin vendor Cisco
admin@ncs (config-project-xr-mini/1.0)# commit
Commit complete.
admin@ncs (config-project-xr-mini/1.0)# top
admin@ncs (config) # exit
admin@ncs# show netconf-ned-builder project cisco-xr-mini
netconf-ned-builder project cisco-xr-mini 1.0
download-cache-path /Users/waitail/Tail-f/nso-dd/temp-2/mpls-vpn/state/net-
conf-ned-builder/cache/cisco-xr-mini-nc-1.0
ned-directory-path /Users/waitail/Tail-f/nso-dd/temp-2/mpls-vpn/state/net-
conf-ned-builder/cisco-xr-mini-nc-1.0
admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 fetch-module-list
admin@ncs# show netconf-ned-builder project cisco-xr-mini 1.0 module
module CISCO-ENTITY-FRU-CONTROL-MIB 2003-11-24
namespace http://tail-f.com/ns/mibs/CISCO-ENTITY-FRU-CONTROL-MIB/200311240000%
location [NETCONF]
module Cisco-IOS-XR-Subscriber-infra-subdb-oper 2019-04-05
namespace http://cisco.com/ns/yang/Cisco-I0S-XR-Subscriber-infra-subdb-oper
location [NETCONF]
submodule Cisco-I0S-XR-Subscriber-infra-subdb-oper-subl 2019-04-05
location [NETCONF]
submodule Cisco-I0S-XR-Subscriber-infra-subdb-oper-sub2 2019-04-05
location [NETCONF]

admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 module Cisco-I0OS-XR-
ifmgr-cfg 2019-04-05 select

admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 module Cisco-IOS-XR-
infra-rsi-cfg 2019-10-31 select

admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 module Cisco-IOS-XR-
ipvd-io-cfg 2019-04-05 select

admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 module Cisco-I0OS-XR-
12-eth-infra-cfg 2019-04-05 select

admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 module Cisco-I0OS-XR-
ipvid-bgp-cfg 2019-08-31 select

admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 module Cis-
co-I0S-XR-policy-repository-cfg 2019-04-05 select

admin@ncs# show netconf-ned-builder project xr-mini 1.0 module status

NAME REVISION STATUS

Cisco-I0S-XR-ifmgr-cfg 2019-04-05 selected,downloaded
Cisco-I0S-XR-infra-rsi-cfg 2019-10-31 selected,downloaded
Cisco-I0S-XR-ipv4d-bgp-cfg 2019-08-31 selected,downloaded

Cisco-I0S-XR-ipv4-bgp-datatypes 2019-08-31 selected,downloaded

Application Note
Cisco Public

Cisco-I0S-XR-ipv4-io-cfg 2019-04-05 selected,downloaded
Cisco-I0S-XR-12-eth-infra-cfg 2019-04-05 selected,downloaded
Cisco-I0S-XR-1l2-eth-infra-datatypes 2019-04-05 selected,downloaded
Cisco-I0S-XR-12vpn-cfg 2019-12-20 selected,downloaded
Cisco-I0S-XR-policy-repository-cfqg 2019-04-05 selected,downloaded
Cisco-I0S-XR-snmp-agent-cfg 2019-10-31 selected,downloaded
Cisco-I0S-XR-types 2019-12-03 selected,downloaded
cisco-semver 2019-03-13 selected,downloaded
ietf-inet-types 2013-07-15 selected,downloaded
ietf-yang-types 2013-07-15 selected,downloaded

admin@ncs# config

Entering configuration mode terminal

admin@ncs (config) # netconf-ned-builder project cisco-xr-mini 1.0 build-ned
admin@ncs (config) # exit

admin@ncs# show netconf-ned-builder project cisco-xr-mini 1.0 build-status
build-status success

admin@ncs# netconf-ned-builder project cisco-xr-mini 1.0 export-ned to-directo-
ry /tmp

tar-file /tmp/ncs-5.3.1.1-cisco-xr-mini-nc-1.0.tar.gz

admin@ncs# exit

mpls-vpn$ mv /tmp/ncs-5.3.1.1-cisco-xr-mini-nc-1.0.tar.gz packages
mpls-vpn$ ncs _cli -C -u admin

admin connected from 127.0.0.1 using console on WAITAI-M-72J2

admin@ncs# packages reload

>>> System upgrade is starting.

>>> Sessions 1in configure mode must exit to operational mode.

>>> No configuration changes can be performed until upgrade has completed.
>>> System upgrade has completed successfully.

reload-result {
package cisco-xr-mini-nc-1.0
result true

}
After the NETCONF NED has been loaded, the ned-id of “pe0-nc” needs to be updated:

admin@ncs# config

Entering configuration mode terminal

admin@ncs (config) # devices device peO-nc

admin@ncs (config-device-pelO-nc) # device-type netconf ned-id cisco-xr-mini-nc-1.0
admin@ncs (config-device-pelO-nc) # commit

Commit complete.

admin@ncs (config-device-peO-nc) # sync-from

result true

admin@ncs (config-device-pelO-nc) # top

If you have been following along in your own setup, you have seen that it only took a couple of minutes to
build a NETCONF NED including some manual typing. NSO can now communicate with the real IOS-XR
device using the NETCONF NED and perform both edit and get operations on the YANG data models that
have been included in the NED.

Application Note
Cisco Public

3.2.4 Generate a service template for the NETCONF device

Following the same approach as the last example, we will take advantage of the fact that changes made
to the CLI based “peQ” aren’t being synchronized to the NETCONF based “pe0-nc’. | will first perform an
un-deploy to remove the service related configuration and then perform a re-deploy to set up the service
related configuration on “peQ” I'll then use compare-config to determine the NETCONF payload that is
required to set up the equivalent configuration.

admin@ncs (config) # vpn 13vpn volvo check-sync

in-sync true

admin@ncs (config) # vpn 13vpn volvo un-deploy

admin@ncs (config) # devices device peO-nc sync-from

admin@ncs (config) # vpn 13vpn volvo re-deploy

admin@ncs (config) #

System message at 2020-06-01 10:21:02...

Commit performed by admin via console using cli.

admin@ncs (config) # devices device peO-nc compare-config outformat xml

diff
<devices xmlns="http://tail-f.com/ns/ncs">
<device>
<name>pe0-nc</name>
<config>

<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ifmgr-cfg">
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/3.77</interface-name>

The process here is the same as the last example. The XML diffs generated by the compare-config
operation is essentially what the “volvo” service needs to push out to the “pe0-nc” device over NETCONF.
Since the original service was based on an XML template towards the CLI NED, all | need to do is to add
these XML diffs to that template and parameterize it using the same variables as used by the CLI template.
The difference this time is that we will be working with a PE specific service template called 13vpn-pe.xml.
There will be two types of parameters that will replace the hardcoded values. They are the ones populated by
the service code in Java in the form of (S) and the service mapping logic in the form of XPath expressions
enclosed within { }. An “IOS-XR NETCONF” specific chunk of XML blocks will then be added to 13vpn-pe.xml.

The complete NETCONF template for IOS-XR can be found in Appendix B

3.2.5 Reconfigure the 13vpn service to use the NETCONF device

After adding the new service template to cover the NETCONF interface for “pe0-nc’, the “packages reload”
command needs to be performed for the new I3vpn-pe.xml template to take effect. For this example, we’ll
then update “pe0” to connect to the NETCONF interface of the real I0OS-XR device. Before we do that,

we will first un-deploy both services to allow the services related configuration to be unconfigured on the

device. Since NSO has configuration data for “pe0Q” in its datastore, “pe0”’s configuration needs to be wiped
clean in NSO before its ned-id can be updated.

Application Note
Cisco Public

admin@ncs (config) # vpn 13vpn volvo un-deploy
admin@ncs (config) # vpn 13vpn ford un-deploy
admin@ncs (config) # devices device pe0
admin@ncs (config-device-pe0) # no config
admin@ncs (config-device-pel) # commit no-networking
Commit complete.
admin@ncs (config-device-pe0) # port 33880
admin@ncs (config-device-pel) # device-type netconf ned-id cisco-xr-mini-nc-1.0
admin@ncs (config-device-pel) # commit
Commit complete.
admin@ncs (config-device-pel) # ssh fetch-host-keys
result unchanged
fingerprint {
algorithm ssh-rsa
value fb:44:4a:d7:e5:74:87:12:cc:72:7a:cb:ff:53:a0:0f
}
fingerprint {
algorithm ssh-dss
value 0c:3d:69:eb:e2:95:04:04:d2:89:6£:44:92:a3:9c:db
}
admin@ncs (config-device-pe0) # sync-from
result true
admin@ncs (config-device-pel) # exit

We can now re-deploy both services to verify that they are working properly:

admin@ncs (config) # vpn 13vpn volvo re-deploy dry-run

admin@ncs (config) # vpn 13vpn volvo re-deploy
admin@ncs (config) #

System message at 2020-06-01 10:34:16...

Commit performed by admin via console using cli.
admin@ncs (config) # vpn 13vpn ford check-sync
in-sync false

admin@ncs (config) # vpn 13vpn ford re-deploy dry-run

admin@ncs (config) # vpn 13vpn ford re-deploy

Inspect the output of “re-deploy dry-run” to make sure that the necessary configuration is being sent to the
NETCONF flavor of “pe0” You can perform an un-deploy followed by a re-deploy to verify that there are no
errors. As an exercise for the reader, you can also create a device in NSO for the CLI interface of the real

PE device and use that to confirm the device configuration being updated by the service application on the
NETCONF device by using the compare-config function when going from a un-deployed state to a deployed
state.

The NED migration is now done. It’'s almost as simple as the last example.

Application Note
Cisco Public

4 Troubleshooting

There are 2 areas in the documented NED migration procedure where you may require some help.
They are the parameterization of NETCONF templates and the building of NETCONF NEDs.

4.1 Debugging templates
To debug service templates, there is a cli pipe
command called “debug” that can be applied on either “template” or “xpath”:

admin@ncs (config) # commit dry-run | debug template
admin@ncs (config) # vpn 13vpn re-deploy dry-run | debug xpath

For all templates invoked, “debug template” will output XPath expression results from the template, under
which context it is evaluated, what operation is used, and how it affects the configuration. The command can
be narrowed down to only show debugging information for a specific template:

admin@ncs (config) # commit dry-run | debug template 13vpn

“debug xpath” will output all XPath evaluations for the transaction and is not limited to the XPath
expressions inside templates.

Template and XPath debugging can be combined:

admin@ncs (config) # commit dry-run | debug template | debug xpath

4.2 Troubleshooting NETCONF NED building issues
You can refer to section 5.3 of the “NETCONF & YANG Automation Testing User Guide v3” available for

download at https://info.tail-f.com/netconf_vyang_automation_testing for information on how to troubleshoot
NETCONF NED building issues.

4.3 Downloading of YANG modules from IOS-XR issue
If you observe the following alarm message in ncs_cli:

*** ALARM connection-failure: Failed to authenticate towards device peO-nc: SSH
subsystem not supported

while the YANG modules are being downloaded from the I0S-XR device using the NETCONF NED Builder,
change the device configuration for the I0S-XR device to match the following:

RP/0/RP0O/CPUO:xrv9000#show running-config ssh
Fri Jun 12 20:56:28.860 UTC

ssh timeout 120

ssh server rate-limit 600

ssh server session-limit 100

https://info.tail-f.com/netconf_yang_automation_testing

Application Note
Cisco Public

For More Information

https://cisco.com/go/nso

https://developer.cisco.com/nso

https://github.com/NSO-developer

© 2020 Cisco and/or its affiliates. All rights reserved.

https://cisco.com/go/nso
https://developer.cisco.com/site/nso/
https://github.com/NSO-developer

Application Note
Cisco Public

Appendix A NETCONF Template for the simple-mpls-vpn example

<!-- PE Template for IOS-XR over NETCONF -->
<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ifmgr-cfg"
tags="merge">
<interface-configuration tags="merge">
<active>act</active>
<interface-name>GigabitEthernet{link/interface-number}</interface-name>
<description>link to CE</description>
<vrf xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-rsi-cfg">
{string (/name) }
</vrf>
<ipv4-network xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-io-cfg">
<addresses>
<primary>
<address>{ip-address}</address>
<netmask>255.255.255.252</netmask>
</primary>
</addresses>
</ipvd-network>
</interface-configuration>
</interface-configurations>
<vrfs xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-rsi-cfg"
tags="merge">
<vrf>
<vrf-name>{string(/name) }</vrf-name>
<create/>
<afs>
<af>
<af-name>ipvi4</af-name>
<saf-name>unicast</saf-name>
<topology-name>default</topology-name>
<create/>
<bgp xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipvid-bgp-cfg">
<import-route-targets>
<route-targets>
<route-target>
<type>as</type>
<as-or-four-byte-as>
<as-xx>0</as-xx>
<as>{../as-number}</as>
<as-index>1</as-index>
<stitching-rt>0</stitching-rt>
</as-or-four-byte-as>
</route-target>
</route-targets>
</import-route-targets>
<export-route-targets>
<route-targets>
<route-target>
<type>as</type>
<as-or-four-byte-as>
<as-xx>0</as-xx>

Application Note
Cisco Public

<as>{../as-number}</as>
<as-index>1</as-index>
<stitching-rt>0</stitching-rt>
</as-or-four-byte-as>
</route-target>
</route-targets>
</export-route-targets>
</bgp>
</af>
</afs>
</vrf>
</vrfs>
<bgp
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipvi4-bgp-cfg"
tags="merge">
<instance>
<instance-name>default</instance-name>
<instance-as>
<as>0</as>
<four-byte-as>
<as>100</as>
<vrfs tags="merge">
<vrf>
<vrf-name>{string(/name) }</vrf-name>
<vrf-global>
<route-distinguisher>
<type>as</type>
<as-xx>0</as-xx>
<as>{../as-number}</as>
<as-index>1</as-index>
</route-distinguisher>
<vrf-global-afs>
<vrf-global-af>
<af-name>ipv4-unicast</af-name>
<enable/>
</vrf-global-af>
</vrf-global-afs>
<exists/>
</vrf-global>
<vrf-neighbors>
<vrf-neighbor>
<neighbor-address>
{../ce/link/ip-address}
</neighbor-address>
<vrf-neighbor-afs>
<vrf-neighbor-af>
<af-name>ipv4-unicast</af-name>
<as-override>true</as-override>
<activate/>
</vrf-neighbor-af>
</vrf-neighbor-afs>
<remote-as>
<as-xx>0</as-xx>
<as-yy>{../../as-number}</as-yy>

Application Note
Cisco Public

</remote-as>
</vrf-neighbor>
</vrf-neighbors>
</vrf>
</vrfs>
<default-vrf>
<global>
<global-afs>
<global-af>
<af-name>vpnv4-unicast</af-name>
<enable/>
</global-af>
</global-afs>
</global>
</default-vrf>
<bgp-running/>
</four-byte-as>
</instance-as>
</instance>
</bgp>
<!-- End of PE Template for IOS-XR over NETCONF -->

Application Note
Cisco Public

Appendix B NETCONF Template for the mpls-vpn example

<!—=PE Template for IOS-XR over NETCONF -->
<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ifmgr-cfg">
<interface-configuration>
<active>act</active>
<interface-name>
GigabitEthernet{substring (SPE_INT_ NAME,16) }.{SVLAN_ID}
</interface—-name>
<interface-mode-non-physical>
Default
</interface-mode-non-physical>
<description>Link to CE / {SCE} - {SCE_INT NAME}</description>
<vrf xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-rsi-cfg">
{string (/name) }
</vrf>
<ipv4-network
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-io-cfg">
<addresses>
<primary>
<address>{$SLINK PE ADR}</address>
<netmask>{$LINK MASK}</netmask>
</primary>
</addresses>
</ipv4d-network>
<vlan-sub-configuration
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-12-eth-infra-cfg">
<vlan-identifier>
<vlan-type>vlan-type-dotlg</vlan-type>
<first-tag>{SVLAN ID}</first-tag>
</vlan-identifier>
</vlan-sub-configuration>
</interface-configuration>
</interface-configurations>
<vrfs xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-rsi-cfg">
<vrf>
<vrf-name>{/name}</vrf-name>
<create/>
<afs>
<af>
<af-name>ipvi</af-name>
<saf-name>unicast</saf-name>
<topology-name>default</topology-name>
<create/>
<bgp xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-bgp-cfg">
<import-route-targets>
<route-targets>
<route-target>
<type>as</type>
<as-or-four-byte-as>
<as-xx>0</as-xx>
<as>{/route-distinguisher}</as>
<as-index>1</as-index>

Application Note
Cisco Public

<stitching-rt>0</stitching-rt>
</as-or-four-byte-as>
</route-target>
</route-targets>
</import-route-targets>
<export-route-targets>
<route-targets>
<route-target>
<type>as</type>
<as-or-four-byte-as>
<as-xx>0</as-xx>
<as>{/route-distinguisher}</as>
<as-index>1</as-index>
<stitching-rt>0</stitching-rt>
</as-or-four-byte-as>
</route-target>
</route-targets>
</export-route-targets>
</bgp>
</af>
</afs>
</vrf>
</vrfs>
<bgp xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-bgp-cfg">
<instance>
<instance-name>default</instance-name>
<instance-as>
<as>0</as>
<four-byte-as>
<as>100</as>
<vrfs>
<vrf>
<vrf-name>{/name}</vrf-name>
<vrf-global>
<route-distinguisher>
<type>as</type>
<as-xx>0</as-xx>
<as>{/route-distinguisher}</as>
<as-index>1</as-index>
</route-distinguisher>
<vrf-global-afs>
<vrf-global-af>
<af-name>ipv4-unicast</af-name>
<enable/>
</vrf-global-af>
</vrf-global-afs>
<exists/>
</vrf-global>
<vrf-neighbors>
<vrf-neighbor>
<neighbor-address>{SLINK CE ADR}</neighbor-address>
<vrf-neighbor-afs>
<vrf-neighbor-af>
<af-name>ipv4-unicast</af-name>

Application Note
Cisco Public

<as-override>true</as-override>
<activate/>
<route-policy-in>{/name}</route-policy-in>
<route-policy-out>{/name}</route-policy-out>
</vrf-neighbor-af>
</vrf-neighbor-afs>
<remote-as>
<as-xx>0</as-xx>
<as-yy>{S$CE_AS NUM}</as-yy>
</remote-as>
</vrf-neighbor>
</vrf-neighbors>
</vrf>
</vrfs>
<default-vrf>
<global>
<global-afs>
<global-af>
<af-name>vpnv4-unicast</af-name>
<enable/>
</global-af>
</global-afs>
</global>
</default-vrf>
<bgp-running/>
</four-byte-as>
</instance-as>
</instance>
</bgp>
<routing-policy
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-policy-repository-cfg">
<route-policies>
<route-policy>
<route-policy-name>{/name}</route-policy-name>
<rpl-route-policy>
route-policy {/name}
pass
end-policy
</rpl-route-policy>
</route-policy>
</route-policies>
</routing-policy>
<!-- End of PE Template for IOS-XR over NETCONF -->

