
NETWORK
PROGRAMMABILITY IN
CLOUD-NATIVE NFV

2

Table of Contents

1. Introduction...3

2. Background...3

3. Cloud-Native Application Development:
 Microservices and Containers...6

4. Understanding Cloud-Native
 Application Development... 7

5. Benefits of Being Cloud-Native...8

6. Cloud-Native NFV...8

7. Cloud-Native VNF Design principles..9

8. Configuration Management
 for Cloud-Native VNFs... 10

9. Network Programmability
 for Cloud-Native VNFs...11

10. SDN Moves to the Cloud... 12

11. Conclusion..14

12. About Tail-f..14

3

Network Programmability in Cloud - Native NFV

1. Introduction

In the telecommunications industry, major technology evolutions have become a way of
life. Just a few years ago, virtualization was the name of the game. In an effort to increase
flexibility, lower costs, and accelerate time to market, operators began moving away
from network devices tied to dedicated physical appliances in favor of network functions
virtualization (NFV). Taking their cues from operators, network equipment providers
(NEPs) created a new generation of virtualized network functions (VNFs) implemented
in software, which can run in virtual machines (VMs) on commercial off-the-shelf
(COTS) servers. Today, another major evolution is under way: the shift to cloud-native
applications.

In a cloud-native world, applications are decomposed into “microservices” running in
containers rather than dedicated VMs, so they can more easily take advantage of the
shared resources, speed, and agility of cloud environments. Since VNFs are, at their
core, software applications themselves, they too are now being decomposed into their
constituent microservices to become “cloud-native.” However, deploying and managing
VNFs, especially in complex multivendor operator environments, is different than running
other types of applications in the cloud.

Due to the unique requirements of the software-defined networking (SDN) automation
running in service provider networks, operators (and their service orchestration systems)
still require the ability to centrally manage device configurations at runtime. Therefore,
VNFs will still need to be “programmable” via SDN controllers and conventional service
orchestrators. For these reasons, it is just as important as ever for NEPs to ensure that the
VNFs they create are programmable, even as they embrace cloud-native development
methodologies.

This paper discusses some of the requirements for developing cloud-native VNFs. It
details the impact of cloud-native approaches on today’s programmable networks, and
it describes why NEPs should continue to prioritize programmability in their VNFs for the
foreseeable future.

2. Background

To understand the role of network programmability in cloud-native environments, it’s
important to understand how we got here. A decade ago, as communications service
providers struggled to keep pace with their customers’ insatiable demands for network
services, their network infrastructures grew to contain a vast, constantly growing variety
of proprietary hardware. This complexity had a significant impact on operator costs,
efficiencies, and time to market. Launching any new services, for example, typically
demanded a major network reconfiguration effort, as well as onsite installation of
new equipment—which, in turn, required additional floor space, power, and trained
maintenance staff. Enter NFV.

4

Network Programmability in Cloud - Native NFV

The network architecture concept behind network functions virtualization uses the
technologies of IT virtualization to virtualize entire classes of network node functions.
Once virtualized, these network functions can act as flexible building blocks that
operators can connect, or chain together, to create communications services. By shifting
away from custom hardware appliances, and using VNF software running on standard
COTS servers, operators can lower costs, streamline operations, and bring up new
services much more quickly.

Unfolding at the same time as NFV, and closely related to it, software-defined networking
arose to support many of the same goals. By separating the control plane and data
plane of their infrastructures, operators gain the ability to automate networkwide device
configurations, along with the flexibility to distribute and scale data-plane capacity
as business requirements dictate. SDN and NFV are complementary concepts, but
increasingly codependent for network operators looking to fully realize the benefits of
automation, reduced complexity, and speed.

According to Cisco’s latest Global Cloud Index Report, published in February 2018, more
than two-thirds of all data centers will fully or partially adopt SDN by 2021, compared
to just 16 percent in 2016. But the report reveals an even bigger shift happening in the
world’s IT environments: the move to cloud.

The findings show that by 2021, 94 percent of all workloads will be cloud-based, and
global cloud traffic will represent 95 percent of total data center traffic. The report also
forecasts that SDN and NFV will carry over half of “within data center traffic”(that is, traffic
that remains within the facility) over the same period, compared to 28 percent in 2016.
As these projections show, while businesses in practically every industry embrace cloud,
SDN and NFV will continue to play important roles in automating large data centers.

How Cloud Affects SDN and NFV
To date, the majority of NFV development efforts have focused on porting the monolithic
software applications that used to live in custom hardware appliances to virtual machines
(VM). However, a trend has been emerging in the world of SDN towards running NFVs in
cloud-native networks.

In theory, virtualized network device software should be able to take advantage of the
same benefits as any other application in the cloud: ready access to existing cloud
infrastructure and resources, and much quicker time to market. In practice, however,
monolithic custom hardware-based network function software applications don’t scale
well in distributed cloud environments. As a result, many NEPs are now reevaluating
their VNF applications, looking to redesign and rewrite them as a set of distributed
microservices hosted inside of containers, which can scale horizontally and run in the
cloud.

Crucially, however, NEPs need to recognize that virtualized networking applications—and
the SDN architectures that automate their programming—can have unique requirements
that separate them from other types of applications that are being redesigned to be
cloud-native. Additionally, while the industry works to migrate NFV towards cloud-native
SDN environments in the data center, this process will not happen all at once. Operator
networks in particular are likely to consist of “hybrid” environments, containing both
cloud-native and traditional VNFs, for the foreseeable future.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

5

Network Programmability in Cloud - Native NFV

What does all this mean then with regard to network programmability? Operators will
continue to use traditional SDN controllers and service orchestrators to configure (or
“program”) downstream VNFs. Today, northbound SDN controller interfaces typically use
either the NETCONF or RESTCONF protocol to communicate with service orchestrators,
while service orchestrators themselves (such as Cisco® Network Services Orchestrator,
or NSO), commonly use RESTCONF to communicate with an OSS. For southbound
configuration of virtualized network devices, NETCONF has been widely adopted as the
protocol of choice. For NEPs then, building programmable VNFs—that is, building support
for NETCONF into their virtualized device software—will still be essential for those VNFs
to function in real-world service provider environments.

Programmable Interfaces in a SDN Environment

OSS

NETCONF, RESTCONF

NETCONF, RESTCONF

NETCONF

NETCONF

Service Orchestrator

Physical Networks Virtual Networks

SDN Controller

6

Network Programmability in Cloud - Native NFV

3. Cloud-Native Application Development:
 Microservices and Containers

We will discuss the role of network programmability and centralized configuration
management in cloud environments in more detail later in this paper. First though, let’s
review the ways that cloud-native software applications differ from traditional ones.
Specifically, that they are decomposed into microservices and deployed using containers
rather than dedicated VMs.

The Rise of Microservices
“Microservices” is a new architectural approach to developing an application as a loose
collection of fine-grained services, rather than as a single, monolithic piece of code.
In this approach, each distinct “service” implements business capabilities, runs in its
own process, and communicates with other services and the cloud via HTTP APIs or
messaging.

It is important to note that the reason why applications built on microservices are API-
driven is to allow them to be programmable. Each microservice can be deployed,
upgraded, scaled, and restarted independent of other services in the application,
typically as part of an automated system. This model allows applications to be updated
more frequently and easily, without impacting end customers.

Containers and Their Benefits
A “container” is a packaging format for a unit of software that ships together. Containers
encapsulate a set of software and its dependencies—that is, the minimal set of runtime
resources the software needs to perform its function. Like VMs, containers are, at the end
of the day, ultimately just a virtualized deployment option. Containers differ from VMs,
however, in some important ways.

VMs encapsulate functionality in the form of the full application platform and its
dependencies, whereas containers are built for lightweight microservices. Where each
VM in an environment has its own full-sized OS, containers typically have a more minimal
OS. As a result, containers are typically an order of magnitude or two smaller than VMs.

Because they are lightweight and have a minimal OS component, containers have some
important advantages over traditional VMs. First, they start up very quickly. Containers
are more like processes, whereas VMs are more like physical machines. Containers
can also move easily from one platform to another compatible one, and a number of
containers can fit into the disk footprint of a single VM. As far as mobility is concerned,
and the duration of maintenance windows, containers can be spun up much more quickly
than VMs. Containers therefore shrink the required maintenance window significantly
when compared to VMs.

7

Network Programmability in Cloud - Native NFV

In addition, immutable container images can be created at build/release time rather
than at deployment time. This is because, in cloud-native environments based on
microservices, each application doesn’t need to be composed with the rest of the
application stack, nor married to the production infrastructure environment. This
capability is central to the broader appeal of cloud-native applications in general. With
the ability to generate container images at build/release time, operators can maintain a
single, consistent application environment from development through production. This
dramatically accelerates the release of new applications, features, and updates, and
enables the “continuous integration/continuous delivery” (CI/CD) cycle that is at the core
of modern DevOps approaches.

It should be noted that, while containerized applications do require orchestration, this is
not the same as traditional “service orchestrators” in operator networks. Rather, cloud-
native application environments use orchestration software such as Kubernetes to
automate the deployment, scaling, and management of containers and microservices
across clusters of hosts.

4. Understanding Cloud-Native Application Development

We’ve been discussing the concept of “cloud-native” applications extensively, but what
does the term actually mean? The cloud-native microservices container architecture
originated with the web-scale providers such as Amazon, Google, and Netflix. As these
massive businesses live and breathe cloud, they sought an approach to building and
running enterprise applications that would fully exploit one of the central advantages of
the cloud computing delivery model: on-demand computing power.

The web-scale providers spearheaded the emergence of cloud-native applications that
are developed specifically for cloud platforms, built to natively utilize the infrastructure
services provided by cloud computing providers. The benefits they realized were
significant. Chief among them: continuous delivery. By developing applications as
lightweight services tuned specifically for on-demand cloud environments, these
companies were able to ship software much more quickly, and radically reduce the
number of steps in the traditional build/test/release/deploy software lifecycle.

The industry at large has paid close attention, and today, organizations around the world
are adopting the same CI/CD model. By developing applications as cloud-native and
shortcutting the traditional software lifecycle, organizations can more effectively operate
and scale applications. Most important, they gain agility: the ability to quickly add new
functionality to software, even as it remains stable and secure in production.

Inside Cloud-Native Applications
For the most part, a cloud-native approach implies building applications that are
assembled as a set of microservices that run inside of containers hosted in a Linux
environment. This is a very different architecture than that used in traditional enterprise
application design, as getting software to work in the cloud requires a broad set of
components that work together.

8

Network Programmability in Cloud - Native NFV

As defined by the Cloud Native Computing Foundation (https://www.cncf.io), cloud-native
architected systems are:

•	 Containerized: Each part of the system (applications, processes, and other
components) is packaged in its own container. This facilitates reproducibility,
transparency, and resource isolation.

•	 Dynamically orchestrated: Containers are actively scheduled and managed to
optimize resource utilization.

•	 Microservices-oriented: Applications are segmented into microservices. This
significantly increases the overall agility and maintainability of applications.

5. Benefits of Being Cloud-Native

There are many benefits to running cloud-native applications in a cloud computing
environment. The most significant is that common infrastructure services such as high
availability, scalability, and upgradability are all already provided by the cloud; it is not
necessary for application developers to recreate this logic for each application. Instead,
developers can focus on developing the unique business logic of the application and
implementing it as a set of distributed and reusable components via microservices.

A cloud-native approach to the software delivery lifecycle fully automates the
infrastructure, developer middleware, and backing services used to run applications. By
employing a cloud-native approach, developers can more effectively operate, scale, and
update applications, even in production. The result is applications that are continually
improved by adding and refining functionality, and the ability to bring new software and
capabilities to market much more quickly.

It is also worth noting that, in addition to facilitating faster application design and
deployment, cloud-native development allows organizations to do more with fewer
resources. Today, modestly funded startups with a few tens of engineers can build
software systems in the cloud that deliver rapidly-evolving, fast-scaling services that
attract tens and even hundreds of millions of users.

6. Cloud-Native NFV

Now that we’ve discussed cloud-native applications, we can pose the key question: how
do cloud-native approaches impact NFV? In theory, NEPs ought to be able to create
cloud-native VNFs the same way that organizations create any other type of cloud-native
software.

At its core, cloud-native NFV implies virtual network functions that are decomposed
into microservices, which are scheduled to run in containers using available compute
and storage resources in the cloud computing environment, based on system demand.

https://www.cncf.io

9

Network Programmability in Cloud - Native NFV

Rather than capturing the functionality of a network node within a complex, monolithic
piece of software, VNFs are decomposed into simple, loosely-coupled components or
microservices that communicate with each other via well-defined APIs. This allows the
VNFs to easily scale out horizontally and provide full redundancy.

As we will see, however, this cloud-native approach gets complicated in operator
networks, where service orchestrators and SDN controllers rely on the ability to centrally
push out configurations to downstream devices at runtime.

7. Cloud-Native VNF Design principles

When building cloud-native VNFs, what are the specific design considerations that NEPs
need to consider? The Twelve-Factor App (https://12factor.net) has been widely used as
the methodology for building cloud-native software applications that run as a service.
Although all twelve factors described in the methodology are important, three of them are
particularly relevant to cloud-native VNFs. They are:

•	 Processes: Execute the application as one or more stateless processes.

•	 Concurrency: Scale out via the process model.

•	 Config: Store configurations in the environment.

Let’s explore each of these factors in more detail.

Processes
To meet the Processes requirement, the entire application should be executed as one or
more stateless processes. In the case of a cloud-native VNF application, those stateless
processes will be run as microservices, and any data that needs to persist must be stored
in a stateful backing service, typically a database.

This represents a departure from traditional VNF development, where a single transaction
could span multiple sessions, and all information was cached. That approach becomes
problematic in a cloud-native world, where transactions that span multiple sessions make
it difficult to scale up processing power for a particular process. Developers can still use
single-transaction caching in cloud-native VNFs, but they can no longer assume that the
cached information will be available for a future request or job.

Concurrency
In terms of concurrency, the processes (or microservices) should be architected with
different process types to handle different workloads. For example, HTTP requests may
be handled by a web process, while long-running background tasks are handled by a
worker process.

The process model truly shines when it comes time to scale out. The share-nothing,
horizontally partitionable nature of processes under the Twelve-Factor App methodology
means that adding more concurrency is a simple and reliable operation, perfectly suited
to on-demand cloud resources.

https://12factor.net

10

Network Programmability in Cloud - Native NFV

Configuration
In terms of configuration, or what the Twelve-Factor App calls config, the methodology
dictates strict separation of config from code. In a cloud-native world, this makes sense:
config varies substantially across deployments; code does not. The Twelve-Factor App
model suggests that applications should read their config from the environment. The
implication here is that, wherever you store your configuration information, it should be
distinct from the application itself.

While this approach works well for many cloud-native applications, it’s not hard to see how
it would present challenges in virtualized operator networks, where SDN controllers may
need to configure hundreds of downstream devices at runtime. In these environments,
each “application” represents a decomposed process within a formerly discrete physical
network device. When the environment encompasses thousands of networking devices
from multiple vendors, having each decomposed process be responsible for getting its
own config from the environment simply won’t scale.

Rather, operators need a way to centralize the management of configs for all of the
networking “applications” in the environment. Effectively, we need a way to “recompose”
some of the functionality that was decomposed in making the application cloud-native.
This is the only viable way that service orchestrators and SDN controllers can make
sense of VNF microservices as being part of a discrete “network device.” We could invest
a huge amount of time and resources into inventing something new to accomplish this.
Instead, it makes much more sense to reuse the same tools that operators use to centrally
manage device configurations today: YANG data modeling and the NETCONF protocol.

8. Configuration Management for Cloud-Native VNFs

Let’s take a closer look at what’s involved in configuration management for cloud-native
VNFs. According to the 2017 NCTA technical paper Cloud Native Network Function
Virtualization: True Cloud for NFV, there are two separate domains to address: the control
and management plane, and the data plane.

The control and management planes deal with configuration and session establishment.
As these are workflow- and transaction-based systems, it is fairly straightforward to
translate them into cloud-native applications. As for the data plane, it differs drastically
from most cloud-native applications, as data planes are not transaction-based systems
and can’t rely on load-balancers to handle high-speed packets. Rather, SDN controllers
and service orchestrators are used to direct the packet streams to the right data plane
containers as part of normal routing and switching. In other words, load-balancing has
been absorbed by networking.

Separating “Cattle” from “Pets”
To understand the implications of this issue, let’s review a common analogy for scalability
in the web-scale domain: “cattle” vs. “pets.”

For microservices that can be designed to be stateless and easy to scale out (typically,
microservices for the control and management plane functions of a VNF), developers
should design and implement them to run as cattle. This implies that many identical

https://www.nctatechnicalpapers.com/Paper/2017/2017-cloud-native-network-function-virtualization-true-cloud-for-nfv
https://www.nctatechnicalpapers.com/Paper/2017/2017-cloud-native-network-function-virtualization-true-cloud-for-nfv
https://www.slideshare.net/randybias/the-history-of-pets-vs-cattle-and-using-it-properly

11

Network Programmability in Cloud - Native NFV

instances of the microservice will be running simultaneously, depending on the workload
of the VNF application. These cattle, or stateless microservices, will be highly available,
and can be taken down and replaced as necessary. They support service discovery. And
distributed configuration stores such as etcd or Consul can be used for the automated
discovery of configuration and topology information for individual microservices.

For microservices that need to be stateful, however, developers should treat these
applications more like pets—unique, individual entities that require their own special
care and feeding in order to scale. These applications must be run as a group of stateful
microservices of a certain size, and one of these groups may have different resource
requirements and/or runtime behavior than others. Here, configuration management is
typically needed to define the different behaviors of these applications at deployment
and/or runtime.

As described previously, from the point of view of network service orchestration, it
doesn’t make sense for the individual microservices within a VNF to be individually
managed. Rather, operator environments require a special kind of microservice that
serves configuration management for all of the different microservices that make up a
given VNF application. This type of “configuration management microservice” is stateful,
so should be implemented as a “pet.” It will often be sufficient to run in an active/standby
mode and doesn’t need to scale out. In scenarios with less stringent uptime requirements,
configuration management microservices can just be restarted on demand, without the
need for standby instances.

9. Network Programmability for Cloud-Native VNFs

As discussed in a previous Tail-f white paper, “Trends in NFV Management,” NEPs have to
move away from the concept of “configuring” network appliances and begin to view their
virtualized network functions as software to be programmed. As we evolve to a world
where intelligent software drives the network, instead of human beings, we need to think
of network management in terms of providing a programmable interface into network
elements that this software can use.

As NEPs support and enable this network programmability paradigm shift, they begin
to allow their network operator customers to fully automate their environments. This is
an essential prerequisite to network agility, faster time-to-revenue, and DevOps ways of
working. They also unleash innovation, as operators can now mix and match multivendor
VNFs into new service chains and do things that even the vendors themselves never
imagined.

Shifting to programmable interfaces for VNFs doesn’t mean that network engineers now
have to run out and get computer science degrees. Modern NFV tools can hide much of
the lower-level detail involved in programming virtualized functions. But NEPs do have
to start thinking about their VNFs as programmable software, rather than a device that
an operator has to imperatively poke to perform some function. They need to think of
configuration management in terms of a standards-based API into their devices.

http://info.tail-f.com/trends_NFV_management?utm_campaign=ConfD&utm_medium=email&_hsenc=p2ANqtz--uLpEtuf9u9ExgnkAbTLsmy7RcHRu425--5W3QOuxTdKVBHgVaycsyiztifNZXuckE1VMJV49LRS2OJvtw1kIjvgDT2w&_hsmi=57503443&utm_content=57503443&utm_source=hs_email&hs

12

Network Programmability in Cloud - Native NFV

10. SDN Moves to the Cloud

At the same time that NEPs are looking to reimagine their VNFs for cloud environments, a
similar evolution is happening in the world of SDN. With the widespread adoption of SDN
in data centers, we are seeing a shift towards SDN designed to run in cloud environments.

As discussed previously, in a software-defined network, the data comprising network
traffic (data plane) is separated from the data that keeps the network running (control
and management plane). Deployed as a virtual appliance in the network, an SDN
controller handles southbound communications with the cloud-native VNFs and enables
northbound communications between the applications running on the network and the
controller itself. This capacity for real-time communication between applications and
the network allows software-defined networks to do what can’t be done with any purely
physical network: reshape the data plane to suit the requirements of the applications.

Today, the SDN community has standardized on two software-based controllers:

•	 ONOS, a project, led by some of the creators of the OpenFlow protocol, aims to
enable scalable network functions on telco infrastructure.

•	 OpenDaylight is now used predominantly by data centers that host network functions
using OpenStack.

In addition, the Linux Foundation umbrella organization has unveiled the ONAP
Project. This relative newcomer was formed to combine two previously separate open
networking and orchestration projects: open-source ECOMP and Open Orchestration
Project (OPEN-O). The goal of the ONAP Project is to develop a unified architecture and
implementation, while supporting collaboration across the open-source community.

These SDN projects are all migrating towards cloud-native in their own ways.

ONOS
One of the projects under ONOS is called Central Office Re-architected as a Datacenter
(CORD). The CORD architecture combines SDN, NFV, and elastic cloud services—all
running on commodity hardware—to build cost-effective, agile networks. These networks
should have significantly lower CAPEX/OPEX than conventional service provider
architectures, and enable rapid service creation and monetization.

ONOS can now import device-specific NETCONF/YANG models, automatically
manage these models in its distributed database, and dynamically sync and apply this
configuration to the network.

OPNFV
Open-source group OPNFV has recently taken a big step forward in the cloud-native
direction with its latest release, Euphrates. This fifth software release from OPNFV
integrates Kubernetes and containers, as well as cross-community continuous integration
capabilities. It delivers a pretested set of interoperable open-source NFV components
that are key pieces of a commercially deployable NFV infrastructure.

https://wiki.opencord.org/pages/viewpage.action?pageId=1278047
https://wiki.opencord.org/pages/viewpage.action?pageId=1278047
https://wiki.opnfv.org/display/SWREL/Euphrates

13

Network Programmability in Cloud - Native NFV

Euphrates marks a major step towards the cloud-native capabilities that network operators
say they want. It advances the cloud-native agenda of fast, scalable, vendor-neutral
deployments in a number of ways. First, OPNFV has built architectural support around
Kubernetes integration into the new release. They’ve also added support for upstream
components such as FD.io and OpenDaylight, as well as the ability to do containerized
OpenStack via Kolla.

ONAP
ONAP is an open-source platform that delivers capabilities for the design, creation,
orchestration, monitoring, and lifecycle management of VNFs, SDNs, and higher-level
services that combine them. ONAP provides for automatic policy-driven interaction of
these functions and services in a dynamic, real-time cloud environment. ONAP has recently
released an initial release of its production-ready source code and documentation to the
open-source community in order to increase collaboration.

As for ONAP’s migration to become cloud-native, the group recently conducted a
demonstration at the Open Networking Summit. There, they demonstrated the integration of
open networking and cloud-native technologies with Kubernetes, enabling ONAP to run on
any public, private, or hybrid cloud network.

Network Programmability Fuels Cloud-Native SDN
Just because VNFs are moving towards being cloud native, that doesn’t obviate the
need for VNFs, either cloud-native or VM-based, to be programmable. Indeed, VNF
programmability remains essential to allow the entire SDN network to be automated. And
that, after all, is the ultimate goal of all of these projects: making the network more agile,
accelerating time-to-revenue, and enabling DevOps way of working.

ONOS, OpenDaylight, and ONAP are all big proponents of model-driven methodology for
defining the network configuration. For all of these projects, NETCONF is the protocol of
choice as the southbound interface between SDN controllers/service orchestrators and the
VNFs.

As described previously, when VNFs are operating in a cloud-native SDN environment, the
NETCONF server component can be run as a microservice functioning as a configuration
server in an active/standby mode. The job of this type of microservice is to take NETCONF
configuration requests from the SDN controllers or network service orchestrators. It then
pushes out the necessary changes, either directly or through the container orchestration
software, such as Kubernetes, to the other stateless microservices of the VNF via their
supported REST APIs or message bus.

https://www.linuxfoundation.org/networking-orchestration/opening-ons-keynote-demonstrates-kubernetes-enabling-onap-on-any-public-private-or-hybrid-cloud/

14

Network Programmability in Cloud - Native NFV

11. Conclusion

As the industry moves towards running VNFs in cloud environments, NEPs face new
challenges. Previously, they had to reimagine their devices as programmable virtualized
software instances. Now, they must go a step farther: building those VNFs in a cloud-
friendly way, so that their component microservices can take full advantage of on-demand
cloud infrastructure and resources, continuous delivery, and DevOps.

In tackling this challenge, NEPs need to ensure that their VNFs are built with SDN
requirements in mind, as SDN adoption is growing rapidly in the data center market
and among their core customers. The best way to meet the needs of operators’ SDN
environments: build VNFs that are programmable.

By building in support for the industry-standard modeling language (YANG) and network
configuration protocols (NETCONF, RESTCONF), NEPs will empower their service provider
customers to fully automate their networks. And NEPs, service providers, and their
customers will all benefit from the more agile, flexible, and effective applications that now
become possible.

12. About Tail-f

Tail-f, a Cisco company, has been a leader in network programmability in the NFV space
since its inception, and is a key contributor to the IETF, helping to define and develop
new standards based on NETCONF and YANG. Our ConfD product can be deployed
in a container and provides a simple, easy-to-implement way to add NETCONF and
YANG capabilities to any vendors’ VNFs, and help their customers fulfill the promise of
fully programmable cloud-native virtual networks. Visit the Tail-f website for application
notes on running ConfD on Docker, and on adding fully synchronous active-active high-
availability cluster capabilities to ConfD.

To learn more, visit http://www.tail-f.com

http://www.tail-f.com

Corporate Headquarters

Sveavagen 25
111 34 Stockholm

Sweden
+46 8 21 37 40

www.tail-f.com
info@tail-f.com

©2018 Tail-f Systems All rights reserved.

