
Inside RESTCONF:
To Capitalize on the New

Network Programmability

Standard, Vendors Should

Know How RESTCONF Works,

Where it Can Be Used, and

Where it Shouldn’t

2

Table of Contents

1. Introduction ...3

2. Overview ...4

3. RESTCONF Features ...5

3.1 Resources ..5

3.2 RESTCONF Methods ...6

3.3 Queries ..8

3.4 Messages ..9

3.5 Caching ... 10

3.6 Notifications .. 10

4. RESTCONF Limitations .. 10

5. RESTCONF Interactions with NETCONF ...11

6. Can RESTCONF Replace NETCONF? ..11

7. Conclusion .. 12

8. Resources ..13

3

Introduction

Organizations in all industries want to lower operating costs and decrease time-to-value
of new services—and they’re looking to network programmability to do it. By automating
the configuration and management of network elements (both physical and virtual), orga-
nizations can eliminate huge amounts of manual effort, and create and provision services
much more quickly. To accomplish this, however, southbound network elements must
be addressable by northbound systems such as orchestration platforms and software
defined networking (SDN) controllers. As a result, network equipment vendors are look-
ing for the best approach to enable their network elements to communicate with these
systems.

In modern networks, programmability is typically based on data models defined in YANG
[RFC 7950]. For several years, service providers have used NETCONF [RFC6241] as the
protocol of choice to access and manipulate YANG data for the management and con-
figuration of network elements in large-scale service provider environments. NETCONF
remains a powerful, flexible protocol to accomplish this. As more enterprises look to cre-
ate programmable data center environments, however, there has been growing interest
in finding alternate approaches based on REST APIs. This market demand makes sense:
many traditional enterprise IT programmers have little background in NETCONF and in-
correctly envision a steep learning curve to use NETCONF libraries and tools effectively.
They are, however, intimately familiar with using REST APIs to programmatically access
remote Web services, and they appreciate the ability to use a protocol with which they
are already comfortable.

Today, programmers can use REST calls and libraries to address southbound network
elements in the same way they use REST to call other types of resources. However, there
is no single, standard implementation. Different vendors implement their own proprietary
RESTful APIs—much like the way that different vendors can all claim they use CLI, but
implement it in unique ways for their products. For these reasons, RESTCONF [RFC8040]
was born.

RESTCONF is a recently standardized REST-like protocol over HTTP (or HTTPS) for ac-
cessing data defined in YANG, using the datastores defined in NETCONF. RESTCONF
is not meant to replace NETCONF but to provide a simplified interface that follows REST
principles and is compatible with resource-oriented network element abstractions. It is
envisioned for use cases like SDN controller integration, application automation, and
operations support system/business support system (OSS/BSS) integration.

RESTCONF standardizes the use of REST techniques to manipulate the data described
in YANG data models (the same data used by NETCONF to configure network elements).
Unlike NETCONF, however, RESTCONF runs over HTTP Web protocol and uses the famil-
iar verbs of HTTP—“push,” “put,” “get,” “patch,” and others—to make changes to network
elements. Most importantly to programmers familiar with REST, it allows them to begin us-
ing YANG data models to automate their environments, while using the REST-based tools
and knowledge they have today.

4

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

For network equipment vendors, it’s important to understand how RESTCONF works,
how it compares to NETCONF, and the tradeoffs in using one versus the other. This paper
provides an overview of RESTCONF, including features and methods defined in the new
standard. It also discusses some of the limitations of RESTCONF in contrast to NETCONF
and the scenarios where RESTCONF can provide an effective solution.

If network element vendors want their products to be applicable to a broad range of cus-
tomers and use cases, they should make sure that they fully understand what RESTCONF
can and cannot do. In most cases, they will likely conclude that, while RESTCONF support
can provide a valuable complementary option for integrating their elements into automat-
ed environments, it should not be viewed as a NETCONF replacement.

Note: To get the most out of this white paper you should be familiar
with NETCONF and YANG.

For more details on NETCONF, visit: https://tools.ietf.org/html/rfc6241

To learn more about YANG, visit: https://tools.ietf.org/html/7950

You can also view NETCONF and YANG tutorials as part of the free ConfD Training
Videos by visiting: http://www.tail-f.com/confd-training-videos/

RESTCONF Overview

RESTCONF emerged in response to the broad popularity of REST in enterprise network-
ing and data center environments. RESTful APIs are popular for a number of reasons:
They are scalable, perform relatively well, provide a simple and uniform interface, and
they are easy to port to different platforms. A huge number of RESTful APIs are now in
use, and while different vendors implement their own proprietary versions of REST, all
share some common properties. Every RESTful API:

• Is based on a client-server model
• Is stateless (The server doesn’t maintain any state.)
• Uses textual representation (typically XML or JSON)
• Uses resources specified in uniform resource identifiers (URIs)
• Uses the pre-defined verbs in the HTTP protocol (such as GET, POST, PUT, PATCH,
 and others)

However, while all RESTful APIs share some commonalities, it’s important to note that
RESTful does not mean “standard APIs.” Different RESTful APIs may use different HTTP
options and may handle HTTP verbs, methods of authentication, encoding, and message
serialization in entirely different ways.

RESTCONF is an attempt to address these issues. It provides a uniform, standardized way
for Web applications to access the configuration data, state data, data-model-specific Re-
mote Procedure Call (RPC) operations, and event notifications within a network element.

visit: https://tools.ietf.org/html/rfc6241
 https://tools.ietf.org/html/7950
http://www.tail-f.com/confd-training-videos/

5

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

The RESTCONF protocol operates on the configuration datastores defined in NETCONF.
It defines a set of Create, Read, Update, Delete (CRUD) operations that can be used to
access these datastores. The YANG language defines the syntax and semantics of datas-
tore content, operational data, protocol operations, and REST operations that are used
to access the hierarchical data within a datastore. In NETCONF, YANG data nodes are
identified with XPath expressions, starting from the document root to the target resource.
RESTCONF uses URI-encoded path expressions to identify the YANG data nodes.

RESTCONF Features

The RESTCONF protocol operates on a hierarchy of resources, each of which can be
thought of as a collection of data and a set of allowed methods operating on that data.
Resources are accessed via a set of URIs using syntax specified in RFC 8040. The set of
YANG modules supported by the server determine the RPC operations, top-level data
nodes, and event notification messages supported by the server.

The RESTCONF protocol does not include a data resource discovery mechanism. Instead,
the definitions within the YANG modules advertised by the server are used to construct
an RPC operation and data resource identifiers.

Resources
RESTCONF resources include:

• Root Resource Discovery: RESTCONF supports root resource discovery, allowing
implementations to specify where the RESTCONF API resource is located. When first
connected, clients retrieve the “/.well-known/host-meta” and use the link contained
in the resource in subsequent RESTCONF requests.

• RESTCONF Media Types: The RESTCONF protocol defines two application-specific
media types, yang-data+xml and yang-data+json, for encoding of the YANG data.

• API Resource: The RESTCONF API resource contains the root resource for the
RESTCONF datastore and operation resources. It is the top-level resource located at
“/restconf”. The API resource has three child resources, as shown in Table 1.

Table 1. RESTCONF API Resources

Resource Description

data The data resource contains all data resources specified by
the YANG-models supported by the RESTCONF server.

operation The operation resource provides access to the data-
model-specific RPC operations supported by the server.

yang-library-version The yang-library-version resource identifies the revision
date of the “ietf-yang-library” YANG module that is
implemented by the server.

6

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

• Datastore Resource: The datastore resource represents the combined configuration
and operational state data resources that can be accessed by a RESTCONF client.
The datastore resource is handled by the RESTCONF server and cannot be created
or deleted by clients.

• Data Resource: A data resource represents a YANG data node that is a descendant
node of a datastore resource. Each YANG-defined data node can be uniquely tar-
geted by the request-line of an HTTP method. Containers, leafs, leaf-list entries, and
list entries are all data resources. Data nodes are identified using absolute XPath-
expressions starting from the document root to the targets resource. List entries are
identified by the name of the list followed by “=” and the value of the key(s).

• Operation Resource: An operation resource represents an RPC operation defined
with the YANG “rpc” statement or a data-model-specific action defined with a
YANG 1.1 “action” statement. An operation is invoked using a POST method on the
resource. All operation resources representing RPC operations supported by the
server are found in the “/restconf/operations” subtree, while operation resources
representing YANG actions are identified in the “/restconf/data” subtree matching
their location in the YANG-model.

• Schema Resource: Clients can retrieve YANG modules from the server. In order
to retrieve a YANG module, a client first retrieves the URL for the relevant schema
which is stored in the “schema” leaf in the module entry in the yang-library.

• Event stream (notification) resource: An event stream resource represents a source
for system-generated event notifications. Each stream is created and modified by
the server only. A client can retrieve a stream resource or initiate a long-poll server-
sent event stream.

RESTCONF Methods
The RESTCONF protocol uses HTTP methods to identify the CRUD operations requested
for a particular resource. Access control mechanisms are used to limit which RESTCONF
CRUD operations can be used. In particular, RESTCONF is compatible with the NETCONF
Access Control Model (NACM) [RFC6536]. The RESTCONF server converts the resource
path to the corresponding YANG instance identifier and then applies the NACM access
control rules to RESTCONF messages using this information.

Table 2 summarizes the various RESTCONF operations and how they map, when
applicable, to their corresponding NETCONF operations.

7

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

RESTCONF
Operation

Description
Corresponding
NETCONF Operation

HEAD Get without a body <none>

OPTION Discover which operations are sup-
ported by a data resource <none>

GET Retrieve data and meta data <get>, <get-config>

POST Create a data resource <edit-config>
(nc:operation=“create”)

POST Invoke an RPC operation Call RPC directly

PUT Create or replace a data re-
source

<edit-config>
(nc:operation=“create/
replace”), <copy-config>
(PUT on datastore)

PATCH Create or update but not de-
lete a data resource

<edit-config>
(nc:operation depends
on patch content)

DELETE Delete a data resource <edit-config>
(nc:operation=“delete”)

Table 2. RESTCONF and NETCONF Operations

RESTCONF methods include:

• HEAD: The HEAD method is used by the client to retrieve just the header fields
(which contain the metadata for a resource) that would be returned for the compa-
rable GET method, without the response message-body.

• OPTION: The OPTIONS method is used by the client to discover which methods
are supported by the server for a specific resource.

8

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

• GET: The GET method is used by the client to retrieve data and metadata for a
resource. It is supported for all resource types, except operation resources. The
RESTCONF server only returns data the client is allowed to read.

• POST: The POST method is used by the client to create a data resource or invoke
an operation resource. The server uses the target resource type to determine how
to process the request. If the target resource is a datastore, a top-level configuration
resource is created. If the target resource is a data resource, a child resource is cre-
ated. And, if the target resource is an operation, the RPC is invoked. Insert and point
query parameters give clients control over placement of new list and leaf-list ele-
ments when the lists are declared as “ordered-by user” in the YANG model. A POST
request will fail if the target resource already exists.

• PUT: The PUT method is used by the client to create or replace the target data
resource. Both the POST and PUT methods can be used to create data resources.
The differences are that for POST, the client provides the resource identifier for the
resource that will be created rather than its parent, and that PUT can be used when
the resource already exists.

• PATCH: RESTCONF uses the HTTP PATCH method defined in [RFC7589] to provide
an extensible framework for resource patching mechanisms. The PATCH method is
used to modify existing resources. If the target resource doesn’t exist, the PATCH
request will fail. Plain PATCH can be used to create or update, but not delete, a
child resource within the target resource. (Note: a more powerful patch mechanism,
YANG-Patch, is currently being developed: [draft-ietf-netconf-yang-patch-14])

• DELETE: The DELETE method is used to delete a data resource. The data resource
must exist. RESTCONF does not provide an operation corresponding to NETCONF’s
<edit-config> (nc:operation=“remove”), which silently ignores attempts to delete non-
existing resources.

Queries
RESTCONF allows clients to supply zero or more “query parameters” in the request URI.
The query parameters can be used to tweak the meaning of the request in different ways,
for example whether to retrieve only configuration data, only operational state data, or
both with a GET request.

Each RESTCONF operation allows zero or more query parameters to be present in the
request URI. Which specific parameters are allowed will depend on the resource type,
and sometimes the specific target resource used in the request. The query parameters
supported by RESTCONF are shown in Table 3.

9

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

Table 3. RESTCONF Query Parameters

Messages
The RESTCONF protocol uses HTTP messages, and a single HTTP message corresponds
to a single protocol method (Table 4). In general, messages can perform a single task on
a single resource, such as retrieving a resource or editing a resource.

Query
Parameter

Methods Description

content GET, HEAD select config and/or non-config
resources

depth GET, HEAD request limited subtree depth in the
reply content

fields GET, HEAD request a subset of the target
resource content

filter GET, HEAD boolean notification filter for event
stream resources

insert PUT, POST insertion mode for “ordered-by user”
data resources

point PUT, POST insertion point for “ordered-by user”
data resources

start-time GET, HEAD replay buffer start-time for event
stream resources

stop-time GET, HEAD replay buffer stop-time for event
stream resources

with-
defaults

GET, HEAD control the retrieval of default values

10

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

Table 4. RESTCONF HTTP Messages

RESTCONF messages are encoded in HTTP according to [RFC7230]. RESTCONF mes-
sage content is encoded in either JSON or XML format and is sent in the HTTP message-
body. The request input content encoding format is identified with the “Content-Type”
header field. Clients may supply the “Accept” header field to indicate to the server which
format it prefers for the reply.

Caching
Since datastore contents can change at unpredictable times, RESTCONF responses are
usually not cached. Instead, clients rely on “Etag” and/or “Last-Modified” fields returned
by the server in the HTTP-header to determine if it has the most resent version of a re-
source.

Notifications
The RESTCONF protocol supports YANG-defined event notifications similar to NETCONF
notifications. A RESTCONF server that supports notifications provides a stream resource
for each available notification stream. A RESTCONF client can retrieve the list of sup-
ported event streams from a RESTCONF server using the GET method on the “stream”
list and use the gathered information to subscribe to notifications. Clients subscribe to
RESTCONF events by sending an HTTP GET request for the URL representing the event
with the “Accept” type “text/event-stream”. The server will treat the connection as an
event stream, using the Server-Sent Events [W3C.REC-eventsource-20150203] transport
strategy.

Query parameters can be used to filter the event stream or control replay similar to
NETCONF event notifications.

RESTCONF Limitations

While RESTCONF can be used to address southbound network elements using famil-
iar RESTful operations, it does have limitations. For example, there are inconsistencies
between JSON and XML when retrieving multiple instances from a list, which is possible
with JSON but not possible with XML.

RESTCONF URI Structure

method entry resource query

<OP> </restconf> <path> <query>

mandatory mandatory mandatory mandatory

11

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

Additionally, the ordering of name/value pairs in a JSON object is undefined, which
makes it more difficult to compare to configurations with simple text-based tools like grep.
Thus, to compare configurations in JSON format, a tool that understands JSON syntax is
needed.

RESTCONF Interactions with NETCONF

When a server supports both NETCONF and RESTCONF, the protocols can interact in re-
lation to edit operations. It is, for example, possible that locks are in use on a RESTCONF
server, even though RESTCONF doesn’t provide any operations that can be used to
manipulate these locks. In this case, the RESTCONF operations will not be granted write
access to data resources within a datastore.

Another example is interactions between RESTCONF and NETCONF in how the configu-
ration data stores are used. If the network element supports :candidate, all edits to config-
uration nodes in “/restconf/data” are performed in the candidate configuration datastore,
and, per the RFC, the candidate is automatically committed to running immediately after
each successful edit. Any edits from other sources that are in the candidate datastore
will also be committed. Furthermore, if a confirmed commit procedure is in progress by a
NETCONF client, then a RESTCONF commit will act as the confirming commit.

Can RESTCONF Replace NETCONF?

RESTCONF can provide a simple, effective mechanism to enable programmability in cer-
tain use cases—especially when used to allow northbound systems to communicate with
SDN controllers. When used to directly address southbound network elements, however,
it offers just a subset of NETCONF functionality. The concept of a “transaction” in REST-
CONF, for example, is much narrower than in NETCONF. This, along with RESTCONF’s
lack of a mechanism to validate configuration changes, makes it far more limited than
NETCONF for automating many aspects of complex, real-world environments.

For example, NETCONF features for datastores, locking, transactions (both local and net-
work-wide), “remove” edit operation, and explicit validation are all missing in RESTCONF.
The lack of transaction support, in particular, can have significant implications.

NETCONF’s support for transactions means that whenever an operator makes a configu-
ration change, the entire change set either succeeds or fails. This transaction support
means that controllers and orchestrators don’t have to worry about the order that chang-
es are applied to network elements, vastly simplifying network element management. For
these reasons, transaction support is in huge demand by network operators and service
providers—who may hesitate to adopt network elements that don’t provide it. RESTCONF
has a much more limited notion of a transaction than NETCONF, because it doesn’t allow
a transaction to span multiple RESTCONF operations. Instead, every edit operation is its
own transaction.

RESTCONF and NETCONF also differ in the ability to explicitly validate configuration
changes. NETCONF supports validation of configuration changes such as types, allowed
value ranges, and string formats, as well as semantic aspects, such as relationships
between elements in the data model. RESTCONF only support validation as part of com-
mits. This lack of explicit validation poses significant challenges in more complex environ-
ments, where correct and consistent network element configuration data is truly critical

12

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

for the correct operations of the element. Misconfiguring a network element may lead to
a situation where the element is no longer connected to the network.

NETCONF also supports network wide transactions. That is, transactions that span
multiple network elements, all changes are either successfully applied to all network
elements, or no changes are applied to any element. In NETCONF, transactions spanning
multiple network elements also use the same semantics as local transactions. Here again,
RESTCONF is limited. With no support for the explicit use of the candidate datastore and
no support for validation without committing, it can’t support network-wide transactions.

When Does RESTCONF Make Sense?
There are certainly situations where RESTCONF is useful, even to directly address
southbound network elements. In scenarios where northbound systems are only reading
operation state data and statistics from the element—and not using it to change configu-
rations, where transaction support becomes essential—RESTCONF is a simple, effective
solution. Similarly, if RESTCONF is used exclusively for simple configuration changes—
where it is acceptable to address elements one at a time, in separate individual REST-
CONF operations—it can also be effective. For scenarios like these, when programmers
are already well versed in the HTTP/REST model of interacting with servers, are fluent in
JavaScript, XML, JSON, and other Web-technologies, and only need the simplified trans-
actional model, then RESTCONF is a good choice.

In many, if not most other scenarios, full programmability will require features not sup-
ported by RESTCONF, such as support for locks, direct manipulation of datastores, and
explicit validation. All of these cases can benefit from a solution with full transaction sup-
port, including network-wide transactions, so it is better to use NETCONF.

Conclusion

Market demand for programmability and automation will only grow in the coming years.
Indeed, for network element vendors that don’t want to be relegated to niche use cases,
support for southbound configuration and management protocols will become a core
customer requirement. While RESTCONF provides just a subset of NETCONF functional-
ity, the emergence of the new standard should be viewed as an overall positive. It gives
customers more options, and it demonstrates that network programmability has applica-
bility well beyond large-scale service provider environments.

To capitalize on this market trend, however, network element vendors need to fully
understand how RESTCONF can be used most effectively by their customers, as well as
those scenarios where it’s likely to fall short. To provide the most choice and flexibility,
most vendors would be well served by enabling their elements for both RESTCONF and
NETCONF. If choosing just one protocol to support however, vendors should choose
NETCONF. Relying solely on RESTCONF—and giving customers an element cannot
support full transactions, configuration validation, and other NETCONF features—could
significantly limit the market for that product.

13

Inside RESTCONF: Capitalizing on the New Network Programmability Standard

Get Started
The ConfD Management Agent from Tail-f makes it easy to enable both NETCONF and
RESTCONF support, and deliver network elements that are suitable for a broad range
of programmable network environments and use cases, from the simplest to the most
advanced.

To learn more, visit http://www.tail-f.com/management-agent/.

Resources

RFC 8040 - RESTCONF
RFC 6241 - NETCONF
RFC 7950 – YANG

More Tail-f white papers and resources:

• NETCONF: The Programmable Interface for SDN and NFV
• ConfD from Tail-f: A Vital Piece of the NFV/SDN Puzzle
• Try ConfD for Free: ConfD Basic
• Watch ConfD Training Videos

http://www.tail-f.com/management-agent/
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc7950
http://info.tail-f.com/whitepaper-netconf-enabling-network-elements-using-confd-0
http://www.tail-f.com/wordpress/wp-content/uploads/2014/04/Tail-f_ConfDUseCase-Established_rev-D-2014-04-09.pdf
https://developer.cisco.com/site/confD/
http://www.tail-f.com/confd-training-videos/

Corporate Headquarters

Sveavagen 25
111 34 Stockholm

Sweden
+46 8 21 37 40

www.tail-f.com
info@tail-f.com

©2017 Tail-f systems All rights reserved.

