asco. DEVNET

Useful Python Libraries tor Network
ENngineers

Hank Preston, ccie 38336 R/S Season 1, Talk 1

Developer Advocate, DevNet
Twitter: @hfpreston

https://developer.cisco.com/netdevops/live

What are we going to talk about?

. Libraries to Work with Data
- API Libraries

. Configuration Management
Tools and Libraries

- Some Other Cool Python Stuff

Libraries to Work with Data

Manipulating Data of All Formats

- XML - xmltodict . CSV
-plp 1nstall xmltodict - Import csv
import xmltodict
- YANG - pyang
- JSON - 1mport pyang

. Import json

- YAML - PyYAML

-plp 1nstall PyYAML
import yaml

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://pypi.python.org/pypi/xmltodict
https://docs.python.org/3/library/json.html
http://pyyaml.org/wiki/PyYAMLDocumentation
https://docs.python.org/3/library/csv.html
https://tools.ietf.org/html/rfc7950
https://pypi.org/project/pyang/

Treat XI\/”_ ||<e # Import the xmltodict library

Python Dictionaries ™™ === -
with xmltodict ich cpen (nl exemplemin) as 11
. Easily work with XML data s ey

. Convert from XML -> Dict*

Parse the XML into a Python dictionary
and baCk xml dict = xmltodict.parse (xml example)

Print the raw XML data
print (xml example)

. xmiltodict.parse(xml_data)

Save the interface name into a variable using XML nodes as

. xmitodict.unparse(dict) keys | |
int name = xml dict["interface"] ["name"]
. PythOﬂ IﬂC|UdeS d ﬂatlve # Print the interface name
: int (int
Markup (html/xml) interfaces ~ printtntnane)
as We” # Change the IP address of the interface
xml dict["interface"]["ipv4"]["address"] ["ip"] = "192.168.0.2"

- More powerful, but also more
Revert to the XML string version of the dictionary

CCNTHD“EX print (xmltodict.unparse (xml dict))
* Technically to an OrderedDict

https://pypi.python.org/pypi/xmitodict Jata._manipulation/xml/ximl example.ov
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://docs.python.org/3.6/library/markup.html
https://github.com/hpreston/python_networking/blob/master/data_manipulation/xml/xml_example.py
https://pypi.python.org/pypi/xmltodict

TO JSON and baCk #i#m;;n};;)rgsgize jsontodict library
agaln Wlth JSOH # Open the sample json file and read it into variable

with open("json example.json'") as f:
Json example = f.read()
- JSON and Python go -
. # Print the raw json data
together like peanut butter | print(3son example)
and Je”y # Parse the json into a Python dictionary
. jSOl’l loads (json data) json dict = Json.loads (json example)

Save the interface name into a variable

- Json.dumps (object)

int name = Json dict["interface"] ["name"]
. JSON ObJeCtS Convert to # Print the interface name
]]] print (int name)
Dictionaries
Change the IP address of the interface
json dict["interface"]["ipv4"] ["address"][0] ["ip"] = \
- JSON Arrays convert to "192.168.0.2"
|_|StS # Revert to the json string version of the dictionary

print (json.dumps (Jjson dict))

https://docs.pvthon.ora/3/library/json.html

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

data_manipulation/json/json_example.py

https://github.com/hpreston/python_networking/blob/master/data_manipulation/json/json_example.py
https://docs.python.org/3/library/json.html

YAML? Yep, Python
Can Do That Too!

. Easily convert a YAML file
to a Python Object

- yaml.load (yaml data)
- yaml .dump (object)

- YAML Objects become
Dictionaries

- YAML Lists become Lists

https://pvpi.pyvthon.org/pypi/PYYAML/3.12

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Import the yamltodict library
import yaml

Open the sample yaml file and read it into variable

with open("yaml example.yaml") as f:
yaml example = f.read()

Print the raw yaml data
print (yaml example)

Parse the yaml into a Python dictionary
yaml dict = yaml.load(yaml example)

Save the interface name into a variable
int name = yaml dict["interface"] ["name"]

Print the interface name
print (int name)

Change the IP address of the interface

yaml dict["interface"]["ipv4d"]["address"][0]["ip"]

"192.168.0.2"

=\

Revert to the yaml string version of the dictionary
print (yaml.dump (yaml dict, default flow style=False))

data_manipulation/vaml/yaml_example.py

https://github.com/hpreston/python_networking/blob/master/data_manipulation/yaml/yaml_example.py
https://pypi.python.org/pypi/PyYAML/3.12

Import Spreadsheets | jc; .
Ear}(j I:)Eatea \ﬁdltrw (:ES\/ # Open the sample csv file and print it to screen
with open("csv example.csv") as f:

. Treat CSV data as lists print (£.read())
csv.reader (file object)

Open the sample csv file, and create a csv.reader
object

o EfflCI@ﬂtIy Processes |arge with open ("csv example.csv") as f:
files without memory issues csv_python = csv.reader ()
. # Loop over each row in csv and leverage the data
. Options for header rows # in code
: for row in csv_python:
and dlfferent formats print ("{device} 1s in {location} " \
"and has IP {ip}.".format (
device = row[O0],
location = row[2],
ip = row[1]

)
)

https://docs.pvthon.ora/3/library/csv.html

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

data_manipulation/csv/csv_example.py

https://github.com/hpreston/python_networking/blob/master/data_manipulation/csv/csv_example.py
https://docs.python.org/3/library/csv.html

YANG Data Modeling Language - IETF Standard

Module that is a self-contained
top-level hierarchy of nodes

Uses containers to group related
nodes

Lists to identify nodes that are
stored in sequence

Fach individual attribute of a node
IS represented by a leaf

Every leaf must have an
assoclated type

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

module ietf-interfaces {
import ietf-yvang-types {
prefix yang;
}
container interfaces {
list interface {
key "name";
leaf name {
type string;
}
leaf enabled {
type boolean;
default "true";

Example edited for simplicity and brevity

nvestigate YANG o, "o s B s, s e o e
Models with pyang

echo "Print only part of the tree"
pyang -f tree --tree-path=/interfaces/interface \

- Working in native YANG can be ietf-interfaces.yang

CFHaHerK;HWQ echo "Print an example XML skeleton (NETCONE)"

pyang —-f sample-xml-skeleton ietf-interfaces.yang

. pyang is a Python library for

\/a|idating and V\/Qrking with echo "Create an HTTP/JS view of the YANG Model"

: pyang -f jstree -o ietf-interfaces.html \
YANG flleS ietf-interfaces.yang

open iletf-interfaces.html

. Excellent for network
deve|opers Working with echo 'Control the "nested ?ep‘lch" il’ll trees'
NETCONF/RESTCONF/QRPC pyang —-f tree --tree-depth=2 letf-ip.yang

echo "Include deviation models in the processing"

. Quickly understand the key pvang -f tree \

OperatiOnal view of a model ——deviation-module=cisco-xe-ietf-ip-deviation.yang \
letf-1p.yang

data_manipulation/yang/pyang-examples.sh

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

1
[11]

https://github.com/hpreston/python_networking/blob/master/data_manipulation/yang/pyang-examples.sh

AP| Libraries

Access Different APIs Easily

- REST APIs - requests - Network CLI - netmiko
- plp 1nstall requests - plp 1install netmiko
import requests import netmiko
- NETCONF - ncclient . SNMP - PySNMP
- pip install ncclient -pip install pysnmp

import ncclient import pysnmp

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

http://docs.python-requests.org/en/master/
https://ncclient.readthedocs.io/en/latest/
https://github.com/ktbyers/netmiko
https://github.com/etingof/pysnmp

Make HTTP Calls with Ease using “requests”

Full HT TP Client

Simplifies authentication,
headers, and response tracking

Great for REST API calls, or any
HT TP request

- Network uses include
RESTCONF, native REST APIs,
JSON-RPC

http://docs.pvthon-requests.org

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

http o1 humans
C)star 33,571

Requests is an elegant and
simple HTTP library for

Python, built for human beings.

Sponsored by Linode and
other wonderful organizations.

I ‘g——
=

The new generation of
Pproject management tools
is here and it’s visual.

ADS VIA CARBON

Requests Stickers!

Stay Informed

Receive updates on new

Requests: HTTP for Humans
Release v2.19.1. (Installation)

license Apache 2.0 python 2.7, 3.4, 3.5, 3.6 | codecov 66% [Say Thanks! %

Requests is the only Non-GMO HTTP library for Python, safe for human consumption.

Note:

The use of Python 3 is highly preferred over Python 2. Consider upgrading your ap-
plications and infrastructure if you find yourself still using Python 2 in production today. If
you are using Python 3, congratulations — you are indeed a person of excellent taste.
—Kenneth Reitz

Behold, the power of Requests:

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code

200

>>> r.headers['content-type']

‘application/json; charset=utf8'

>>> r.encoding

'utf-8'

>>> r.text

u'{"type":"User"..."'

>>> r.json()

{u'private_gists': 419, u'total_private_repos': 77, ...}

See similar code, sans Requests.

Requests allows you to send organic, grass-fed HTTP/1.1 requests, without the need for manual
labor. There’s no need to manually add query strings to your URLSs, or to form-encode your POST
data. Keep-alive and HTTP connection pooling are 100% automatic, thanks to urllib3.

http://docs.python-requests.org/

Example: Retrieving

Configuration Detalls with
RESTCONF

RESTCONF: Basic Request for Device Data 1/2

Import libraries
import requests, urllib3
import sys

Add parent directory to path to allow Iimporting common vars
sys.path.append ("..") # noga
from device info iImport i1os xel as device # noga

Disable Self-Signed Cert warning for demo
urllib3.disable warnings (urllib3.exceptions.InsecureRequestWarning)

Setup base variable for request

restconf headers = {"Accept": "application/yang-data+json"}
restconf base = "https://{ip}:{port}/restconf/data"
interface url = restconf base + "/ietf-interfaces:interfaces/interface={int name}"

Code edited for display on slide

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

device apis/rest/restconf

examplel.py

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example1.py

RESTCONF: Basic Request for Device Data 2/2

Create URL and send RESTCONF request to corel for GigEZ2 Config

url = interface url.format (ip = device["address"], port = device["restconf port"],
int name = "GigabitEthernet2"
)
r = requests.get (url,
headers = restconf headers,
auth=(device["username"], device["password"]),

verify=False)

Print returned data
print (r.text)

Process JSON data into Python Dictionary and use

interface = r.json() ["ietf-interfaces:interface™]

print ("The interface {name} has ip address {ip}/{mask}".format (
name = interface["name"],
ip = 1interface["ietf-ip:ipv4d"] ["address"] [0] ["ip"],
mask = interface["ietf-ip:ipv4"] ["address"][0] ["netmask"],

)
)

Code edited for display on slide

device apis/rest/restcon
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public =

example 1.py

i

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example1.py

Example: Updating
Configuration with
RESTCONF

RESTCONF: Creating a New Loopback 1/2

Setup base variable for request
restconf headers["Content-Type"] = "application/yang-data+json"
New Loopback Details
loopback = {"name": "LoopbacklO1l",

"description": "Demo interface by RESTCONE",

"ip": "192.168.101.1",
"netmask": "255.255.255.0"}

Setup data body to create new loopback interface

data = {
"ietf-interfaces:interface": {
"name": loopback["name"],
"description": loopback["description"],

"type": "iana-if-type:softwarelLoopback",
"enabled": True,
"ietf-ip:ipv4d": |
"address": [
{"ip": loopback["ip"],
"netmask": loopback["netmask"]}

[I

Only showing significant code changes device_apis/rest/restconf_example2.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example2.py

RESTCONF: Creating a New Loopback 2/2

Create URL and send RESTCONF request to corel for GigEZ2 Config

url = interface url.format (ip = corel 1p, int name = loopback["name"])
r = requests.put (url,

headers = restconf headers,

auth= (username, password),

Json = data,

verify=False)

Print returned data

print ("Request Status Code: {}".format (r.status code))

Only showing significant code changes

device apis/rest/restconf _example2.py
© 2018 Cisco and/or its affiliates. All rights reserved.

Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example2.py

Fasily Interface with NETCONF and ncclient

ncclient

Docs » Welcome © Edit on GitHub

- Full NETCONF Manager (ie
client) implementation in Python

. See later presentation on
NETCONF details

.- Handles all detalls including
authentication, RPC, and
operations

Welcome

ncclient is a Python library for NETCONF clients. It aims to offer an intuitive API that sensibly maps
the XML-encoded nature of NETCONF to Python constructs and idioms, and make writing
network-management scripts easier. Other key features are:

e Supports all operations and capabilities defined in RFC 4741.

e Request pipelining.

e Asynchronous RPC requests.

o Keeping XML out of the way unless really needed.

o Extensible. New transport mappings and capabilities/operations can be easily added.

The best way to introduce is through a simple code example:

from ncclient import manager

use unencrypted keys from ssh-agent or ~/.ssh keys, and rely on known_hosts
with manager.connect_ssh("host", username="user") as m:
assert(":url" in m.server_capabilities)
with m.locked("running"):
m.copy_config(source="running", target="file:///new_checkpoint.conf")
m.copy_config(source="file:///old_checkpoint.conf", target="running")

As of version 0.4 there has been an integration of Juniper’s and Cisco’s forks. Thus, lots of new
concepts have been introduced that ease management of Juniper and Cisco devices respectively.
The biggest change is the introduction of device handlers in connection params. For example to
invoke Juniper’s functions and params one has to re-write the above with device_params=
{'name’’’junos’}:

. Deals in raw XML

https://ncclient.readthedocs.io

© 2018 Cisco and/or its affiliates. All rights r

d. Cisco Public

https://ncclient.readthedocs.io/

Example: Retrieving

Configuration Detalls with
NETCONF

NETCONF: Basic Request for Device Data 1/2

Import libraries
from ncclient import manager
import xmltodict

Create filter template for an interface
interface filter = """
<filter>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
<interface>
<name>{int name}</name>
</interface>
</interfaces>
</filter>

mwiw

Code edited for display on slide device apis/netconf/netconf examplel.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example1.py

NETCONF: Basic Request for Device Data 2/2

Open NETCONF connection to device
with manager.connect (host=corel 1ip, username=username, password=password,
hostkey verify=False) as m:

Create desired NETCONF filter and <get-config>
filter = interface filter.format (int name = "GligabitEthernet2")
r = m.get config("running", filter)

Process the XML data into Python Dictionary and use
interface = xmltodict.parse (r.xml)
interface = interface["rpc-reply"]["data"]["interfaces"] ["interface"]

print ("The interface {name} has ip address {ip}/{mask}".format (

name = interface["name"] ["#text"],
ip = interface["ipv4d"] ["address"] ["ip"],
mask = interface["ipv4"] ["address"] ["netmask"],

)
)

Code edited for display on slide device apis/netconf/netconf

examplel.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example1.py

Example: Updating
Configuration with
NETCONF

NETCONEF: Creating a New Loopback 1/2

Create config template for an interface
config data = """<config>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
<interface>
<name>{int_name}</name>
<description>{description}</description>
<type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
ilanaift:softwarelLoopback
</type>
<enabled>true</enabled>
<ipv4 xmlns="urn:letf:params:xml:ns:yang:ietf-ip">
<address>
<ip>{ip}</ip>
<netmask>{netmask}</netmask>
</address>
</ipvi>
</interface>
</interfaces>
</config>

mwiwn

Only showing significant code changes device apis/netconf/netconf example2.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example2.py

NETCONEF: Creating a New Loopback 2/2

New Loopback Details

loopback = {"int name": "Loopbackl0O2",
"description": "Demo interface by NETCONE",
"ip": "192.168.102.1",
"netmask": "255.255.255.0"}

Open NETCONF connection to device

with manager.connect (host=corel 1ip,
username=username,
password=password,

hostkey verify=False) as m:

Create desired NETCONF config payload and <edit-config>
config = config data.format (**loopback)
r = m.edit config(target = "running", config = config)

Print OK status
print ("NETCONEF RPC OK: {}".format (r.ok))

Only showing significant code changes

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

device_apis/netconf/netconf

example2.py

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example2.py

For When CLI is the Only Option - netmiko

Netmiko

Docs » Netmiko Classes » BaseConnection € Edit on GitHub
°

f no other API Is available...

BaseConnection

= Netmiko Classes

. . .
) B I I | | d 3 O | I a ra I I I | kO | | b ra r fO r BaseConnection class netmiko.base_connection.BaseConnection(ip=u", host=u", username=u",
password=u", secret=u", port=None, device_type=u", verbose=False, global_delay_factor=1,
use_keys=False, key_file=None, allow_agent=False, ssh_strict=False, system_host_keys=False,
S S | | t . . t e

&

alt_host_keys=False, alt_key_file=u", ssh_config_file=None, ti =90, | t=60,
blocking_timeout=8, keepalive=0, default_enter=None, response_return=None, serial_settings=None)

|
LG Defines vendor independent methods.
DS CllCEE e T e Otherwise method left as a stub method.
from top [p resumes &
o Support for a range of vendors _snter_
R A L Establish a session using a Context Manager.

__exit__(exc_type, exc_value, traceback)

network devices and operating
systems

Gracefully close connection on Context Manager exit.

__init__(ip=u", host=u", username=u", password=u", secret=u", port=None, device_type=u",
verbose=False, global_delay_factor=1, use_keys=False, key_file=None, allow_agent=False,
ssh_strict=False, system_host_keys=False, alt_host_keys=False, alt_key_file=u",
ssh_config_file=None, ti 20, ion_ti t=60, blocking_timeout=8, keepalive=0,
default_enter=None, response_return=None, serial_settings=None) %

Initialize attributes for establishing connection to target device.

. Send and receive clear text

paramip: IP address of target device. Not required if host is provided.
. . type ip: str
- POSt processing or data wi e Key
param host: Hostname of target device. Not required if ip is provided.
type host: str

https://aithub.com/ktbyers/netmiko

https://github.com/ktbyers/netmiko

Example: Retrieving

Configuration Detalls with
CLI

CLI: Basic Request for Device Data 1/3

Import libraries

from netmiko import ConnectHandler
import re

import sys

Add parent directory to path to allow importing common vars
sys.path.append ("..") # noga
from device info import ios xel as device # noga

Set device type for netmiko
device["device type"] = "cisco 1os"

Create a CLI command template
show interface config temp = "show running-config interface {}"

Code edited for display on slide device_apis/cli/netmiko_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example1.py

CLI: Basic Request for Device Data 2/3

Open CLI connection to device

with ConnectHandler (ip = device["address"],
port = device["ssh port"],
username = device["username"],
password = device["password"],
device type = device["device type"]) as ch:

Create desired CLI command and send to device
command = show interface config temp.format ("GigabitEthernet2")
interface = ch.send command (command)

Print the raw command output to the screen
print (interface)

Code edited for display on slide device apis/cli/netmiko_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example1.py

CLI: Basic Request for Device Data 3/3

Use regular expressions to parse the output for desired data

name = re.search(r'interface (.*)', interface) .group(l)
description = re.search(r'description (.*)', interface) .group (1)
ip info = re.search(r'ip address (.*) (.*)', interface)

ip = ip info.group (1)

netmask = ip info.group(2)

Print the info to the screen

print ("The interface {name} has ip address {ip}/{mask}".format (
name = name,
ip = 1ip,
mask = netmask,

)

Code edited for display on slide device apis/cli/netmiko_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example1.py

Example: Updating
Configuration with CL|

CLI: Creating a New Loopback

New Loopback Details

loopback = {"int name": "Loopbackl03",
"description": "Demo interface by CLI and netmiko",
"ip": "192.168.103.1",
"netmask": "255.255.255.0"}

Create a CLI configuration

interface config = [

"interface {}".format (loopback["int name"]),

"description {}".format (loopback["description"]),

"ip address {} {}".format (loopback["ip"],
"no shut"]

loopback["netmask"]),
Open CLI connection to device
with ConnectHandler (ip=corel["ip"],

username=username,
password=password,

device type=corel["device type"]) as ch:

Send configuration to device
output =

ch.send config set (interface config)
Only showing significant code changes

device apis/cli/netmiko _example?.py
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example2.py

SNMP, a classic network interface with PySNMP

- Support for both GET and TRAP
communications

. Can be a bit complex to write
and leverage

- Examples are available

- Data returned in custom objects

http://snmplabs.com/pysnmp/
https://dithub.com/etingof/pysnmp

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Brewing free software for
the greater good

Q) watch 25

Navigation
Quick start

Documentation
Library reference

Example scripts
Download PySNMP

License

SNMP library for Python

PySNMP is a cross-platform, pure-
fully-functional SNMP engine capab Agent/Manager/Proxy roles, talking
SNMP v1/v2c/v3 protocol versions over IPv4/IPv6 and other network transports.

Despite its name, SNMP is not really a simple protocol. For instance its third version
introduces complex and open-ended security framework, multilingual capabilities, re-
mote configuration and other features. PySNMP implementation closely follows intri-
cate system details and features bringing most possible power and flexibility to its users.

Current PySNMP stable version is 4.4. It runs with Python 2.4 through 3.7 and is rec-
ommended for new applications as well as for migration from older, now obsolete, PyS-
NMP releases. All site documentation and examples are written for the 4.4 and later
versions in mind. Older materials are still available under the obsolete section.

Besides the libraries, a set of pure-Python command-line tools are shipped along with
the system. Those tools mimic the interface and behaviour of popular Net-SNMP sn-
mpget/snmpset/snmpwalk utilities. They may be useful in a cross-platform situations
as well as a testing and prototyping instrument for pysnmp users.

1
[11]

https://github.com/etingof/pysnmp

Example: Making an SNMP
Query

SNMP: Basic SNMP Query

Setup SNMP connection and query a MIB

iterator = getCmd (SnmpEngine (),
CommunityData (ro community),
UdpTransportTarget ((device["address"], device["snmp port"])),

ContextData (),
ObjectType (ObjectIdentity ('SNMPv2-MIB', 'sysDescr', 0)))

Process the query
errorIndication, errorStatus, errorIndex, varBinds = next (iterator)

Check for errors, and if OK, print returned result

if errorIndication: # SNMP cngine crrors
print (errorIndication)

else:
if errorStatus: # SNMP agent errors

Qo

print ('%s at %s' $ (errorStatus.prettyPrint(),
varBinds [int (errorIndex)-1] 1f errorIndex else '?'))
else:
for varBind in varBinds: # SNMP response contents
print (' = '.join([x.prettyPrint () for x in wvarBind]))

Code edited for display on slide device apis/snmp/pysnmp_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/hpreston/python_networking/blob/master/device_apis/snmp/pysnmp_example1.py

Configuration Management
Tools and Lipbraries

Open Source Python projects for full network
config management

Designed for Network Automation Designed for Server Automation
- NAPALM - Ansible
. Library providing a standard set of . Declarative, agent-less automation
functions for working with different framework for managing
network OS’s configuration. Robust support for
| network platforms
- Nornir
- New automation framework - Salt
focused on being Python native. . Configuration management and
Can leverage other tools like remote code execution engine.
NAPALM. Network automation options in

development.

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://napalm.readthedocs.io/
https://nornir.readthedocs.io/
https://www.ansible.com/overview/networking
https://docs.saltstack.com/en/latest/topics/network_automation/index.html

NAPALM - Mature Python Library for Multi-Vendor
INnteractions

pypi v2.3.1 | build 'passing | coverage 79%

. Robust configuration NAPALM
m a n a g e m e n 't O p‘tl O n S NAPALM (Network Automation and Programmabilty Abstraction Layer with Multivendor support) is aPython ibrary that

- Replace, Merge, Compare,
Commit, Discard, Rollback

. Builds on available backend
ibraries and interfaces (CLI,
NX-API, NETCONF, etc) ‘ e oon | e | o =

Driver Name eos junos josxr nxos nxos_ssh
C b d d . d . Structured data Yes Yes No Yes No No
¢ a n e u S e a n | n te g ra te | n tO Minimum vers ion 4.15.0F 121 5.1.0 6,111 12.4(20)T

Ot h e r tO O | S (i e A n S i b | e y N O rn i r) Backend library pyeapi junos-eznc pylOSXR pynxos netmiko netmiko

Caveats EOS NXOS NXOS 10S

https://dithub.com/napalm-automation/napalm

https://napalm.readthedocs.io
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/napalm-automation/napalm
https://napalm.readthedocs.io/

Ansible - Leading DevOps Tool for Network
Configuration Management

Ios

- Agentless - no edge software
iInstallation needed

0 Documentation e ios_banner - Manage multiline banners on Cisco |0S devices

e jos_command - Run commands on remote devices running Cisco |0S

e ios_config - Manage Cisco 10S configuration sections

ANS | BLE o ios_facts - Collect facts from remote devices running Cisco I0S

e jos_system - Manage the system attributes on Cisco 10S devices

e ios_template (D) - Manage Cisco I0S device configurations over SSH

e jos_vrf - Manage the collection of VRF definitions on Cisco |0S devices

Iosxr

o SUDDOF’(for both old and new
p | a tfo rl l I S a n d | n t‘ e rfa (:‘ eS I < e (: I_ | e josxr_command - Run commands on remote devices running Cisco |OS XR
iosxr_config - Manage Cisco |0S XR configuration sections
Module Index : . :
iosxr_facts - Collect facts from remote devices running I0S XR
AllModules iosxr_system - Manage the system attributes on Cisco |IOS XR devices

Cloud Modules iosxr_template (D) - Manage Cisco 10S XR device configurations over SSH

Clustering Modules
Nxos
Commands Modules

- Robust and growing library of T

Database Modules e nxos_aaa_server_host - Manages AAA server host-specific configuration.
o nxos_acl - Manages access list entries for ACLs.

n e tW O r |< l ' I O d U | e S EliesBlocukes e nxos_acl_interface - Manages applying ACLs to interfaces.

Identity Modules o nxos_bgp - Manages BGP configuration.
Inventory Modules o nxos_bgp_af - Manages BGP Address-family configuration.
. o * nxos_bgp_neighbor - Manages BGP neighbors configurations.
AR * nxos_bgp_neighbor_af - Manages BGP address-family’s neighbors configuration.
Monitoring Modules e nxos_command - Run arbitrary command on Cisco NXOS devices
ehworkhiodules Screenshot edited to include 10S, 10S-XR and NX-0OS Content

https://www.ansible.com/overview/networking
https://docs.ansible.com/ansible/latest/modules/list _of network modules.html

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html

Some Other Cool Python
Stuff

virlutils - It's like “vagrant up” but for the Network!

virlutils

-Op_en Source Cqmme_md Im_e
utility for managing SimulationS sccnotumstmssciguncecsvi
with Cisco VIRL/CML

virl is a devops style cli which supports the most common VIRL operations. Adding new ones is easy...

° D@Slg ned for NetDeVO pS Usage: virl [OPTIONS] COMMAND [ARGS]...

Options:

WO rkfl OWS —help Show this message and exit.

Commands :
console console for node

. Development environments ANy e

logs Retrieves log information for the provided...
" . 1s lists running simulations in the current...
. Test networks within CICD
pull pull topology.virl from repo
h b save save simulation to local virl file
p | pel I n eS search lists running simulations in the current...
ssh ssh to a node
start start a node
stop stop a node
telnet telnet to a node
up start a virl simulation

https://dithub.com/CiscoDevNet/virlutils
https://learningnetworkstore.cisco.com/virlfaa/aboutVirl

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://github.com/CiscoDevNet/virlutils
https://learningnetworkstore.cisco.com/virlfaq/aboutVirl

oYATS - Profile and Test Your Network Before,
During, and After Changes

Docs » pyATS Documentation

- No longer is “ping” the best
network test tool available

- PYATS is built to work like
software test suites, and uses
common frameworks (ie robot)

PYATS Documentation

) PUATS

print("Hello,CISCO!")

‘Welcome to pyATS documentation! Here you will find all there is to know about the infrastructure,
including user guides, api documentation, examples, case studies and more.

. Why choose pyATS for your Test Automation?
. Profile the network to get a
paseline for interfaces, routing Q ‘ @
protocols, and platform details - s s s

Highly hived s that you asily re
. . ramework through pl icinterfaces inherit, extend & scale
V e r | a t a | I t | | | I e = Start small - comes out of the box with a = Accelerate development-to-deployment yo ts with diffe topologi
" predefined set of necessities process b inating duplication of datasets nd your
= Scale big - easily add functionality where you A L=
need through custom plugins and hooks rovel i ipl of your autol pick
estin wel (run in sequel in pat
routing platforms

https://developer.cisco.com/site/pvats/
https://developer.cisco.com/docs/pvats/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/site/pyats/
https://developer.cisco.com/docs/pyats/

Summing up

What did we talk about?

. Libraries to Work with Data
. xmltodict, json, PyYAML, csv, pyang

- API Libraries
. requests, ncclient, netmiko, pysnmp

. Configuration Management
- NAPALM, Ansible, Salt, Nornir

- Some Other Cool Python Stuff
- virlutils, pyATS

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

VWebinar Resource List

- Docs and Links
. https://developer.cisco.com/python

- Learning Labs
. Laptop Setup http://cs.co/lab-dev-setup
- Coding Fundamentals http://cs.co/lab-coding-fundamentals
- Model Driven Programmability http://cs.co/lab-mdp

- DevNet Sandboxes

- |OS Always On http://cs.co/sbx-iosxe
- NX-OS Always On http://cs.co/sbx-nx0s

- Code Samples
ttQ ZZCS co[code python-networking

© 2018 Cis . All rights ved. Cisco Public

https://developer.cisco.com/python
http://cs.co/lab-dev-setup
http://cs.co/lab-coding-fundamentals
http://cs.co/lab-mdp
http://cs.co/sbx-iosxe
http://cs.co/sbx-nxos
http://cs.co/code-python-networking

NetDevOps Live! Code Exchange Challenge

developer.cisco.com/codeexchange

Use one or more of the libraries
discussed to write a Python script
to automate one common
networking task.

Example: Compile the MAC and ARP
tables from all devices on the
network.

Cisco Code Exchange

Submit your project

Collaboration

Analytic & Automation
Networking Security
Data Center

Open Source

Discover code repositories related to Cisco technologies

https://developer.cisco.com/codeexchange

Looking for more about NetDevOps?

- NetDevOps on DevNet
developer.cisco.com/netdevops

- NetDevOps Live!
developer.cisco.com/netdevops/live

- NetDevOps Blogs
blogs.cisco.com/tag/netdevops

- Network Programmability Basics Video Course
developer.cisco.com/video/net-prog-basics/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops
https://developer.cisco.com/netdevops/live
https://blogs.cisco.com/tag/netdevops
https://developer.cisco.com/video/net-prog-basics/

Got more questions? Stay in touch!

IIr
CISCO.

DEVNET

LEARN CODE INSPIRE CONNECT

|

Hank Preston developer.cisco.com
@ hapresto@cisco.com ¥ @CiscoDevNet
¥ @hfpreston Kl facebook.com/ciscodevnet/

http://github.com/hpreston ""http://github.com/CiscoDevNet

NETDEVOPS{LIVEL]

https://developer.cisco.com/netdevops/live
@netdevopslive ¥

