
https://developer.cisco.com/netdevops/live

Hank Preston, ccie 38336 R/S

Developer Advocate, DevNet

Season 1, Talk 1

Useful Python Libraries for Network
Engineers

Twitter: @hfpreston

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Libraries to Work with Data

• API Libraries

• Configuration Management
Tools and Libraries

• Some Other Cool Python Stuff

What are we going to talk about?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Libraries to Work with Data

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• XML - xmltodict
• pip install xmltodict

import xmltodict

• JSON

• import json

• YAML - PyYAML
• pip install PyYAML

import yaml

• CSV
• import csv

• YANG - pyang
• import pyang

Manipulating Data of All Formats

https://pypi.python.org/pypi/xmltodict
https://docs.python.org/3/library/json.html
http://pyyaml.org/wiki/PyYAMLDocumentation
https://docs.python.org/3/library/csv.html
https://tools.ietf.org/html/rfc7950
https://pypi.org/project/pyang/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Easily work with XML data

• Convert from XML -> Dict*
and back
• xmltodict.parse(xml_data)

• xmltodict.unparse(dict)

• Python includes a native
Markup (html/xml) interfaces
as well
• More powerful, but also more
complex

* Technically to an OrderedDict

Import the xmltodict library

import xmltodict

Open the sample xml file and read it into variable

with open("xml_example.xml") as f:

xml_example = f.read()

Print the raw XML data

print(xml_example)

Parse the XML into a Python dictionary

xml_dict = xmltodict.parse(xml_example)

Save the interface name into a variable using XML nodes as

keys

int_name = xml_dict["interface"]["name"]

Print the interface name

print(int_name)

Change the IP address of the interface

xml_dict["interface"]["ipv4"]["address"]["ip"] = "192.168.0.2"

Revert to the XML string version of the dictionary

print(xmltodict.unparse(xml_dict))

Treat XML like
Python Dictionaries
with xmltodict

data_manipulation/xml/xml_example.pyhttps://pypi.python.org/pypi/xmltodict

https://docs.python.org/3.6/library/markup.html
https://github.com/hpreston/python_networking/blob/master/data_manipulation/xml/xml_example.py
https://pypi.python.org/pypi/xmltodict

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• JSON and Python go
together like peanut butter
and jelly
• json.loads(json_data)

• json.dumps(object)

• JSON Objects convert to
Dictionaries

• JSON Arrays convert to
Lists

Import the jsontodict library

import json

Open the sample json file and read it into variable

with open("json_example.json") as f:

json_example = f.read()

Print the raw json data

print(json_example)

Parse the json into a Python dictionary

json_dict = json.loads(json_example)

Save the interface name into a variable

int_name = json_dict["interface"]["name"]

Print the interface name

print(int_name)

Change the IP address of the interface

json_dict["interface"]["ipv4"]["address"][0]["ip"] = \

"192.168.0.2"

Revert to the json string version of the dictionary

print(json.dumps(json_dict))

To JSON and back
again with json

data_manipulation/json/json_example.pyhttps://docs.python.org/3/library/json.html

Import the jsontodict library

import json

Open the sample json file and read it into variable

with open("json_example.json") as f:

json_example = f.read()

Print the raw json data

print(json_example)

Parse the json into a Python dictionary

json_dict = json.loads(json_example)

Save the interface name into a variable

int_name = json_dict["interface"]["name"]

Print the interface name

print(int_name)

Change the IP address of the interface

json_dict["interface"]["ipv4"]["address"][0]["ip"] = \

"192.168.0.2"

Revert to the json string version of the dictionary

print(json.dumps(json_dict))

https://github.com/hpreston/python_networking/blob/master/data_manipulation/json/json_example.py
https://docs.python.org/3/library/json.html

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Easily convert a YAML file
to a Python Object
• yaml.load(yaml_data)

• yaml.dump(object)

• YAML Objects become
Dictionaries

• YAML Lists become Lists

Import the yamltodict library

import yaml

Open the sample yaml file and read it into variable

with open("yaml_example.yaml") as f:

yaml_example = f.read()

Print the raw yaml data

print(yaml_example)

Parse the yaml into a Python dictionary

yaml_dict = yaml.load(yaml_example)

Save the interface name into a variable

int_name = yaml_dict["interface"]["name"]

Print the interface name

print(int_name)

Change the IP address of the interface

yaml_dict["interface"]["ipv4"]["address"][0]["ip"] = \

"192.168.0.2"

Revert to the yaml string version of the dictionary

print(yaml.dump(yaml_dict, default_flow_style=False))

YAML? Yep, Python
Can Do That Too!

data_manipulation/yaml/yaml_example.pyhttps://pypi.python.org/pypi/PyYAML/3.12

Import the yamltodict library

import yaml

Open the sample yaml file and read it into variable

with open("yaml_example.yaml") as f:

yaml_example = f.read()

Print the raw yaml data

print(yaml_example)

Parse the yaml into a Python dictionary

yaml_dict = yaml.load(yaml_example)

Save the interface name into a variable

int_name = yaml_dict["interface"]["name"]

Print the interface name

print(int_name)

Change the IP address of the interface

yaml_dict["interface"]["ipv4"]["address"][0]["ip"] = \

"192.168.0.2"

Revert to the yaml string version of the dictionary

print(yaml.dump(yaml_dict, default_flow_style=False))

https://github.com/hpreston/python_networking/blob/master/data_manipulation/yaml/yaml_example.py
https://pypi.python.org/pypi/PyYAML/3.12

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Treat CSV data as lists
csv.reader(file_object)

• Efficiently processes large
files without memory issues

• Options for header rows
and different formats

Import the csv library

import csv

Open the sample csv file and print it to screen

with open("csv_example.csv") as f:

print(f.read())

Open the sample csv file, and create a csv.reader

object

with open("csv_example.csv") as f:

csv_python = csv.reader(f)

Loop over each row in csv and leverage the data

in code

for row in csv_python:

print("{device} is in {location} " \

"and has IP {ip}.".format(

device = row[0],

location = row[2],

ip = row[1]

)

)

Import Spreadsheets
and Data with csv

data_manipulation/csv/csv_example.pyhttps://docs.python.org/3/library/csv.html

https://github.com/hpreston/python_networking/blob/master/data_manipulation/csv/csv_example.py
https://docs.python.org/3/library/csv.html

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Module that is a self-contained
top-level hierarchy of nodes

• Uses containers to group related
nodes

• Lists to identify nodes that are
stored in sequence

• Each individual attribute of a node
is represented by a leaf

• Every leaf must have an
associated type

module ietf-interfaces {

import ietf-yang-types {

prefix yang;

}

container interfaces {

list interface {

key "name";

leaf name {

type string;

}

leaf enabled {

type boolean;

default "true";

}

}

YANG Data Modeling Language - IETF Standard

Example edited for simplicity and brevity

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Working in native YANG can be
challenging

• pyang is a Python library for
validating and working with
YANG files

• Excellent for network
developers working with
NETCONF/RESTCONF/gRPC

• Quickly understand the key
operational view of a model

echo "Print the YANG module in a simple text tree"

pyang -f tree ietf-interfaces.yang

echo "Print only part of the tree"

pyang -f tree --tree-path=/interfaces/interface \

ietf-interfaces.yang

echo "Print an example XML skeleton (NETCONF)"

pyang -f sample-xml-skeleton ietf-interfaces.yang

echo "Create an HTTP/JS view of the YANG Model"

pyang -f jstree -o ietf-interfaces.html \

ietf-interfaces.yang

open ietf-interfaces.html

echo 'Control the "nested depth" in trees'

pyang -f tree --tree-depth=2 ietf-ip.yang

echo "Include deviation models in the processing"

pyang -f tree \

--deviation-module=cisco-xe-ietf-ip-deviation.yang \

ietf-ip.yang

Investigate YANG
Models with pyang

data_manipulation/yang/pyang-examples.sh

https://github.com/hpreston/python_networking/blob/master/data_manipulation/yang/pyang-examples.sh

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

API Libraries

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• REST APIs – requests

• pip install requests

import requests

• NETCONF – ncclient

• pip install ncclient

import ncclient

• Network CLI – netmiko

• pip install netmiko

import netmiko

• SNMP – PySNMP
• pip install pysnmp

import pysnmp

Access Different APIs Easily

http://docs.python-requests.org/en/master/
https://ncclient.readthedocs.io/en/latest/
https://github.com/ktbyers/netmiko
https://github.com/etingof/pysnmp

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Full HTTP Client

• Simplifies authentication,
headers, and response tracking

• Great for REST API calls, or any
HTTP request

• Network uses include
RESTCONF, native REST APIs,
JSON-RPC

Make HTTP Calls with Ease using “requests”

http://docs.python-requests.org

http://docs.python-requests.org/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Example: Retrieving
Configuration Details with
RESTCONF

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Import libraries

import requests, urllib3

import sys

Add parent directory to path to allow importing common vars

sys.path.append("..") # noqa

from device_info import ios_xe1 as device # noqa

Disable Self-Signed Cert warning for demo

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

Setup base variable for request

restconf_headers = {"Accept": "application/yang-data+json"}

restconf_base = "https://{ip}:{port}/restconf/data"

interface_url = restconf_base + "/ietf-interfaces:interfaces/interface={int_name}"

RESTCONF: Basic Request for Device Data 1/2

device_apis/rest/restconf_example1.pyCode edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Create URL and send RESTCONF request to core1 for GigE2 Config

url = interface_url.format(ip = device["address"], port = device["restconf_port"],

int_name = "GigabitEthernet2"

)

r = requests.get(url,

headers = restconf_headers,

auth=(device["username"], device["password"]),

verify=False)

Print returned data

print(r.text)

Process JSON data into Python Dictionary and use

interface = r.json()["ietf-interfaces:interface"]

print("The interface {name} has ip address {ip}/{mask}".format(

name = interface["name"],

ip = interface["ietf-ip:ipv4"]["address"][0]["ip"],

mask = interface["ietf-ip:ipv4"]["address"][0]["netmask"],

)

)

RESTCONF: Basic Request for Device Data 2/2

device_apis/rest/restconf_example1.py
Code edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Example: Updating
Configuration with
RESTCONF

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Setup base variable for request

restconf_headers["Content-Type"] = "application/yang-data+json"

New Loopback Details

loopback = {"name": "Loopback101",

"description": "Demo interface by RESTCONF",

"ip": "192.168.101.1",

"netmask": "255.255.255.0"}

Setup data body to create new loopback interface

data = {

"ietf-interfaces:interface": {

"name": loopback["name"],

"description": loopback["description"],

"type": "iana-if-type:softwareLoopback",

"enabled": True,

"ietf-ip:ipv4": {

"address": [

{"ip": loopback["ip"],

"netmask": loopback["netmask"]}

] } } }

RESTCONF: Creating a New Loopback 1/2

device_apis/rest/restconf_example2.pyOnly showing significant code changes

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example2.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Create URL and send RESTCONF request to core1 for GigE2 Config

url = interface_url.format(ip = core1_ip, int_name = loopback["name"])

r = requests.put(url,

headers = restconf_headers,

auth=(username, password),

json = data,

verify=False)

Print returned data

print("Request Status Code: {}".format(r.status_code))

RESTCONF: Creating a New Loopback 2/2

device_apis/rest/restconf_example2.pyOnly showing significant code changes

https://github.com/hpreston/python_networking/blob/master/device_apis/rest/restconf_example2.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Full NETCONF Manager (ie
client) implementation in Python

• See later presentation on
NETCONF details

• Handles all details including
authentication, RPC, and
operations

• Deals in raw XML

Easily Interface with NETCONF and ncclient

https://ncclient.readthedocs.io

https://ncclient.readthedocs.io/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Example: Retrieving
Configuration Details with
NETCONF

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Import libraries

from ncclient import manager

import xmltodict

Create filter template for an interface

interface_filter = """

<filter>

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">

<interface>

<name>{int_name}</name>

</interface>

</interfaces>

</filter>

"""

NETCONF: Basic Request for Device Data 1/2

device_apis/netconf/netconf_example1.pyCode edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Open NETCONF connection to device

with manager.connect(host=core1_ip, username=username, password=password,

hostkey_verify=False) as m:

Create desired NETCONF filter and <get-config>

filter = interface_filter.format(int_name = "GigabitEthernet2")

r = m.get_config("running", filter)

Process the XML data into Python Dictionary and use

interface = xmltodict.parse(r.xml)

interface = interface["rpc-reply"]["data"]["interfaces"]["interface"]

print("The interface {name} has ip address {ip}/{mask}".format(

name = interface["name"]["#text"],

ip = interface["ipv4"]["address"]["ip"],

mask = interface["ipv4"]["address"]["netmask"],

)

)

NETCONF: Basic Request for Device Data 2/2

device_apis/netconf/netconf_example1.pyCode edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Example: Updating
Configuration with
NETCONF

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Create config template for an interface

config_data = """<config>

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">

<interface>

<name>{int_name}</name>

<description>{description}</description>

<type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

ianaift:softwareLoopback

</type>

<enabled>true</enabled>

<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

<address>

<ip>{ip}</ip>

<netmask>{netmask}</netmask>

</address>

</ipv4>

</interface>

</interfaces>

</config>

"""

NETCONF: Creating a New Loopback 1/2

device_apis/netconf/netconf_example2.pyOnly showing significant code changes

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example2.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

New Loopback Details

loopback = {"int_name": "Loopback102",

"description": "Demo interface by NETCONF",

"ip": "192.168.102.1",

"netmask": "255.255.255.0"}

Open NETCONF connection to device

with manager.connect(host=core1_ip,

username=username,

password=password,

hostkey_verify=False) as m:

Create desired NETCONF config payload and <edit-config>

config = config_data.format(**loopback)

r = m.edit_config(target = "running", config = config)

Print OK status

print("NETCONF RPC OK: {}".format(r.ok))

NETCONF: Creating a New Loopback 2/2

device_apis/netconf/netconf_example2.pyOnly showing significant code changes

https://github.com/hpreston/python_networking/blob/master/device_apis/netconf/netconf_example2.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• If no other API is available…

• Builds on paramiko library for
SSH connectivity

• Support for a range of vendors
network devices and operating
systems

• Send and receive clear text

• Post processing of data will be key

For When CLI is the Only Option – netmiko

https://github.com/ktbyers/netmiko

https://github.com/ktbyers/netmiko

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Example: Retrieving
Configuration Details with
CLI

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Import libraries

from netmiko import ConnectHandler

import re

import sys

Add parent directory to path to allow importing common vars

sys.path.append("..") # noqa

from device_info import ios_xe1 as device # noqa

Set device_type for netmiko

device["device_type"] = "cisco_ios"

Create a CLI command template

show_interface_config_temp = "show running-config interface {}"

CLI: Basic Request for Device Data 1/3

device_apis/cli/netmiko_example1.pyCode edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Open CLI connection to device

with ConnectHandler(ip = device["address"],

port = device["ssh_port"],

username = device["username"],

password = device["password"],

device_type = device["device_type"]) as ch:

Create desired CLI command and send to device

command = show_interface_config_temp.format("GigabitEthernet2")

interface = ch.send_command(command)

Print the raw command output to the screen

print(interface)

CLI: Basic Request for Device Data 2/3

device_apis/cli/netmiko_example1.pyCode edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Use regular expressions to parse the output for desired data

name = re.search(r'interface (.*)', interface).group(1)

description = re.search(r'description (.*)', interface).group(1)

ip_info = re.search(r'ip address (.*) (.*)', interface)

ip = ip_info.group(1)

netmask = ip_info.group(2)

Print the info to the screen

print("The interface {name} has ip address {ip}/{mask}".format(

name = name,

ip = ip,

mask = netmask,

)

)

CLI: Basic Request for Device Data 3/3

device_apis/cli/netmiko_example1.pyCode edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Example: Updating
Configuration with CLI

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

New Loopback Details

loopback = {"int_name": "Loopback103",

"description": "Demo interface by CLI and netmiko",

"ip": "192.168.103.1",

"netmask": "255.255.255.0"}

Create a CLI configuration

interface_config = [

"interface {}".format(loopback["int_name"]),

"description {}".format(loopback["description"]),

"ip address {} {}".format(loopback["ip"], loopback["netmask"]),

"no shut"]

Open CLI connection to device

with ConnectHandler(ip=core1["ip"],

username=username,

password=password,

device_type=core1["device_type"]) as ch:

Send configuration to device

output = ch.send_config_set(interface_config)

CLI: Creating a New Loopback

device_apis/cli/netmiko_example2.pyOnly showing significant code changes

https://github.com/hpreston/python_networking/blob/master/device_apis/cli/netmiko_example2.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Support for both GET and TRAP
communications

• Can be a bit complex to write
and leverage

• Examples are available

• Data returned in custom objects

SNMP, a classic network interface with PySNMP

http://snmplabs.com/pysnmp/
https://github.com/etingof/pysnmp

https://github.com/etingof/pysnmp

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Example: Making an SNMP
Query

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Setup SNMP connection and query a MIB

iterator = getCmd(SnmpEngine(),

CommunityData(ro_community),

UdpTransportTarget((device["address"], device["snmp_port"])),

ContextData(),

ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))

Process the query

errorIndication, errorStatus, errorIndex, varBinds = next(iterator)

Check for errors, and if OK, print returned result

if errorIndication: # SNMP engine errors

print(errorIndication)

else:

if errorStatus: # SNMP agent errors

print('%s at %s' % (errorStatus.prettyPrint(),

varBinds[int(errorIndex)-1] if errorIndex else '?'))

else:

for varBind in varBinds: # SNMP response contents

print(' = '.join([x.prettyPrint() for x in varBind]))

SNMP: Basic SNMP Query

device_apis/snmp/pysnmp_example1.pyCode edited for display on slide

https://github.com/hpreston/python_networking/blob/master/device_apis/snmp/pysnmp_example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Configuration Management
Tools and Libraries

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Designed for Network Automation

• NAPALM

• Library providing a standard set of
functions for working with different
network OS’s

• Nornir

• New automation framework
focused on being Python native.
Can leverage other tools like
NAPALM.

Designed for Server Automation

• Ansible

• Declarative, agent-less automation
framework for managing
configuration. Robust support for
network platforms

• Salt

• Configuration management and
remote code execution engine.
Network automation options in
development.

Open Source Python projects for full network
config management

https://napalm.readthedocs.io/
https://nornir.readthedocs.io/
https://www.ansible.com/overview/networking
https://docs.saltstack.com/en/latest/topics/network_automation/index.html

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Robust configuration
management options

• Replace, Merge, Compare,
Commit, Discard, Rollback

• Builds on available backend
libraries and interfaces (CLI,
NX-API, NETCONF, etc)

• Can be used and integrated into
other tools (ie Ansible, Nornir)

NAPALM – Mature Python Library for Multi-Vendor
Interactions

https://github.com/napalm-automation/napalm
https://napalm.readthedocs.io

https://github.com/napalm-automation/napalm
https://napalm.readthedocs.io/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Agentless – no edge software
installation needed

• Support for both old and new
platforms and interfaces (ie CLI
& NETCONF)

• Robust and growing library of
network modules

Ansible – Leading DevOps Tool for Network
Configuration Management

https://www.ansible.com/overview/networking
https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html

Screenshot edited to include IOS, IOS-XR and NX-OS Content

https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Some Other Cool Python
Stuff

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Open Source command line
utility for managing simulations
with Cisco VIRL/CML

• Designed for NetDevOps
workflows

• Development environments

• Test networks within CICD
pipelines

virlutils – It’s like “vagrant up” but for the Network!

https://github.com/CiscoDevNet/virlutils
https://learningnetworkstore.cisco.com/virlfaq/aboutVirl

https://github.com/CiscoDevNet/virlutils
https://learningnetworkstore.cisco.com/virlfaq/aboutVirl

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• No longer is “ping” the best
network test tool available

• PyATS is built to work like
software test suites, and uses
common frameworks (ie robot)

• Profile the network to get a
baseline for interfaces, routing
protocols, and platform details –
verify at anytime.

pyATS – Profile and Test Your Network Before,
During, and After Changes

https://developer.cisco.com/site/pyats/
https://developer.cisco.com/docs/pyats/

https://developer.cisco.com/site/pyats/
https://developer.cisco.com/docs/pyats/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Summing up

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Libraries to Work with Data

• xmltodict, json, PyYAML, csv, pyang

• API Libraries

• requests, ncclient, netmiko, pysnmp

• Configuration Management

• NAPALM, Ansible, Salt, Nornir

• Some Other Cool Python Stuff

• virlutils, pyATS

What did we talk about?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• Docs and Links

• https://developer.cisco.com/python

• Learning Labs

• Laptop Setup http://cs.co/lab-dev-setup

• Coding Fundamentals http://cs.co/lab-coding-fundamentals

• Model Driven Programmability http://cs.co/lab-mdp

• DevNet Sandboxes

• IOS Always On http://cs.co/sbx-iosxe

• NX-OS Always On http://cs.co/sbx-nxos

• Code Samples

• http://cs.co/code-python-networking

Webinar Resource List

https://developer.cisco.com/python
http://cs.co/lab-dev-setup
http://cs.co/lab-coding-fundamentals
http://cs.co/lab-mdp
http://cs.co/sbx-iosxe
http://cs.co/sbx-nxos
http://cs.co/code-python-networking

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

developer.cisco.com/codeexchange

Use one or more of the libraries
discussed to write a Python script
to automate one common
networking task.

Example: Compile the MAC and ARP
tables from all devices on the
network.

NetDevOps Live! Code Exchange Challenge

https://developer.cisco.com/codeexchange

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

• NetDevOps on DevNet
developer.cisco.com/netdevops

• NetDevOps Live!
developer.cisco.com/netdevops/live

• NetDevOps Blogs
blogs.cisco.com/tag/netdevops

• Network Programmability Basics Video Course
developer.cisco.com/video/net-prog-basics/

Looking for more about NetDevOps?

https://developer.cisco.com/netdevops
https://developer.cisco.com/netdevops/live
https://blogs.cisco.com/tag/netdevops
https://developer.cisco.com/video/net-prog-basics/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live

Got more questions? Stay in touch!

hapresto@cisco.com

@hfpreston

http://github.com/hpreston

@CiscoDevNet

facebook.com/ciscodevnet/

http://github.com/CiscoDevNet

Hank Preston developer.cisco.com

https://developer.cisco.com/netdevops/live

@netdevopslive

