
https://developer.cisco.com/netdevops/live

Bryan Byrne, CCIE 25607 R/S

Technical Solutions

Season 1, Talk 3

Twitter: @bryan25607

Deep Dive Into Model Driven
Programmability with NETCONF and YANG

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• The Road to Model Driven
Programmability

• Introduction to YANG Data
Models

• Introduction to NETCONF

What are we going to talk about?

Note: All code samples referenced in this presentation are available at
https://github.com/CiscoDevNet/BRKDEV-1368

https://github.com/CiscoDevNet/BRKDEV-1368

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

The Road to Model Driven
Programmability

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

The Network is No Longer Isolated

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

What about SNMP?

SNMP works
“reasonably well for
device monitoring”

RFC 3535: Overview of the 2002 IAB
Network Management Workshop – 2003
https://tools.ietf.org/html/rfc3535

• Typical config: SNMPv2 read-only
community strings

• Typical usage: interface statistics
queries and traps

• Empirical Observation: SNMP is
not used for configuration

• Lack of Writeable MIBs

• Security Concerns

• Difficult to Replay/Rollback

• Special Applications

https://tools.ietf.org/html/rfc3535

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• A programmatic interface for
device configuration

• Separation of Configuration and
State Data

• Ability to configure "services"
NOT "devices"

• Integrated error checking and
recovery

RFC 3535: What is Needed?
What do

we need?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• NETCONF – 2006 – RFC 4741
(RFC 6241 in 2011)

• YANG – 2010 – RFC 6020

• RESTCONF – 2017 – RFC 8040

• gRPC – 2015 – OpenSource
project by Google

• Not covered in today’s session

Model Driven Programmability

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Transport (Protocol) vs Data (Model)

• NETCONF
• RESTCONF
• gRPC

• YANG

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is YANG?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Three Meanings of “YANG”

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Module that is a self-contained
top-level hierarchy of nodes

• Uses containers to group
related nodes

• Lists to identify nodes that are
stored in sequence

• Each individual attribute of a
node is represented by a leaf

• Every leaf must have an
associated type

module ietf-interfaces {

import ietf-yang-types {

prefix yang;

}

container interfaces {

list interface {

key "name";

leaf name {

type string;

}

leaf enabled {

type boolean;

default "true";

}

}

YANG Modeling Language

Example edited for simplicity and brevity

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

A data model is simply a well
understood and agreed upon
method to describe "something".
As an example, consider this
simple "data model" for a
person.

• Person

• Gender - male, female, other

• Height - Feet/Inches or Meters

• Weight - Pounds or Kilos

• Hair Color - Brown, Blond, Black,
Red, other

• Eye Color - Brown, Blue, Green,
Hazel, other

What is a Data Model?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

What might a YANG Data Model describe?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Working with YANG Data
Models

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Where do Models Come From?

• Standard definition
(IETF, ITU, OpenConfig, etc.)

• Compliant with standard
ietf-diffserv-policy.yang

ietf-diffserv-classifer.yang

ietf-diffserv-target.yang

• Vendor definition
(i.e. Cisco)

• Unique to Vendor Platforms
cisco-memory-stats.yang

cisco-flow-monitor

cisco-qos-action-qlimit-cfg

Industry
Standard

Vendor
Specific

https://github.com/YangModels/yang

https://github.com/YangModels/yang

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• For YANG modules from standard
organizations such as the IETF,
open source such as Open
Daylight or vendor specific
modules”

• https://github.com/YangModels/yang

• For OpenConfig models

• https://github.com/openconfig/public

Where to get the Models?

https://github.com/YangModels/yang
https://github.com/openconfig/public

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

The model can be displayed and represented in any number of
formats depending on needs at the time. Some options include:

• YANG Language

• Clear Text

• XML

• JSON

• HTML/JavaScript

YANG Data Models

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

DevNet$ pyang –f tree ietf-interfaces.yang

module: ietf-interfaces

+--rw interfaces

| +--rw interface* [name]

| +--rw name string

| +--rw description? string

| +--rw type identityref

| +--rw enabled? boolean

| +--rw link-up-down-trap-enable? enumeration {if-mib}?

Working with YANG Models

Example output edited for simplicity and brevity BRKDEV-1368/yang/ietf-interfaces.yang

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/yang/ietf-interfaces.yang

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Python YANG Library

• Validate and display YANG
files

• Many formats for display

• Text: tree

• HTML: jstree

module: ietf-interfaces

+--rw interfaces

| +--rw interface* [name]

| +--rw name string

| +--rw description? string

| +--rw type identityref

| +--rw enabled? boolean

| +--rw link-up-down-trap-enable? enumeration {if-mib}?

+--ro interfaces-state

+--ro interface* [name]

+--ro name string

+--ro type identityref

+--ro admin-status enumeration {if-mib}?

+--ro oper-status enumeration

+--ro last-change? yang:date-and-time

+--ro if-index int32 {if-mib}?

+--ro phys-address? yang:phys-address

+--ro higher-layer-if* interface-state-ref

+--ro lower-layer-if* interface-state-ref

+--ro speed? yang:gauge64

+--ro statistics

+--ro discontinuity-time yang:date-and-time

+--ro in-octets? yang:counter64

[OUTPUT REMOVED]

Using pyang

Example edited for simplicity and brevity

Module Name

Leaf

Data Type

c
o
n
ta

in
e
r

c
o
n
ta

in
e
r

lis
t

lis
t

Key

Optional

Read
Only

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Network Device Data in
YANG

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Actual Device Data Modeled in YANG

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Use NETCONF to Retrieve ietf-interfaces data

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">

<interface>

<name>GigabitEthernet1</name>

<description>DON'T TOUCH ME</description>

<type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">ianaift:ethernetCsmacd</type>

<enabled>true</enabled>

<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

<address>

<ip>10.10.10.48</ip>

<netmask>255.255.255.0</netmask>

</address>

</ipv4>

<ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip"/>

</interface>

<interface>

<name>GigabitEthernet2</name>

<type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">ianaift:ethernetCsmacd</type>

<enabled>true</enabled>

<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip"/>

<ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip"/>

</interface>

</interfaces>

in
te

rf
a
c
e
s

c
o
n
ta

in
e
r

in
te

rf
a
c
e
 n

o
d
e

Leaf

Namespace = Capability = Model

DevNet$ python example1.py

BRKDEV-1368/yang/device_info.py
BRKDEV-1368/yang/example1.py

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/yang/device_info.py
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/yang/example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

YANG Summary

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• YANG is a Data Modeling Language

• YANG Modules are constructed to create standard data models for
network data

• YANG Data sent to or from a network device will be formatted in
either XML or JSON depending on the protocol (ex: NETCONF or
RESTCONF)

YANG Summary

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Understanding NETCONF

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Some key details:

• Initial standard in 2006
with RFC4741

• Latest standard
is RFC6241 in 2011

• Does NOT explicitly define
content

Introducing the NETCONF Protocol

https://tools.ietf.org/html/rfc4741
https://tools.ietf.org/html/rfc6241

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

NETCONF Protocol Stack

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Transport - SSH
$ ssh admin@192.168.0.1 -p 830 -s netconf

admin@192.168.0.1's password:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.1</capability>

<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>

<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring</capability>

<capability>urn:ietf:params:xml:ns:yang:ietf-interfaces</capability>

[output omitted and edited for clarity]

</capabilities>

<session-id>19150</session-id></hello>]]>]]>

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>

</capabilities>

</hello>]]>]]>
Example edited for simplicity and brevity

SSH Login

Server (Agent)
sends hello

Client (Manager)
sends hello

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Transport - SSH
$ ssh admin@192.168.0.1 -p 830 -s netconf

admin@192.168.0.1's password:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.1</capability>

<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>

<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring</capability>

<capability>urn:ietf:params:xml:ns:yang:ietf-interfaces</capability>

[output omitted and edited for clarity]

</capabilities>

<session-id>19150</session-id></hello>]]>]]>

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>

</capabilities>

</hello>]]>]]>
Example edited for simplicity and brevity

SSH Login

Server (Agent)
sends hello

Client (Manager)
sends hello

Don’t NETCONF Like this!

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Messages - Remote Procedure Call (RPC)

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Operations - NETCONF Actions

Operation Description

<get> Retrieve running configuration and device state information

<get-config> Retrieve all or part of specified configuration data store

<edit-config> Loads all or part of a configuration to the specified configuration data
store

<copy-config> Replace an entire configuration data store with another

<delete-config> Delete a configuration data store

<commit> Copy candidate data store to running data store

<lock> / <unlock> Lock or unlock the entire configuration data store system

<close-session> Graceful termination of NETCONF session

<kill-session> Forced termination of NETCONF session

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Data Store Key Points
• Entire or partial configuration
• "running" is the only mandatory data

store
• Not all data stores are writeable
• A "URL" data store is supported by IOS

to enable <config-copy>

• Every NETCONF message must target
a data store

NETCONF Data Stores

result = m.get_config('running')

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

NETCONF Communications

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

NETCONF in Code with
Python

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Full NETCONF Manager
implementation in Python

• https://ncclient.readthedocs.io

• Simplifies connection and
communication.

• Deals in raw XML

NETCONF and Python: ncclient

From: http://ncclient.readthedocs.io/en/latest/

https://ncclient.readthedocs.io/
http://ncclient.readthedocs.io/en/latest/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example1.py: Saying <hello>

• manager.connect() opens
NETCONF session with device

• Parameters: host & port, user &
password

• hostkey_verify=False

Trust cert

• Stores capabilities

Saying <hello> with Python and ncclient

BRKDEV-1368/netconf/device_info.py
BRKDEV-1368/netconf/example1.py

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/device_info.py
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example1.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Understanding the Capabilities List
DevNet$ python example1.py

Here are the NETCONF Capabilities

urn:ietf:params:netconf:base:1.0

urn:ietf:params:netconf:base:1.1

.

urn:ietf:params:xml:ns:yang:ietf-interfaces?module=ietf-interfaces&revision=2014-05-08&features=pre-

provisioning,if-mib,arbitrary-names&deviations=ietf-ip-devs

http://cisco.com/ns/ietf-ip/devs?module=ietf-ip-devs&revision=2016-08-10

http://cisco.com/ns/yang/Cisco-IOS-XE-native?module=Cisco-IOS-XE-native&revision=2017-02-07

Two General Types
• Base NETCONF capabilities
• Data Models Supported

Example edited for simplicity and brevity

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Understanding the Capabilities List

urn:ietf:params:xml:ns:yang:ietf-interfaces

? module=ietf-interfaces

& revision=2014-05-08

& features=pre-provisioning,if-mib,arbitrary-names

& deviations=ietf-ip-devs

.

http://cisco.com/ns/ietf-ip/devs

? module=ietf-ip-devs

& revision=2016-08-10

Data Model Details
• Model URI
• Module Name and Revision Date
• Protocol Features
• Deviations – Another model that modifies this one

Example edited for simplicity and brevity

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Automate Your Network
with NETCONF

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example2.py: Retrieving info
with ncclient

• Send <get> to retrieve config
and state data

• Process and leverage XML
within Python

• Report back current state of
interface

Getting Interface Details with XML Filter

BRKDEV-1368/netconf/example2.py
BRKDEV-1368/netconf/filter-ietf-interfaces.xml

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example2.py
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/filter-ietf-interfaces.xml

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example2.py: Retrieving info
with ncclient

• Send <get> to retrieve config
and state data

• Process and leverage XML
within Python

• Report back current state of
interface

Getting Interface Details with XML Filter

BRKDEV-1368/netconf/example2.py
BRKDEV-1368/netconf/filter-ietf-interfaces.xml

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example2.py
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/filter-ietf-interfaces.xml

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example2.py: Retrieving info
with ncclient

• Send <get> to retrieve config
and state data

• Process and leverage XML
within Python

• Report back current state of
interface

Getting Interface Details with XML Filter

BRKDEV-1368/netconf/example2.py
BRKDEV-1368/netconf/filter-ietf-interfaces.xml

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example2.py
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/filter-ietf-interfaces.xml

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Getting Interface Details

DevNet$ python example2.py

Interface Details:

Name: GigabitEthernet2

Description: DON'T TOUCH ME

Type: ianaift:ethernetCsmacd

MAC Address: 00:50:56:bb:74:d5

Packets Input: 592268689

Packets Output: 21839

BRKDEV-1368/netconf/example2.py
BRKDEV-1368/netconf/filter-ietf-interfaces.xml

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example2.py
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/filter-ietf-interfaces.xml

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example_xpath.py: Retrieving
info with ncclient and XPath

• Send <get> to retrieve and
state data

• Process the data

• Report back current state of
interface

Getting Interface Details with XPath

BRKDEV-1368/netconf/example_xpath.py

DevNet$python example_xpath.py

Interface Details:

Name: GigabitEthernet1

Packets Output: 415200

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example_xpath.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example3.py: Editing
configuration with ncclient

• Constructing XML Config
Payload for NETCONF

• Sending <edit-config>
operation with ncclient

• Verify result

Configuring Interface Details

BRKDEV-1368/netconf/config-temp-ietf-interfaces.xml
BRKDEV-1368/netconf/example3.py

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/config-temp-ietf-interfaces.xml
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example3.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example3.py: Editing
configuration with ncclient

• Constructing XML Config
Payload for NETCONF

• Sending <edit-config>
operation with ncclient

• Verify result

config-temp-ietf-interfaces.xml

BRKDEV-1368/netconf/config-temp-ietf-interfaces.xml
BRKDEV-1368/netconf/example3.py

Configuring Interface Details

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/config-temp-ietf-interfaces.xml
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example3.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• example3.py: Editing
configuration with ncclient

• Constructing XML Config
Payload for NETCONF

• Sending <edit-config>
operation with ncclient

• Verify result

Configuring Interface Details

BRKDEV-1368/netconf/config-temp-ietf-interfaces.xml
BRKDEV-1368/netconf/example3.py

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/config-temp-ietf-interfaces.xml
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example3.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

DevNet$ python -i example3.py

Configuration Payload:

<config>

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">

<interface>

<name>GigabitEthernet2</name>

<description>Configured by NETCONF</description>

<type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

ianaift:ethernetCsmacd

</type>

<enabled>true</enabled>

<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

<address>

<ip>10.255.255.1</ip>

<netmask>255.255.255.0</netmask>

</address>

</ipv4>

</interface>

</interfaces>

</config>

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply xmlns=”urn.." message-id=”..9784" xmlns:nc="urn..">

<ok/>

</rpc-reply>

Configuring Interface Details

Example edited for simplicity and brevityBRKDEV-1368/netconf/config-temp-ietf-interfaces.xml
BRKDEV-1368/netconf/example3.py

https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/config-temp-ietf-interfaces.xml
https://github.com/CiscoDevNet/BRKDEV-1368/blob/master/netconf/example3.py

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

NETCONF Summary

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• The elements of the NETCONF transport protocol

• How to leverage ncclient to use NETCONF in Python

• Examples retrieving and configuring data from a NETCONF Agent

NETCONF Summary

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Summing up

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• The Road to Model Driven
Programmability

• Introduction to YANG Data
Models

• Introduction to NETCONF

What did we talk about?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Webinar Resource List

• Docs and Links
• https://developer.cisco.com/netconf

• Learning Labs
• Model Driven Programmability http://cs.co/lab-mdp

• NETCONF/YANG on Nexus http://cs.co/lab-mdp-nexus

• DevNet Sandboxes
• IOS Always On http://cs.co/sbx-iosxe

• NX-OS Always On http://cs.co/sbx-nxos

• IOS XR Reserved http://cs.co/sbx-iosxr

• Code Samples
• https://github.com/CiscoDevNet/BRKDEV-1368

https://developer.cisco.com/netconf
http://cs.co/lab-mdp
http://cs.co/lab-mdp-nexus
http://cs.co/sbx-iosxe
http://cs.co/sbx-nxos
http://cs.co/sbx-iosxr
https://github.com/CiscoDevNet/BRKDEV-1368

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

developer.cisco.com/codeexchange

NetDevOps Live! Code Exchange Challenge

Use NETCONF to configure basic
routing using your favorite
protocol.

Hint: Configure the device with CLI the first
time, and use m.get_config(“running”)
to retrieve the NETCONF configuration to
build a template.

https://developer.cisco.com/codeexchange

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• NetDevOps on DevNet
developer.cisco.com/netdevops

• NetDevOps Live!
developer.cisco.com/netdevops/live

• NetDevOps Blogs
blogs.cisco.com/tag/netdevops

• Network Programmability Basics Video Course
developer.cisco.com/video/net-prog-basics/

Looking for more about NetDevOps?

https://developer.cisco.com/netdevops
https://developer.cisco.com/netdevops/live
https://blogs.cisco.com/tag/netdevops
https://developer.cisco.com/video/net-prog-basics/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Got more questions? Stay in touch!

brybyrne@cisco.com

@brybyrne25607

http://github.com/brybyrne

@CiscoDevNet

facebook.com/ciscodevnet/

http://github.com/CiscoDevNet

Bryan Byrne developer.cisco.com

https://developer.cisco.com/netdevops/live

@netdevopslive

