Y4

<l
. B oo DEVNES

Linux Bridges, IP Tables & CNI Plug-Ins
A Container Networking Deep dive

Matt Johnson Season 2, Talk 13

Senior Developer Advocate
Twitter: @matjohn?2 https://developer.cisco.com/netdevops/live

What are we going to talk about?

. Container Network Building Blocks
- “Why container networking isn’t that scary”

. Linux Network Namespaces
. Docker Networking < 7 k.J
- Multi-Host Networking

. CNI a>

LInux as a software switch / router.

- Most of us likely know this is possible.

* Interfaces
* Physical
* Virtual
* Bridges
« Routing Tables
o Static
« Open source routing protocol implementations (quagga/zebra etc).
» Firewall (IPTables)
 Filter / NAT / Mangle
* QoS

* IC

devbox@11642-77:~% ip addr list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default qlen 1000
link/1loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o
valid_lft forever preferred_lft forever
1net6 ::1/128 scope host
valid_1lft forever preferred_lft forever
: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fqg_codel state UP group default glen 1000
link/ether f2:3¢:91:a09:46:49 brd ff.ff:ff.ff:ff.ff
inet 212.71.255.77/24 brd 212.71.255.255 scope global dynamic eth@
valid_1ft 45405sec preferred_lft 45405sec
inet6 2a01:7e00::f03c:91ff:fea9:4649/64 scope global dynamic mngtmpaddr noprefixroute
valid_1lft 14397sec preferred_lft 3597sec
1net6 fe80::f03c:91ff:fea9:4649/64 scope link
valid_1lft forever preferred_lft forever
: docker@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP group default
link/ether 02:42:26:0c:b2:20 brd ff.ff:ff.ff:ff.ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker®
valid_lft forever preferred_lft forever
1net6 fe80::42:26ff:fe@c:b220/64 scope link
valid_lft forever preferred_lft forever
: veth53698e6@1f4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue master docker@ state UP group default
link/ether ba:7d:75:56:2d:de brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet6 fe80::b87d:75ff:fe56:2dde/64 scope link
valid_lft forever preferred_lft forever

devbox@11642-77:~% sudo ip link add brtestl type dummy
devbox@11642-77:~% sudo ip link add brtest2 type dummy

devbox@11642-77:~% sudo brctl addbr demobrl

devbox@11642-77:~% sudo brctl addif demobrl brtestl brtest?2

devbox@11642-77:~% sudo brctl show demobril

bridge name bridge 1id STP enabled interfaces

demobrl 8000 .2a6al16177dc5 no brtestl
brtest?

devbox@11642-77:~% sudo brctl showmacs demobrl
port no mac addr 1s local? ageing timer
2 2a:6a:16:17:7d:c5 yes 0.00
2 2a:6a:16:17:7d:c5 yes 0.00
1 92:0f:58:6a:5c:29 yes 0.00
1 92:0f:58:06a:5c:29 yes 0.00

Linux as a software switch / router

BRIDGES

L3: 10.10.0.1

HOST A

Routing / NAT

L3: 172.16.0.1/24

eth1

BRIDGET

We’'ve made a "switch” on ports eth1&2

We could give 172.16.0.1 as GW
(With some added NAT and routing etc)

Useful for external clients (phy interfaces)
What about internal “clients”?

Linux as a software switch / router
BRIDGES FOR CONTAINERS

HOST A | |
If we could add a container to a bridge
Routing / NAT as an interface.... This could work.

L3: 10.70.0.1 L3: 172.16.0.1/24 We could give containers IP’s in
172.16.0.0/24 range
BRIDGE1 172.16.0.1 as GW

(With some added NAT and routing etc)

CONTAINER 1 CONTAINER 2

Default Gateway

devbox@11642-77:~% brctl show

bridge name bridge 1d STP enabled interfaces
docker® 8000.0242260cb220 no veth53698e6

devbox@11642-77:~% brctl showmacs docker®
port no mac addr 1s local? ageing timer

1 ba:7d:75:56:2d:de yes 0.00
1 ba:7d:75:56:2d:de yes 0.00

devbox@11642-77:~% ip route list

default via 212.71.255.1 dev eth@ proto dhcp src 212.71.255.77 metric 1024
172.17.0.0/16 dev docker@ proto kernel scope link src 172.17.0.1
212.71.255.0/24 dev eth@® proto kernel scope link src 212.71.255.77
212.71.255.1 dev eth@® proto dhcp scope link src 212.71.255.77 metric 1024

Introducing vETH pairs.

The veth devices are virtual Ethernet devices.
veth devices are always created in interconnected pairs.

A pair can be created using the command:

Ip link add <p1name> type veth peer name <pZ2-name>
where, pT-name and pZ2-name are the names assigned to the
two connected end points.

Packets transmitted on one device In the pair are immediately

received on the other device. \When either devices is down the
ink state of the pair is down.

http://man?/.org/linux/man-pages/man4/veth.4.html

http://man7.org/linux/man-pages/man4/veth.4.html

Linux as a software switch / router
BRIDGES FOR CONTAINERS

L3: 10.10.0.1

phy

Default Gateway

HOST A
Routing / NAT

L3:172.16.0.1/24

B

Veth:
pairl-a

CONTAINER 1

RIDGE1
pair2-a
CONTAINER 2

Create a VETH pair for each container.
Add one "end” of the pair to our bridge.

Give the other end an IP address
compatible with the bridge subnet.

Test traffic from pair1-b gets to the bridge
BVI

devbox@11642-77:~% sudo ip link add pairl-a type veth peer name pairl-b

Idevbox@1i642—77:~$ sudo brctl addif demobrl pairl-a
devbox@11642-77:~% sudo brctl show demobril

bridge name bridge 1id STP enabled interfaces

demobrl 8000.2a6a16177dc5 no brtestl
brtest2
pairl-a

devbox@11642—77:~$ sudo ip link set up pairl-b
devbox@11642-77:~% sudo ip link set up pairl-a

devbox@11642-77:~% ping 172.16.0.1 -I pairl-b
PING 172.16.0.1 (172.16.0.1) from 172.16.0.2 pairl-b: 56(84) bytes of data.

devbox@11642-77:~% sudo ip addr add 172.16.0.2/24 dev pairl-b
devbox@11642-77:~% sudo tcpdump -n -i demobrl

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on demobrl, link-type EN1OMB (Ethernet), capture size 262144 bytes
14:23:29.041980 ARP, Request who-has 172.16.0.1 tell 172.16.0.2, length 28
14:23:30.066012 ARP, Request who-has 172.16.0.1 tell 172.16.0.2, length 28

Linux as a software switch / router
BRIDGES FOR CONTAINERS

L3: 10.10.0.1

phy

Default Gateway

HOST A
Routing / NAT

L3:172.16.0.1/24

B

Veth:
pairl-a

CONTAINER 1

RIDGE1
pair2-a
CONTAINER 2

Create a VETH pair for each container.
Add one "end” of the pair to our bridge.

Give the other end an IP address
compatible with the bridge subnet.

Test traffic from pair1-b gets to the bridge
BVI

HOW DO WE PUT THE OTHER END INTO
OUR CONTAINER?

WHAT IS A "CONTAINER” FROM LINUX
NETWORKING VIEWPOINT?

Introducing Network Namespaces
.. bon’t they sound familiar?

- LINUX: A network namespace is logically another copy of the
network stack, with its own routes, firewall rules, and network
devices. By default a process inherits its network namespace from
its parent. Initially all the processes share the same default
network namespace from the init process.

- NETWORKS: virtual routing and forwarding (VRF) is a technology
that allows multiple instances of a routing table to co-exist within
the same router at the same time. One or more logical or physical
interfaces may have a VRF and these VRFs do not share routes
therefore the packets are only forwarded between interfaces on
the same VRF.

DEMO 4: Exploring NetNS
with Docker

LINuX as a software switch / router

DOCKER; Bridges and NetNS

L3: 10.10.0.1

phy
Default Gateway

HOST A
Routing / NAT

L3:172.16.0.1/24

BRIDGE: DockerO

Veth:
vethXY/

Veth: ethO Veth: ethO

CONTAINER 1
NetNS 1

Veth:
vethABC

CONTAINER 2
NetNS 2

NETNS gives each container a “VRF”
where the end of our Veth pair lives.

Containers see “ethO” which is the remote
end of the veth pair for that container, on
that host.

The remote end of the veth’s are renamed
by docker to “eth0” within the container.

DEMO 5 & 6: Messing with the
deftaults!

LINnux as a software switch / router
DOCKER; Bridges and NetNS

HOST A

Routing / NAT NETNS gives each container a “VRF”
L3 10.10.0.1 L3 172.16.0.1/24 where the end of our Veth pair lives.

ethO BRIDGE: Docker0 Containers can be placed in the h?st’s)
CONTAINER 3 default netns, they will see all the “regular
Veth: hosts interface and communicate just as a

NetNS Default vethXYZ vethABC regular process on the system would.

Veth: ethQ \eth: ethO We Cap also show there -is nothing magic
CONTAINER 1 | CONTAINER 2 by asking for no networking and doing it

NetNS 1 NSNS 2 ourselves, manually with netns commands.

phy
Default Gateway

devbox@11642-77:~% sudo docker network 1s

NETWORK ID NAME DRIVER SCOPE
936f5c268e8f bridge bridge local
9f041bdllale host host local
b9533c3efd7a none null local
devbox@11642-77:~% sudo docker network 1ls

NETWORK ID NAME DRIVER SCOPE
936f5c268e8f bridge bridge local
9f041bdllale host host local
b9533c3efd7a none null local
d8fbbc99ee9c test bridge local

devbox@11642-77:~%
devbox@11642-77:~%
devbox@11642-77:~% brctl show
bridge name bridge 1id STP enabled interfaces
br-d8fbbc99ee9c 8000 .02423fdb4749 no

docker® 8000.0242260cb220 no

| devbox@11642-77:~% sudo docker network inspect 936f5c268e8f
[
{
"Name": "bridge",
"Id": "936f5c268e8f48eca920818e5a5335eca9aa48aa3190721c5e545179a6b40d77",
"Created": "2019-06-24T01:19:05.228876918Z",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"TPAM": {

"Driver": "default",
"Options": null,
"Config": [

{

"Subnet": "172.17.0.0/16",
"Gateway": "172.17.0.1"

]
¥

"Internal"”: false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""

A question remains. Internet access”

HOST A Any IP on our DockerO bridge seems to
N[have internet access via ethO...

13:172.16.0.1/24

BRIDGE: DockerO
vethABC

vethXY/
Veth: ethO Veth: manual-b
CONTAINER 1 CONTAINER 4
NetNS 1 NetNS 4

devbox@11642-77:~/netdevops-1live-0213% sudo docker exec -ti container4 traceroute 8.8.8.8
traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets
1 1 172.17.0.1 (172.17.0.1) 0.059 ms 0.007 ms 0.006 ms
Default Gateway routerl-lon.linode.com (212.111.33.229) @.672 ms ©.772 ms 0.863 ms
i 109.74.207.10 (109.74.207.10) ©.558 ms 109.74.207.16 (109.74.207.16) ©0.796 ms 109.74.207 .26 (109.74.20
googlel.lonap.net (5.57.80.136) ©0.902 ms ©0.889 ms 0.886 ms
74.125.242.97 (74.125.242.97) 2.671 ms 74.125.242.65 (74.125.242.65) 1.650 ms 108.170.246.129 (108.170

Guess whats’ happening?

(d
‘-iﬂlu:I:IIIIIIIII

CONTAINER 3

NetNS Default

eth¥

172.253.68.213 (172.253.68.213) 1.392 ms 172.253.66.99 (172.253.66.99) 2.205 ms 108.170.238.117 (108.1
dns.google (8.8.8.8) 1.264 ms ©0.973 ms 1.912 ms

- [PTables Source PAT rule for DockerQ interface.
- You can also see another for the new “docker network” we created.

. devbox@11642-77:~/netdevops-1ive-0213% sudo iptables -t nat -L -v
Chain PREROUTING (policy ACCEPT 705 packets, 40299 bytes)
pkts bytes target prot opt in out source destination
| 8073 437K DOCKER all -- any any anywhere anywhere ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT 338 packets, 20284 bytes)

pkts bytes target prot opt 1in out source destination
|

| Chain OUTPUT (policy ACCEPT 257 packets, 18587 bytes)

' pkts bytes target prot opt in out source destination
10 840 DOCKER all -- any any anywhere 'localhost/8 ADDRTYPE match dst-type LOCAL
Chain POSTROUTING (policy ACCEPT 257 packets, 18587 bytes)
pkts bytes target prot opt 1in out source destination
0 ® MASQUERADE all -- any Ibr-d8fbbc99ee9c 172.18.0.0/16 anywhere
116 7353 MASQUERADE all -- any ldocker® 172.17.0.0/16 anywhere
Chain DOCKER (2 references)
pkts bytes target prot opt 1in out source destination
0 @ RETURN all -- br-d8fbbc99ee9c any anywhere anywhere
0 @ RETURN all -- docker@ any anywhere anywhere

IPTables is pretty common everywhere you will see containers.
If traffic is getting into, or out of an IP address, or your service is being exposed on a port you didn’t expect,
Chances are there will be a some DNAT, SNAT rules being generated for you.

ACACACACdevbox@11642-77 :~/netdevops-1live-0213% sudo docker run --name container5 -p8000:8000 ubuntu:latest sleep 1000000 &
[1] 27273

devbox@11642-77:~/netdevops-1live-0213% sudo iptables -t nat -L -v

Chain PREROUTING (policy ACCEPT @ packets, @ bytes)

pkts bytes target prot opt 1in out source destination

8089 437K DOCKER all -- any any anywhere anywhere ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT @ packets, @ bytes)
pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 1 packets, 73 bytes)
pkts bytes target prot opt 1in out source destination
10 840 DOCKER all -- any any anywhere 'localhost/8 ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT 1 packets, 73 bytes)
pkts bytes target prot opt 1in out source destination
@ MASQUERADE all any 'br-d8fbbc99ee9c 172.18.0.0/16 anywhere
116 7353 MASQUERADE all any ldocker@ 172.17.0.0/16 anywhere
@ MASQUERADE tcp any any 172.17.0.2 172.17.0.2 tcp dpt:8000

DOCKER (2 references)
bytes target prot in out source destination
@ RETURN all br-d8fbbc99ee9c any anywhere anywhere
@ RETURN all docker@ any anywhere anywhere
@ DNAT ldocker@ any anywhere anywhere tcp dpt:8000 to0:172.17.0.2:8000
devbox@11642-77:~/netdevops-live-0213%

IPTables is also commonly used to enforce security policy especially in multi-host clustered container environments.
This is usually a central control plane (container orchestrator) deciding which IPTables rules to apply on which
hosts to protect the containers running there.

Chain DOCKER (2 references)
target prot opt source destination
ACCEPT tcp -- anywhere 172.17.0.2 tcp dpt:8000

Chain DOCKER-ISOLATION-STAGE-1 (1 references)

target prot opt source destination
DOCKER-ISOLATION-STAGE-2 all anywhere anywhere
DOCKER-ISOLATION-STAGE-2 all anywhere anywhere
RETURN all -- anywhere anywhere

Chain DOCKER-ISOLATION-STAGE-2 (2 references)

target prot source destination
DROP all anywhere anywhere
DROP all anywhere anywhere
RETURN all anywhere anywhere

Chain DOCKER-USER (1 references)
target prot opt source destination

DIETILIIDAMI ~1 7 PRGBSI Ay aae e Sl

Multi-Host.

Multi-Host: How

Your container is a VRF, with a connection out to a bridge, with a
L3 BVI, how would you make it multi-host?

Now we know what the foundations of “container networking” are,
Implementations for moving beyond single host docker should be
apparent.

HOST A HOST B

Routing / NAT Routing / NAT

L3:10.10.0.7 L3:172.16.0.1/24 L3: 10.10.0.7 L3:172.16.0.1/24

ethO BRIDGE: Docker0 ethO BRIDGE: Docker0

vethXYZ vethXYZ

Veth: ethO Veth: ethO
CONTAINER 1 CONTAINER 1

Multi-Host: How

L2 VLAN to span Docker0 Bridge L3 Rourt]es to each host, with a separate dockerO subnet
on eac
- Hairpin L3 Routing Concerns - Managing routing tables
- Broadcast Domain - Static vs Routing Protocol
- |P addressing (would need central state) - Managing hosts to be networked (state)

Existing Network Environment (VLAN-in-VLAN?)
Multi-Tenancy?
GRE Tunnels

HOST A HOST B

Routing / NAT Routing / NAT
L3: 10.10.0.1 L3: 172.16.0.1/24 L3: 10.10.0.1 L3:172.16.0.1/24

BRIDGE: Docker0 BRIDGE: Docker0
vethXYZ vethXYZ

Veth: ethO Veth: ethO
CONTAINER 1 CONTAINER 1

Recommended backends

Multi-Host: Solutions UXLAN

Use in-kernel VXLAN to encapsulate the packets.

One size does not fit all. Type and options:

® Type (string): vxlan

. e VNI (number): VXLAN Identifier (VNI) to be used. Defaults to 1.
Pluggable SOlUt|OnS Port (number): UDP port to use for sending encapsulated packets. Defa

Flannel currently 8472.
(https://Coreos.Com/ﬂannel/docs/latest/runninq.html) GBP (Boolean): Enable VXLAN Group Based Policy. Defaults to fatse.

DirectRouting (Boolean): Enable direct routes (like host-gw) when the

Calico subnet. VXLAN will only be used to encapsulate packets to hosts on diffe
(https://docs.projectcalico.org) to false.
Weave
(https://www.weave.works/docs/net/latest/overyi ~ NOSt-gw
Use host-gw to create IP routes to subnets via remote machine IPs. Requires
ew/) host-g b h q
) connectivity between hosts running flannel.
Contiv (ACI)
(httDS ‘//contiv.io/documents/networking/aci ug.ht host-gw provides good performance, with few dependencies, and easy set u
ml) Type:

* Type (string): host-gw https://coreos.com/flannel/docs/latest/backends.htr

https://coreos.com/flannel/docs/latest/running.html
https://docs.projectcalico.org/
https://www.weave.works/docs/net/latest/overview/
https://contiv.io/documents/networking/aci_ug.html
https://coreos.com/flannel/docs/latest/backends.html

Multi-Host: Solutions

Most solutions run some form of agent on each
host, talking to a central data store.

The agent inserts/configures connectivity to other
hosts and maintains |P addressing.

Weave-Mesh does not need a state store, but
does require direct L2 connectivity between all
nodes.

HOST A HOST B

Bridging / Routing / Encapsulating /NAT Bridging / Routing / Encapsulating / NAT
L3: 10.10.0.1 L3: 10.10.0.1

Configures Configures

ethO ethO

Networking-Agent Networking-Agent

Multi-Host: Solutions

Plugin packaging / format defined by Container solution, in this case, Docker.

"What should | do to network this container”
“What should | do to include this host”

Solution has the flexibility to *not™* be software.
EG. ACI plugin mapping VXLAN tag to an EPG

HOST A

Bridging / Routing / Encapsulating /NAT

L3:10.10.0.7

Docker Daemon 2. Network Container 1

1. Create
Networking-Agent State
CONTAINER 1

3. Commands

phy

HOST B

Bridging / Routing / Encapsulating / NAT

L3: 10.10.0.1

ethO

Networking-Agent

Calico - BGP vs Layers of Tunnels.

No overlay required

Why add another layer of overhead when you don't need it?

Sometimes, an overlay network (encapsulating packets inside an extra IP header) is
necessary. Often, though, it just adds unnecessary overhead, resulting in multiple
layers of nested packets, impacting performance and complicating trouble-
shooting. Wouldn't it be nice if your virtual networking solution adapted to the
underlying infrastructure, using an overlay only when required? That's what Calico
does. In most environments, Calico simply routes packets from the workload onto
the underlying IP network without any extra headers. Where an overlay is needed
- for example when crossing availability zone boundaries in public cloud - it can
use lightweight encapsulation including IP-in-IP and VXLAN. Project Calico even
supports both IPv4 and IPvé networks!

https://docs.projectcalico.org/v2.6/usage/configuration/bgp

https://docs.projectcalico.org/v2.6/usage/configuration/bgp

Calico BGP

HOST A
Bridging / Routing / Encapsulating /NAT

L3: 10.10.0.1
Configures Configures
ethO

Bird BGPd Networking-Agent

Configures Peers

Configuring BGP Peers

State

HOST B
Bridging / Routing / Encapsulating / NAT

L3: 10.10.0.1
Configures Configures

ethO

Networking-Agent Bird BGPd

Configures Peers

This document describes the commands available in calicoctl for managing BGP. It is intended primarily for users who are running on

private cloud and would like to peer Calico with their underlying infrastructure.

This document covers configuration of:

» Global default node AS Number
e The full node-to-node mesh
» Global BGP Peers

Al Jde e ' Y/IANIY Y

https://docs.projectcalico.org/v2.6/usage/configuration/bap

https://docs.projectcalico.org/v2.6/usage/configuration/bgp

Modularity: CNI

Usually, you'll be running a container orchestrator.

CNI: Container Network Interface

Plugin standard for networking plugins

Compatible with Kubernetes Who is using CNI?
All solutions discussed provide CNI plugins

Docker itself uses a different plugin mechanism Container runtimes

e rkt - container engine
o Kubernetes - a system to simplify container operations
* OpenShift - Kubernetes with additional enterprise featur:

https://aithub.com/containernetworking/cni e Cloud Foundry - a platform for cloud applications

e Apache Mesos - a distributed systems kernel
e Amazon ECS - a highly scalable, high performance contz
e Singularity - container platform optimized for HPC, EPC,

e OpenSVC - orchestrator for legacy and containerized ap

https://github.com/containernetworking/cni

Modularity: Kubernetes
NetworkPlugin

kUbEI‘I’IEtES Documentation Blog Partners Community Case Studies English ~ v1.15 ~

Concepts
HOME GETTING STARTED CONCEPTS TASKS TUTORIALS REFERENCE CONTRIBUTE

Concepts Network Policies @

» Overview

> Kubernetes Architecture A network policy is a specification of how groups of pods are allowed to communicate with

» Containers each other and other network endpoints.

» Workloads]]]
NetworkPolicy resources use labels to select pods and define rules which specify what

v Services, Load Balancing, and Networking traffic is allowed to the selected pods

Service

DNS for Services and Pods * Prerequisites
. o . . ¢ Isolated and Non-isolated Pods
Connecting Applications with Services
e The NetworkPolicy Resource
Ingress)
¢ Behavior of to and from selectors

Ingress Controllers « Default policies

Network Policies e SCTP support

Adding entries to Pod /etc/hosts with * What's next

HostAliases
> Storage Prerequisites &
» Configuration
» Security Network policies are implemented by the network plugin, so you must be using a networking
» Policies solution which supports NetworkPolicy - simply creating the resource without a controller to

» Cluster Administration implement it will have no effect.

Cisco ACI CNI for Container Integration

&,

—0
—0
Il b

t

H

ACI and Containers

Unified networking: Containers, VMs, and
bare-metal

Micro-services load balancing integrated in
fabric for HA / performance

Secure multi-tenancy and seamless
integration of Kubernetes network policies
and ACI policies

Visibility: Live statistics in APIC per
container and health metrics

See Season 1, Episode 7 for more details! https://developer.cisco.com/netdevops/live/#s01t07

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/netdevops/live/

Industry Developments

Future Developments & State of the art

kUbEI'I'IEtES Documentation Blog Partners Community Case Studies English ~ v1.15

Using eBPF in Kubernetes

Thursday, December 07, 2017
. . RRSS Feed
Using eBPF in Kubernetes .
Y A
Introduction E’ Submita Post

Kubernetes provides a high-level APl and a set of components that hides almost all of the intricate and—to some of us— g Kub .
interesting details of what happens at the systems level. Application developers are not required to have knowledge of the @Kubernetesio

machines’ IP tables, cgroups, namespaces, seccomp, or, nowadays, even the container runtime that their application runs
on top of. But underneath, Kubernetes and the technologies upon which it relies (for example, the container runtime) View on GitHub
heavily leverage core Linux functionalities.

This article focuses on a core Linux functionality increasingly used in networking, security and auditing, and tracing and a

monitoring tools. This functionality is called extended Berkeley Packet Filter (eBPF) #kubernetes-users
Note: In this article we use both acronyms: eBPF and BPF. The former is used for the extended BPF functionality, and the \\\

latter for “classic” BPF functionality. |=|Stack Overflow

What is BPF? DF

BPF is a mini-VM residing in the Linux kernel that runs BPF programs. Before running, BPF programs are loaded with the
bpf() syscall and are validated for safety: checking for loops, code size, etc. BPF programs are attached to kernel objects ‘
and executed when events happen on those objects—for example, when a network interface emits a packet. B Pownload Kubernetes

Future Developments & State of the art

Kubefed (V2) - Federated Kubernetes
Edge / Fog / Remote location workloads

- AutoVPN

- SDWAN

- Potential for CNI or workload integration
Service Mesh

- Still relies on a underlying IP fabric

Summing up

VWhat did we talk about?

- Linux Networking

. How Linux Networking became
container Networking

- Namespaces
- VETH

. Scaling to multiple hosts
- Pluggability and CNI

Webinar Resource List

- Learning Labs
« Microservices and Containers Intro DEVNET Module

https://developer.cisco.com/learning/modules/cloud-native-development

- DevNet Sandboxes
- Kubernetes CNI/ACI Sandbox http://cs.co/sbx-acik8s

- Code Samples and CLI Snippets
« Nhttps://aithub.com/ciscodevnet/netdevops-live-0213/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

https://developer.cisco.com/learning/modules/cloud-native-development
http://cs.co/sbx-acik8s
https://github.com/ciscodevnet/netdevops-live-0213/

NetDevOps Live! Code Exchange Challenge

Discover code repositories related to Cisco technologies

developer.cisco.com/codeexchange

”Containerize” your favorite

network automation script for

easier portability!
Submit your project O

Example: Include a Dockerfile in the repo that —— -

describes and installs all necessary Python R &

dependencies. c

https://developer.cisco.com/codeexchange

Looking for more about NetDevOps”?

- NetDevOps on DevNet
developer.cisco.com/netdevops

- NetDevOps Live!
developer.cisco.com/netdevops/live

- NetDevOps Blogs
blogs.cisco.com/tag/netdevops

- Network Programmability Basics Video Course
developer.cisco.com/video/net-prog-basics/

https://developer.cisco.com/netdevops
https://developer.cisco.com/netdevops/live
https://blogs.cisco.com/tag/netdevops
https://developer.cisco.com/video/net-prog-basics/

Got more gquestions? Stay in touch!

IIr
CISCO.

DEVNET

LEARN CODE INSPIRE CONNECT

developer.cisco.com

¥ @mattdashj ¥ @CiscoDevNet
https://github.com/matjohn2 K] facebook.com/ciscodevnet/
http://github.com/CiscoDevNet

NETDEVOPS{LIVEL}

https://developer.cisco.com/netdevops/live
@netdevopslive Y

