= \'4

v
PR . 4 DeveloperDays
Vv
3 <
4 J e
Feature-flags & Phased rollouts v ¢
Controlled service modifications 4
> . \%%
Kristian Larsson N S 4
Architect >

2020-04-29 N > >

Controlling
change

Scenario

- Day 1, you build a service
- It configures a "backbone" interfaces

- Day 2, deploy service in network

- Day 3, someone requires changes to the service
- MTU should be 9100 instead of 1500!

.. how to change the service?

Two approaches

- Nalve approach

- Feature-flag approach

Nalve approach

1. Change service configuration template
2. git commit
3. Deploy new version of your NSO service package

4. re-deploy service instance

- new config now active in network

15

5;%/devi

>
ce}</name>

uesciripil

</active>

e-name>{/interface}</interface-name>
ion>Link to {/remote/device} [{/remote/interface}]</description

owner>{$INTERFACE_TYPE}</owner>

Testing a nalve change

. 1 boolean = 2 values -> 2 test cases

. Changing value from (default)

1500 to 9100 is simple o heee
. 272 =4
- No extra test case 39 -8
- Just check that it works with 19 - 16
9100 o
. 5%"2 =32
- 672 =064
. /"2 =128

- 8"2 =256

Gun is loaded

time

time

andy@nso> configure
Entering configuration mode private
[0k][2020-05-25 11:38:41]

[edit]

andy@nso% set backbone-interface ABC-CORE-1 et-3/2/1
description "Link to FOO-CORE-1"

[0k][2020-05-25 11:38:52]

[edit]
andy@nso% commit

Feature grouping

- we implement feature A and feature B
- both are merged to master & deploy new NSO package

- service re-deploy deploys both A & B
- impossible to selectively enable A or B
- if A or B causes problems we need to roll back both

- BAD: feature A & B have inadvertently been grouped together
- development time is tightly coupled to operations

Goals

- Allow (reasonable) testing
- Avoid combinatorial explosion

- No loaded gun
- Going backwards / rollback
- No grouping of features

- Loose coupling between development & operations

-eature
flags

Feature-flags

- well known concept in software development

- move introduction of change from commit/deploy time to run time
- temporal decoupling of development and operations!!!

- focus on transition / change
. limited life time

- — "

Emphasize old -> new transition

-w~>{/1nterface}</- ‘erface-name>
-uH>L1nk to {/remote/dev1ce} [{/remote/1nterface}]</

Sociotechnical

- technically, FF is just another input
- NSO won't treat it differently

- difference is in concept
- clear life cycle for FF
- introduce FF for change transition
- when done, remove FF
-keeps down input / permutations over time

Feature-flag life cycle

2 months 2 months

feature-flag introduced remove feature-flag
default=False default=True

I

f / \ \ / new feature now only code path

phased rollout feature-flag still present &
canary 100% deployed can be disabled for debug

Reduce choices!

Focus on transition!

Boolean choice
Focus on transition

-Change
service

- Start
deploymen
t

Keep
deploying

Change
deployed

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

sSummary

- Change is natural in life cycle of a service
- For robust operations we must have control of change
- Use feature-flags to gain control

« Focus on:
- Simple choice
- Transitional nature

Phased
rollouts

Phased rollout of interface service

0. 90
o 50% 0
20%

5%

request backbone-interface * * re-deploy

kll@ncs> configure

kll@ncs% edit backbone-interface FOO-CORE-1 et-3/2/1
kll@ncs% set feature-flags high-mtu true

kll@ncs% commit

[ok]

kll@ncs?%

Errors & configuration validity

- configuration commit only includes syntax and semantic checks
- an empty configuration is valid
- but would lead to unhealthy device / service

—
—
- -
-

ay » — -
oy S~
-
-)

o E WY v

'- —-

— —, .

PNt PSS s 4
o ——

Service health

- need to understand if service is healthy

- monitor operational state of service
is BGP neighbor up?
IS interface up?
can we ping?

. service specific! not generic...

Service health via self-test

-« YANG action

- Commonly called "self-test"
tailf:info

. Placed Uﬂder SerV|Ce tailf:actionpoint

« Return common data structure

- Can return service specific
things too

- Must return "success" |leaf
- In my example...

Action

, uinfo, name, kp, action_input, action_output, trans
= ncs.maagic.get_node(trans, kp
log.1info service.device, service.interface
= root.devices.device[service.device
= utils.get dev_os(dev

os == DeviceOs.SROS_CLI:
= dev.live_ status. rmuter .1nterface[service.interface
intf.oper_ stat

..and some Python to back it up
Read live-status from device
Evaluate operational state

Set success leaf and return

Procedure

x400

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Feature-flag flipper

- Flipping feature-flags is a monotonous task

. ... a task for a computer

- | think there should be a package to help out
- Summarizing feature-flag rollout
- Flipping feature-flags in controlled manner

show feature-flags feature-flags

| feature-flag | type | progress |
I e e R T R |
| /infrastructure/base-config/feature-flags/foobar | false-to-true | 73% |
| /infrastructure/backbone-interface/feature-flags/bar | false-to-true | 14% |

show feature-flags instances

|
/infrastructure/bb-intf{901-R1-2053 et-10/0/0}/feature-flags/bar | true-to-false

| instance | type | value |
R e e S SR - - - -- -
/infrastructure/base-config{901-R1-2053}/feature-flags/foobar	false-to-true	false
/infrastructure/base-config{901-R1-2054}/feature-flags/foobar	false-to-true	true
/infrastructure/bb-intf{901-R1-2053 et-9/0/0}/feature-flags/bar true-to-false	false	

A mock-up of a feature-flag navigator

sSummary

- Change is natural in life cycle of a service
- For robust operations we must have control of change

- Use feature-flags to gain control
- Simple choice
- Transitional nature

- Phased rollouts through service health

- Automate rollout & flipping feature-flags

NI
CISCO

Sackup
slides /
detalls

—-
Placement

FF placement

- Where to place feature-flags?

- Under service
- What |I've shown so far

- Separate config tree

/my-cfs-service

/data...

[rfs-service

/data...
[feature-flags

/my-ff=true

/my-cfs-service /

/data...
[feature-flags

/my-ff=true

[rfs-service

/data...
/feature-flags

/my-ff=true

Separate FF tree

- Place FF in separate tree
- Avoids refcount/ownership iSSues

- Use kickers to trigger service re-deploy

