
Viktor Leijon
Principal Engineer, Mobility and Automation

The joys of model driven code

Jinja2 Templates and
Model Independence

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

NSO Architecture

Model-driven, end-to-end
service lifecycle and customer
experience focused
Seamless integration
with northbound tooling
Loosely-coupled and modular
architecture leveraging open
APIs and standard protocols
Orchestration across multi-
domain and multi-layer for
network-wide, centralized
policy and services

One small word

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• All data in CDB is described
by a YANG model

• All the APIs in NSO are
driven by the model

• The CLI and WebUI changes
with the model

NSO does it with
models

list nodes {

key name;

leaf name {

type string;

}

leaf info {

type uint16;

}

...
}

Why can’t your code be the same?

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Key/Value lists injected into
custom templates

• Leaves pointing to device
templates that are applied

• Embedding a JSON document
in a string leaf

• Other forms of trickery

• Hides the structure of the data

Striving for
modularity

list params {

key name;

leaf name {

type string;

}

leaf value {

type string;

}

}

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• You don’t have to know your model in advance

• Possible to dynamically react to changes in the model
• But, who changes the model then?
• Your code might be a library
• Customers might do customization
• Maybe you want to auto-generate from templates

Luckily NSO provides a schema API!

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Basic
Schema

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Available in all development APIs
• C, Java, Python, Erlang, JSON-RPC
• NETCONF/RESTCONF supports RFC8525 (YANG library)

• We will be talking Python today.
• The CsNode/CsNodeInfo is the same in all APIs
• Directly reflects NSO-internal structures
• Corresponds to the fxs-files you build from YANG

• Fairly primitive

What is the schema API?

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

A tiny example

def is_list(path):
with maapi.single_read_trans('islist', 'system') as t:

n = maagic.get_node(t, path)
return n._cs_node.is_list()

>>> islist.is_list('/devices')
False
>>> islist.is_list('/devices/device')
True

Question:
Is there a better way to do this?

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Represents a node in the schema tree

• Compact representation
• Use _ncs.hash2str() to decode tags.
• Most other fields are integers mapping to constants: _ncs.C_INT16

et c. (see pydoc _ncs for a full list)

• Represents the kind of the current node

• Contains the tree structure of the model

CsNode
pydoc _ncs.CsNode

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Detailed information about a node

• List information
• Cardinality
• Keys

• Actual data-type for a leaf

• Meta-data nodes for the node
• tailf:meta-data - can be used for extra-deep magic.

CsNodeInfo
pydoc _ncs.CsNodeInfo

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

A larger example – dumptree.py

def dumpNode(cs, recursive=True, depth = 0):
cstype = cs2type(cs)
name = _ncs.hash2str(cs.tag())
tval = gettype(cs)
print('{}{} {} {}'.format(' '*depth, cstype, name, tval))
c = cs.children()
while c:
dumpNode(c, depth=depth+1)
c = c.next()

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

maagic
Schema

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Iterate over your children

• Built in type information
• Extract _cs_node for extra
information.

Free schema with
your python

pydoc ncs.maagic.Node

def is_list_maagic(path):
with maapi.single_read_trans('islist',

'system') as t:
n = maagic.get_node(t, path)
return isinstance(n, maagic.List)

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

def children(path):
with maapi.single_read_trans('getchildren','system') as t:

n = maagic.get_node(t, path)
for child in n:

(prefix, name) = child.split(':')
childnode = n[name]
print("Child: {}, Type: {}".format(name, type(childnode)))

Showing all children

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

NSO ❤ Jinja2

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Requires NED support

• Not true native - limited to
what the NED supports

• Mostly relevant for CLI NEDs

• Action in config mode

Detour:
load-native-config # devices device ios0 load-native-config verbose

data "interface GigabitEthernet0/0\nip address
192.168.1.1 255.255.255.0"
info

Number of lines parsed : 4
Number of lines skipped : 0

admin@ncs(config)# show conf
devices device ios0
config
interface GigabitEthernet0/0
ip address 192.168.1.1 255.255.255.0

exit
!

!

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Demo:
Jinja2 templates

• Use the schema to
extract config values

• Feed the values into a
jinja2 template

• Use load-native-
config to load the
rendered template

• https://gitlab.com/nso-
developer/example-
model-driven-jinja2

https://gitlab.com/nso-developer/example-model-driven-jinja2

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• The schema API is cool

• All the NSO advantages:
• Nice CLI
• Input validation
• Structured payloads

• The possibilities are endless – what can you drive with a model?

Conclusion

