= \'4

N
i VL
cIsco | ~ BN baY S
v
K |
. A4
~ N

Using Kickers to Support VNF’'s Upgrade N

s , <

Ashish Jain ‘ V
>
Software Consulting Engineer - CX > >

16-17 June 2020 S S >

L

“Computers have no idea what
goes on outside of them except
what humans tell them.”

Ellen Ullman

- Ashish Jain

- Software Team - CX
India

- 10+ Years of
experience in Automation
& Orchestration

- Declarative notification
mechanism to trigger actions

- Actions will be triggered based on
certain events like database change
or received notifications

- Events and their Kickers are

defined separately as data-kicker or
notification-kicker

- Kickers are modeled in YANG and
Kicker instances stored as
configuration data in CDB

- A VNF is a function of the
virtualized network (NFV-
Network function Virtualization)

- [t iIncreases network scalability,
helps in optimal use of network
resources

. The requirement for specific
hardware can be removed

. Can run as VMs and deploy any
function

NSO - Solution Architecture

Normbound:Symn (PCAM)

Device Manager

Orchestrator

@
Q
e
5]

w

o
o
S
£
@

=z

Ultra Automation (UAME)

Openstack (VIM)

- NF Upgrade package has

been created in NSO

. These package needs to

upgrade VNF's based on
certain events from
Deployer/SMI

- VNF upgrades needs to show

progress and status based on
events

- VNF’s are separate entity
belonging to a POD and being
controlled using orchestrator like
deployer i.e. SMI

- NSO send single upgrade action
to deployer by specifying the
image and VNF name to be
upgraded

- Deployer internally triggers
image update action to tell VNF to
use new image

- Deployer sends notifications to
NSO that action sentto it is
successful or failed.

- NSO received success
notification from deployer,then it
needs to wait for notification from
VNF related to upgrade status.

- VNF’s sends notification which
contains all information like
image-version, upgrade

percentage, VNF-state

- NSO needs to take action based
on these notifications.

- NSO needs to show end-user
the status of action he has
triggered for upgrade.

What is the traditional way of taking actions

based on notifications received?

Traditionally notifications from
devices/nodes choosen to be
stored in CDB as operational
data and a separate CDB
subscriber was used to act on
the received notifications. With
the use of notification-kicker
the CDB subscriber can be
removed and there is no longer
any need to store the received
notification in CDB.

$ make clean all

$ ncs-netsim start
DEVICE ex0 OK STARTED
DEVICE exl OK STARTED
DEVICE ex2 OK STARTED

$ ncs

$ ncs_cli -u admin

admin@ncs# devices sync-from suppress-positive-result

admin@ncs# config
admin@ncs(config)# no devices device ex* config

r:sys interfaces

admin@ncs(config)# devices device ex0 config r:sys interfaces \
> interface enO mac 3c:07:54:71:13:09 mtu 1500 duplex half unit O family inet \

> address 192.168.1.115 broadcast 192.168.1.255
admin@ncs(config-address-192.168.1.115)# commit
Commit complete.
admin@ncs(config-address-192.168.1.115)# top
admin@ncs(config)# exit

Subscriber Output

<INFO> 05—-Feb-2015::16:10:23,346

(cdb—-examples:CdbCcfgsSubscriber)—

<INFO> 05—-Feb-2015::16:10:23,346

(cdb-examples:CdbCfgSubscriber) —

<INFO> 05-Feb-2015::16:10:23,346

(cdb-examples:CdbCcfgSubscriber) —

<INFO> 05-Feb-2015::16:10:23,346

(cdb-examples:CdbCfgsSubscriber)—

<INFO> 05—-Feb-2015::16:10:23,350

(cdb-examples :CdbCcfgSubscriber) -

<INFO> 05—-Feb-2015::16:10:23,354

(cdb-examples :CdbCfgSubscriber)—

<INFO> 05—-Feb-2015::16:10:23,354

(cdb-examples :CdbCfgSubscriber) —

—TNMTETAS AR _Takl _2N1TE..1&8-1TNn-22 254

prefix-length 32

configcdbsub

Run—1: -— Device {ex0}
ConfigCcdbsub

Run—-1: -— INTERFACE
Cconfigcdbsub

Run—-1: -— name: {en0}
ConfigCcdbsub

Run—-1: -— description:null
configcdbSub

Run—1: -— speed:null
ConfigCdbsub

Run—-1: -— duplex:half
configcdbSub

Run—-1: -— mtu:1500

A E L e ARSI

- Notification Kickers are triggered by
the arrival of notifications from any
device subscription.These
subscriptions are defined under the
/devices/device/netconf-notification/
subscription path.

- Storing the received notifications in
CDB is optional and not part of the
notification kicker functionality.

- The kicker invocations are serialized
under a certain subscription i.e.
kickers are invoked in the same
seqguence as notifications are received
for the same subscription. This means
that invocations are queued up and
executed as quickly as the action
permits.

Kicker Configurations
Device Subscriptions

<devices xmlns="http://tail-f.com/ns/ncs">
<device tags="merge">
<name>{$NAME}</name>
<address>{$ADDRESS}</address>
<port>{$PORT}</port>
<authgroup>{$AUTHGROUP}</authgroup=>
<device-type>
<netconf>
<ned-id>{$NED-ID}</ned—id>
</netconf>
</device-type>
<state>
<admin-state>{$ADMIN}</admin-state>
</state>
<attributes xmlns="http://com/tmobile/tmohost" when="{$ATTRIBUTENAME != ''}">
<attribute-name>{$ATTRIBUTENAME}</attribute-name>
<attribute-value when="{$SATTRIBUTEVALUE != ''}">{$ATTRIBUTEVALUE}</attribute-value:
</attributes>
<netconf-notifications>
<subscription>
<name>{$NAME}-SYNC-STATUS</name>
<stream>sync-status</stream>
<local-user>admin</local-user>
</subscription>
</netconf-notifications>
<kicker—-ids xmlns="http://com/tmobile/tmohost">
<kicker—id>sync-status—kicker—{$NAME}</kicker—id>
</kicker—-ids>
</device>
</devices>

Kicker Config

<kickers xmlns="http://tail-f.com/ns/kicker">
<notification-kicker
xmlns="http://tail-f.com/ns/ncs-kicker">
<id>sync-status-kicker-{$NAME}</id>
<selector-expr>$SUBSCRIPTION_NAME = '{$NAME}-SYNC-STATUS'</selector-expr>
<kick-node xmlns:nf-os-upgrade="http://com/tmobile/nf-os-upgrade">/nf-os-upgrade-api</kick-node>
</notification-kicker>
</kickers>

Yang Definition

container nf-os-upgrade-api {
tailf:action nf-os-upgrade-subscription {
tailf:actionpoint nf-os-upgrade-api-action-point;
input {
uses kicker:action-input-params;
}

output {
}

Java Code Snippet

@ActionCallback(callPoint = "nf-0s-upgrade-api-action-point", callType = ActionCBType.ACTION)
public ConfXMLParan(] nfUpgrade(DpActionTrans trans, ConfTag name, ConfObject[] kp, ConfXMLParam([] params)
throws ConfException {
ConfXMLParanl] result = null;
Map<String, String> inputParams = null;
Maapi maapi = null;

-Kickers helps in solving the VNF
upgrade issue providing simple
actions point after receiving the
success/failure notifications from
deployer.

- As soon as Deployer generates
Success/Failure subscription, kicker
action will be called immediately and

subsequent actions will be taken
related to same.

-VNF kickers will be triggered as soon
as individual notifications being
generated and kicker action will take
care of showing the progress,
upgrade status and individual VNF
state.

NI
CISCO

